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There are 78 loci associated with Parkinson’s disease in the most recent genome-wide association study (GWAS), yet 
the specific genes driving these associations are mostly unknown. Herein, we aimed to nominate the top candidate 
gene from each Parkinson’s disease locus and identify variants and pathways potentially involved in Parkinson’s dis
ease. We trained a machine learning model to predict Parkinson’s disease-associated genes from GWAS loci using 
genomic, transcriptomic and epigenomic data from brain tissues and dopaminergic neurons. We nominated candi
date genes in each locus and identified novel pathways potentially involved in Parkinson’s disease, such as the inosi
tol phosphate biosynthetic pathway (INPP5F, IP6K2, ITPKB and PPIP5K2). Specific common coding variants in SPNS1 
and MLX may be involved in Parkinson’s disease, and burden tests of rare variants further support that CNIP3, 
LSM7, NUCKS1 and the polyol/inositol phosphate biosynthetic pathway are associated with the disease. Functional 
studies are needed to further analyse the involvements of these genes and pathways in Parkinson’s disease.
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Introduction
Genome-wide association studies (GWAS) have nominated many 
variants associated with complex traits. In Parkinson’s disease 
(PD), the most recent GWAS revealed 90 independent risk variants 
across 78 genomic loci.1 Although many single-nucleotide poly
morphisms (SNPs) are in novel genomic loci, well-established PD 
genes discovered many years ago, such as LRRK2, PINK1, DJ-1, 
SNCA, GBA1, PRKN and MAPT still account for the vast majority of 
research on this disease.

Several disadvantages of GWAS limit additional functional ana
lyses. First, over 90% of all GWAS significant SNPs are in non-coding 
regions.2 These SNPs are often passenger variants due to complex 
linkage disequilibrium (LD). Second, the causal gene associated 
with the causal SNPs remains unclear in most GWAS loci.3 To over
come these challenges, downstream GWAS analyses were estab
lished with the aim of identifying causal genes within GWAS loci. 
This involves techniques such as fine-mapping and co-localization 
methods to nominate causal SNPs, as well as transcriptome-wide 
association studies to nominate gene-trait associations.4-6 These 
models use LD structure, and gene expression panels to discover 
causal SNPs/genes. While these methods may propose causal var
iants and genes, additional biological evidence is generally required 

to pair causal variants with causal genes. Using multi-omic ana
lyses, one can integrate a diverse range of comprehensive cellular 
and biological datasets such as genomic, transcriptomic and epi
genetic datasets and use platforms such as Open Targets Genetics 
(https://genetics.opentargets.org/) to perform systematic analyses 
of gene prioritization across all publicly available GWASs.7

Although powerful, Open Targets Genetics lacks disease-specific 
tissues relevant to PD such as dopaminergic neurons and microglia. 
Using a similar approach, we may discover additional pathways 
and genetic targets involved in PD.

In this study, we leveraged PD-relevant transcriptomic, epige
nomic and other datasets in our gradient boosting model (Fig. 1). 
We trained this model on well-established PD genes to nominate 
causal genes from PD GWAS loci.

Materials and methods
General design of the study

Our objective was to nominate the most probable genes to be in
volved in PD from each GWAS locus based on the most recent PD 
GWAS (see Fig. 1 for the study protocol).1 To do so, we first defined 

Figure 1 Workflow summary. This figure describes the analyses performed in this study. DA = dopaminergic; eQTL/sQTL = expression/splicing quan
titative trait loci; GWAS = genome-wide association study; PRS = polygenic risk score.
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all the genes and SNPs that are within these loci (see later) and used 
to a machine learning approach to nominate the top genes in each 
locus. Based on the previous literature and consensus between 
authors, we identified seven genes from well-established loci asso
ciated with PD that can be considered the likeliest driving genes of 
their respective loci (GBA1, LRRK2, SNCA, GCH1, MAPT, TMEM175 
and VPS13C). We then acquired data for multiple features, includ
ing different distance measures from top SNPs, different QTLs, ex
pression in relevant tissues and cell types and predictions of 
variant consequences (78 features out of 284 were used after re
moval of redundant features; Supplementary Table 1). Using the se
ven well-established PD genes, which were labelled as positive, and 
212 genes in the same loci that received negative labels (i.e. not like
ly to drive the association with PD, since the PD-driving gene is al
ready well-established), we trained a machine learning model. This 
model enabled us to generate a prediction score for each gene with
in each locus, assessing their potential involvement in PD. The gene 
with the highest score in each locus is the nominated gene to be as
sociated with PD. We then performed multiple post hoc analyses to 
further validate and explore our results: burden tests for rare var
iants in the top-scoring genes, pathway enrichment and pathway 
PRS analyses, differential expression analyses and structural ana
lyses for candidate coding variants.

Definition of loci and genes within each locus

Following the definition by Nalls et al.,1 all loci were defined based 
on the 90 independent risk variants (Supplementary Table 2). 
Variants within 250 kb were merged into a single locus, which led 
to 78 loci. All protein coding genes within 1 Mb of the risk variants 
were included in the model. To exclude non-causal variants, 
echolocatoR was used as a comprehensive fine-mapping model.5

This method leverages Bayesian statistical and functional fine- 
mapping tools as well as epigenomic data to calculate the causal 
probability of SNPs in a locus.5 In our downstream analysis, we in
corporated the SNPs nominated by echolocatoR into the credible 
gene sets generated by the same tool. Furthermore, we included 
the 90 independent SNPs obtained from the PD GWAS in our 
analysis.

Feature preprocessing

To leverage multi-omic data for the machine learning algorithm, 
we integrated a comprehensive list of datasets (Supplementary 
Table 1), which included SNP functional annotations, expression 
and splicing quantitative trait loci (eQTL/sQTL), single nuclear 
RNA sequencing (scRNA) and chromatin interaction. Since distance 
was previously shown to be the most predictive feature in about 
60–70% of GWAS loci, the distances from each SNP to each gene 
in the locus and the distance to the transcription start site were in
cluded in the model.8 To predict the severity of variant conse
quences, we used VEP9 and PolyPhen-2.10 The SNP2GENE function 
on the FUMA platform was used to perform functional mapping 
of SNPs to eQTLs.11 In the FUMA settings, we chose the UK 
Biobank release2b 10k European reference panel, a maximum dis
tance of 1000 kb from SNPs to gene, and included the major histo
compatibility complex (MHC) region. All other FUMA settings 
were kept as default. Expressions QTL and 3D chromatin inter
action mapping were performed using brain tissues, whole blood, 
Functional Annotation of the Mammalian genome (FANTOM) and 
Genotype-Tissue Expression (GTEx) datasets. Using scRNA datasets 
from Kamath et al.,12 we included gene expression from all ten 

subpopulations of dopaminergic neurons from post-mortem brains 
of seven PD and eight control donors. A complete list of all datasets 
can be found in Supplementary Table 3.

Neighbourhood scores

To integrate the concept of locus and LD in the model, we calculated 
the neighbourhood scores for each feature by transforming the data 
relative to the best-scoring gene within each locus,7 allowing the 
model to find the highest expressed genes across each locus. For ex
ample, if the feature is ‘maximum gene expression in blood’, the 
gene with the highest expression in each locus would have a score 
of 1 while the score of the remaining genes in the locus would be 
calculated following the expression of gene divided by the expres
sion of highest expressed gene in the locus. Negative log transform
ation was applied so that the closest gene had the highest score.

Machine learning model to prioritize genes

We used XGBoost13 to train the machine learning model. We se
lected well-established genes from PD loci for the training dataset 
(GBA1, GCH1, LRRK2, MAPT, SNCA, TMEM175, VPS13C). These genes 
were labelled as positive labels, and the remaining genes from 
these same loci were labelled as negative labels. In total, the train
ing set was composed of 212 genes (seven positive labelled and 205 
negative labelled). The scale_pos_weight parameter in XGBoost 
was set to the ratio of negative to positive labels to control for the 
imbalance. The training process involved two steps. First, we per
formed feature selection to detect redundant features. This in
volved removing any variables from the dataset that were either 
redundant or uninformative. XGBoost was employed to transform 
the dataset into a subset containing the chosen features. To achieve 
this, we trained a model using the complete dataset and then re
tained the features present in the subset produced by XGBoost. In 
the second step, the final training model was created using the se
lected features. This two-step approach helps optimize the training 
process and ensures that the model focuses on relevant and in
formative features to make accurate predictions. We performed hy
perparameter tuning and 5-fold cross-validation on both models. 
Mean average precision was used as an evaluation function to 
maximize the score of correct positive predictions made. Of the 
284 features, 78 features passed feature selection for the final train
ing model.

Functional enrichment analysis

To examine whether specific pathways may be involved in PD, 
based on the genes nominated in each locus, we performed an 
over-representation analysis using WebGestalt (Web-based Gene 
Set Analysis Toolkit) on 25 January 2023.14 We included the top 
candidate gene from each locus, and examined enrichment in 
terms of biological processes and cellular components from the 
Gene Ontology (GO) data. The genome protein-coding list was 
used as the reference list and pathways were considered to be as
sociated with PD if significant after false discovery rate (FDR) 
correction.

Single-cell and bulk RNA sequencing analyses

To examine whether genes nominated by the machine learning mod
el may be differentially expressed in PD relevant models, we used 
publicly available single-cell and bulk RNA sequencing (RNAseq) 
data from The Foundational Data Initiative for Parkinson’s disease 
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(FOUNDIN-PD)15 and Kamath et al.12 FOUNDIN-PD scRNA data in
clude 80 induced pluripotent stem cell (iPSC) lines collected after 
65 days.15 We then performed differential gene expression ana
lyses between PD cases and controls. For scRNA, we used the 
MAST16 package after adjusting for covariates, such as age, sex 
and batch. For bulk RNAseq, we used DESeq2,17 while adjusting 
for the same covariates.

Pathway polygenic risk score analyses

Pathway-specific polygenic risk score (PRS) analysis can further 
support a role for specific pathways in PD.18 Using PRSet,19

pathway-specific PRSs were calculated for pathways nominated 
by gene set analysis on 14 828 PD cases and 13 283 controls from se
ven cohorts [McGill, Parkinson’s Progression Markers Initiative 
(PPMI), Vance (dbGap phs000394), International Parkinson’s 
Disease Genomics Consortium (IPDGC) NeuroX dataset (dbGap 
phs000918.v1.p1), National Institute of Neurological Disorders and 
Stroke (NINDS) Genome-wide genotyping in Parkinson’s disease 
(dbGap phs000089.v4.p2), NeuroGenetics Research Consortium 
(NGRC) (dbGap phs000196.v3.p1) and UK Biobank]. The number of 
cases and controls for each cohort is described in Supplementary 
Table 4. Participants were unrelated individuals of European ances
try and were not gender matched. Rare SNPs (minor allele fre
quency < 0.01) with a P-value < 0.05 were excluded from the 
analysis. LD clumping was performed using r2 = 0.1 and 250 kb dis
tance. Permutation testing was performed with 10 000 label permu
tations to generate an empirical P-value for each gene set after 
adjusting for a prevalence of 0.005, age at onset for cases, age at en
rollment for control, sex and the top 10 principal components. The 
Vance cohort was excluded from the meta-analysis due to signifi
cant heterogeneity.

Rare variant burden analyses

To examine whether there is an association between rare var
iants in the genes nominated by the machine learning model 
and PD, we used MetaSKAT20 to perform a meta-analyses of 
rare variants. We used whole exome sequencing (WES) available 
for 602 PD patients, 6284 proxy patients and 140 207 controls from 
UK Biobank (n = 147 093) and 2600 PD patients, 3677 controls 
from Accelerating Medicines Partnership Parkinson’s Disease 
(AMP-PD)21 datasets (n = 6277). Additional selection criteria 
for UK Biobank and AMP PD were reported previously.22,23 We 
performed the analysis on several groups of rare variants (allele 
frequency < 0.01): loss of function variants; non-synonymous 
variants; potentially deleterious (CADD > 20) variants; and func
tional (including non-synonymous, frame-shift, stop-gain and 
splicing) variants. Pathway-specific rare variant analysis was 
performed by combining PD genes from the pathways nominated 
previously. All analyses were adjusted for age at onset for cases, 
age at sample for controls and sex.

Structural analysis

The atomic coordinates of SPNS1 (UniProt #H3BR82) were retrieved 
from the AlphaFold server (https://alphafold.ebi.ac.uk/). The struc
tures of MLX-MAD1 and MLX-MLXIP were generated using 
AlphaFold-Multimer version 3, as implemented in ColabFold.24,25

The ternary complex with a DNA duplex was generated by 
superposing the heterodimers on the crystal structure of the 
MAD1-MAX-DNA complex (PDB 1NLW). The figures were generated 
using PyMol v.2.4.0.

Results
Machine learning model nominates PD-associated 
genes in each PD locus

To train our machine learning model, we used seven well- 
established PD-associated genes from the PD GWAS (GBA1, LRRK2, 
SNCA, GCH1, MAPT, TMEM175 and VPS13C) as positive labels, and 
the remaining genes from the same loci (n = 205) were used as nega
tive labels (i.e. genes that are unlikely to be involved in PD). We 
trained an XGBoost regression model to identify the best predictive 
features. Then, based the best predictive features, we assigned a 
probability score that indicated the likelihood that the gene was 
driving the association at each locus (Supplementary Table 2). We 
then nominated the top-scoring genes in each locus (Fig. 2 and 
Supplementary Table 2). Two genes, MAPT and TOX3, were nomi
nated twice in neighbouring loci that harbour them, taking the total 
number of genes nominated in this model to 76 genes in 78 loci. A 
probability score higher than 0.75 was assigned to 48 of the 76 genes 
(63%). Of note, five genes (NEK1, FDFT1, PSD, BAG3 and SLC2A13) that 
were ranked second in their respective loci also had a probability 
score >0.75. However, the nominated genes in their loci (CLCN3, 
CTSB, GBF1, INPP5F and LRRK2, respectively) all had probability 
scores >0.94. In seven other loci, the top nominated genes had 
an especially low probability score (<0.3), including RBMS3, 
HIST1H2BL, TRIM40, EHMT2, RPS12, MICU3 and ITGA8.

Gene expression in subtypes of PD-associated 
dopaminergic neurons predicts PD-relevant genes

Next, we used Shapley Additive exPlanations (SHAP) values to 
determine which features of the model contributed most to the pre
diction.26,27 SHAP values provide, for each gene, the relative contri
bution of each feature to the selection of that gene. The most 
important features for the scoring of each gene are shown in 
Fig. 3. As expected, distance-related features, such as distance 
from the top-associated SNP in the locus to the transcription start 
site or distance to the beginning of the gene, were the most import
ant features in our model.7 The next most important feature was 
the Variant Effect Predictor (VEP) value, followed by additional dis
tance measures.9 Interestingly, the next most important features 
were mRNA expression values within specific dopaminergic neu
ron subtypes. These different dopaminergic neuron subtypes are 
defined by the expression of the genes GFRA2 and AGTR1 from sin
gle nuclear sequencing of post-mortem tissue. The latter is a specif
ic subtype of dopaminergic neurons shown by Kamath et al.12 to be 
selectively degenerated in brains of PD patients.12 The remaining 
features include expression in other dopaminergic neuron subpo
pulations, eQTLs and other expression features. Epigenetic features 
were not predictive in our model. As shown in Fig. 4, all nominated 
genes had at least one of the distance features contributing to their 
selection. On top of the known contribution of missense variants in 
GBA1, LRRK2 and GCH1, we nominated missense SNPs that contrib
uted to the score of two candidate genes: SPNS1 (p.L512M, rs7140) 
and MLX (p.Q139R, rs665268). In Europeans, both SNPs are in high 
LD with the candidate GWAS SNPs of their respective locus 
(SPNS1 D': 0. 88 r2: 0.74; MLX D': 1 r2: 1). In GTEx, rs7140 and 
rs665268 are also eQTLs/sQTLs for SPNS1 and MLX across several 
PD related tissues such as whole blood and anterior cingulate cor
tex. The eQTL and sQTL results from GTEx v8 are shown in 
Supplementary Table 5. SPNS1 and MLX have not previously been 
implicated in PD, and the important features identifying these 
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genes as the top candidate for their respective GWAS loci are shown 
in Fig. 5.

Differential expression of genes from the inositol 
phosphate biosynthetic pathway and MLX in PD

To further establish the importance of the nominated genes in PD, 
we examined whether they are differentially expressed in PD 

patients compared to controls, using expression data from single 
nuclear RNAseq (scRNA) from Kamath et al.12 and single nuclear 
and bulk RNAseq datasets from FOUNDIN-PD.15 Of the top nomi
nated genes, INPP5F [average log fold-change (FC) = −7.22, 
P  =  2.90 × 10−31] and MLX (average log FC = −1.80, P = 2.23 × 10−4) 
were associated with PD in the data published by Kamath et al.12

(Supplementary Table 6). In FOUNDIN-PD,15 after excluding pro
dromal cases, we found differential expression of many genes 

Figure 2 Probability score of the Parkinson’s disease genome-wide association study candidate genes. This figure shows the probability scores from 
the machine learning model for each locus in the Parkinson’s disease genome-wide association study loci sorted in descending order. For each gene, 
the top non-distance feature was used to colour the data.

Figure 3 Feature importance for the Parkinson’s disease genome-wide association study gene prioritization model. Bee-swarm plot of feature import
ance using Shapley Additive exPlanations values along with the distribution of genes based on feature value.
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including INPP5F (average log FC = 0.070, P = 1.89 × 10−19) and IP6K2 
(average log FC = −0.076, P = 1.35 × 10−35) in scRNA data (n = 80) 
from dopaminergic neurons by comparing PD and controls 
(Supplementary Table 7). Results from the bulk RNAseq analysis 
of FOUNDIN-PD (n = 92) can be found in Supplementary Table 8.

Structural analysis of SPNS1 and MLX

Since non-synonymous variants in SPNS1 and MLX were identified 
as major contributors to their selection as the nominated genes in 
their loci, we aimed to examine the potential consequences of these 
variants by performing in silico structural analyses of the protein en
coded by these genes. SPNS1 encodes a transporter for phospholi
pids at the lysosome membrane.28 It mediates the efflux of 
lysophosphatidylcholine and lysophosphatidylethanolamine out 
of the lysosome. The SNP rs7140 is located in the 3′-untranslated 
region (UTR) of the canonical splice variant 1 transcript, which 
produces the 528 amino acid (aa) isoform that has been investigated 
functionally28 (UniProt #Q9H2V7). This canonical isoform has also 
been observed in numerous proteomics datasets in gpmDB 
(https://gpmdb.thegpm.org/index.html). However, six other potential 

isoforms generated by alternative splicing have been predicted, 
including a 538 aa fragment with an alternative C-terminus, 
whereas the rs7140 SNP is located within the coding region 
(UniProt #H3BR82). The rs7140 variant results in the p.L512M mu
tation in this isoform. To investigate the impact of this mutation 
on the function of this SNPS1 isoform, we inspected the 3D struc
ture model generated by AlphaFold.29 Leu512 is located in the un
structured C-terminus of this membrane-bound protein, on the 
lumenal side of the lysosomal membrane (Supplementary Fig. 
1A). The role of the C-terminus in this isoform of SPNS1 remains 
unclear, and thus the impact of the p.L512M mutation is 
unknown.

The Max-like protein (MLX) is at the heart of a transcriptional 
network pathway involved in energy metabolism and cell signal
ling.30,31 It interacts with at least six other related proteins includ
ing the MAD family of transcriptional repressors and the Mondo 
family of transcriptional activators. These proteins contain basic/ 
helix-loop-helix/leucine zipper (bHLHZ) domains that form hetero
dimers and interact with DNA carrying the CACGTG E-box motif. To 
understand the impact of the p.Q223R MLX mutation (rs665268) on 
its activity, we modelled the structure of MLX heterodimers with 

Figure 4 Heat map of feature importance. The heat map is generated using Shapley Additive exPlanations (SHAP) value for the top candidate gene in 
each locus. The plot at the top represents the probability score of each gene.
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both the MAD and Mondo families using AlphaFold. MLX dimerizes 
with MAD1,31 and thus we superposed its bHLHZ domain on the 
MAD1-MAX-DNA complex crystal structure32 to generate the tern
ary complex model. The model shows that Gln223 in MLX is at the 
end of the dimerization ‘zipper’ helix (Supplementary Fig. 1B). The 
mutation p.Q223R induces the formation of a salt bridge with 
Glu139 in MAD1, which could strengthen the interaction between 
MAD1 and MAX. This could then downregulate the interaction of 
MAD1 with MAX through competition, and thus affect the extent 
of the transcriptional repression. Glu139 is not conserved in other 
MAD-related proteins such as MXI1 and MAD3/4. Furthermore, 
the model of MLX interacting with MLXIP, a protein of the Mondo 
family also known as MondoA,33 shows that the mutation may 
negatively affect the formation of this heterodimer by introducing 
a charge next to a hydrophobic sidechain (Supplementary Fig. 
1C). The nuclear localization of Mondo proteins is dependent on 
their interaction with MLX,30 and thus the mutation may down 

regulate activation by the Mondo family while strengthening re
pression via MAD1.

Gene enrichment analysis shows the inositol 
phosphate pathway as a novel pathway involved in 
PD

We further examined whether the nominated genes highlighted 
specific pathways and mechanisms associated with PD. We per
formed a pathway enrichment analysis by examining over- 
representation of the top nominated genes in biological processes 
and cellular components using the top genes in each locus. 
Among the biological processes passing the FDR correction, the in
ositol phosphate biosynthetic process (GO:0032958) and polyol bio
synthetic process (GO:0046173) were strongly enriched (Fig. 6A). 
Inositol was associated with four candidate genes, namely ITPKB, 
IP6K2, PPIP5K2 and INPP5F. The features most important to the 

Figure 5 Waterfall plots for Parkinson’s disease genome-wide association study candidate genes. Importance of the top 10 features using Shapley 
Additive exPlanations values for different selected candidate genes. E[f(x)] is the base score for each gene, which is calculated based on the average 
value of each features. f(x) is the final score after accounting for all features.
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nomination of these genes as PD-associated by our ML model are 
shown in Fig. 5. Cellular components were also identified in the 
gene enrichment analysis (Fig. 6B).

Pathway-specific polygenic risk score of the inositol 
phosphate pathway is associated with PD

To further study the association between the putative novel PD 
pathways and PD status, pathway-specific PRSs were calculated 
for the above-mentioned gene sets. The association between these 
PRSs and PD was examined in six PD cohorts, followed by a 

meta-analysis as detailed in the ‘Materials and methods’ section. 
One outlier cohort was excluded due to heterogeneity. The 
pathway-specific PRSs were first calculated using all genes in that 
pathway. Then, to further validate that the specific pathway was in
deed important in PD, we excluded the genes nominated by our ma
chine learning pathway and recalculated the PRS. By removing 
these genes with GWAS significant signals, we could examine the 
residual effect of the remaining pathway. The inositol phosphate 
biosynthetic pathway was associated with PD even after excluding 
the genes nominated in our analysis [odds ratio (OR) 1.06, 95% con
fidence interval (CI) 1.03–1.09, P = 7.01 × 10−5], as well as other 

Figure 6 Volcano plots of gene ontology biological processes and cellular components. Volcano plots of gene-set enrichment analysis using 
WebGestalt showing the log of the false discovery rate (FDR) versus the enrichment ratio for biological processes (A) and cellular components (B). 
P-value are calculated using a hypergeometric test. All pathways that are significant after FDR correction were named.
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related pathways (Table 1). Forest plots of the all the pathway PRSs 
are shown in Supplementary Fig. 2.

Rare KCNIP3 and LSM7 variants and in the polyol/ 
inositol biosynthetic pathway are involved in PD

To further establish the potential role of the nominated genes in PD, 
we performed rare variant burden tests in all the genes nominated 
by our model. As expected, genes that are known to harbour rare PD 
coding mutations including GBA1, LRRK2 and GCH1 were associated 
with PD (Table 2 and Supplementary Table 9). Three additional 

genes, including two genes that have not previously been impli
cated in PD (KCNIP3 and LSM7) showed a burden of rare variants 
after FDR correction for multiple comparisons. We then examined 
the genes from the pathway enrichment analysis and found that 
rare variants in the polyol/inositol biosynthetic pathway were 
also associated with PD (SKAT-O, P = 1.58 × 10−4), further support
ing its role in PD.

Discussion
Using multi-omic data and machine learning, we nominated genes 
that potentially drive the associations with PD for each of the 78 PD 
GWAS loci. Our nominated genes included many not previously 
studied in the context of PD. Additionally, we identified two novel 
genes with rare variants (KCNIP3 and LSM7) as well as genes with 
GWAS significant coding variants such as SPNS1 and MLX that could 
be further studied. Furthermore, our gene enrichment, pathway- 
specific PRS and rare variant analyses suggested involvement of 
the inositol phosphate biosynthetic pathway in PD.

Four genes nominated by our machine learning model were as
sociated with the inositol phosphate biosynthetic pathway, ITPKB, 
IP6K2, PPIP5K2 and SNCA,34 which showed strong enrichment of 
this pathway. In addition, INPP5F, also nominated by our analysis, 
is involved in inositol processing through a parallel pathway.35

Our results demonstrate that the inositol pathway-PRS, even 
when excluding the previously mentioned genes, is still associated 
with PD. Taken together, our findings support the importance of the 
inositol phosphate pathway in PD.

Based on the evidence from the candidate inositol genes and 
previous inositol studies, inositol could potentially be a therapeutic 
target for PD. In 1999, a clinical trial on inositol was conducted on 
nine PD patients.36 Treatment with inositol compared with placebo 
did not improve clinical outcomes; however, we cannot rule out in
ositol and inositol phosphates as potential therapeutic targets, as 
only nine patients were recruited for the trial.

ITPKB encodes for a ubiquitous kinase that phosphorylates 
inositol 14,5-trisphosphate (IP3) to inositol 1,3,4,5 tetrakispho
sphate (IP4) using a Ca2+/calmodulin-dependent mechanism. IP3 
is a secondary messenger that stimulates calcium release from 
the endoplasmic reticulum (ER). In primary neurons, ITPKB knock
down/overexpression was shown to increase/reduce levels of 
α-synuclein aggregation.37 Additionally, ITPKB knockdown in neu
rons leads to the accumulation of calcium in mitochondria. This ac
cumulation can impair the process of autophagy, which is crucial 
for maintaining mitochondrial health. In neuroblastoma cells, 
ITPKB mRNA levels were also shown to be correlated with SNCA ex
pression in the cortex and IPTKB protein levels were increased 
in wild-type α-synuclein, A53T and A30P mutants.38 Meanwhile, 
IP6K2 and PPIP5K2 interact with the same substrates. IP6K2 con
verts inositol hexakisphosphate (IP6) to 5-diphosphoinositol 

Table 1 Meta-analyses of pathway-specific polygenic risk scores

Pathway-specific polygenic risk score OR 95% CI P-value Het P-value

POLYOL_BIOSYNTHETIC_PROCESS 1.20 1.17–1.24 2.07 × 10−42 1.91 × 10−5

INOSITOL_PHOSPHATE_BIOSYNTHETIC_PROCESS 1.15 1.12–1.18 2.36 × 10−25 1.97 × 10−2

POLYOL_BIOSYNTHETIC_PROCESS_filtered 1.09 1.06–1.12 1.04 × 10−9 1.12 × 10−2

INOSITOL_PHOSPHATE_BIOSYNTHETIC_PROCESS_filtered 1.06 1.03–1.09 1.31 × 10−5 1.45 × 10−1

CI = confidence interval; Filtered = excluded Parkinson’s disease genome-wide association study top gene; GOBP_INOSITOL_PHOSPHATE_BIOSYNTHETIC_PROCESS = Gene 

Ontology inositol phosphate biosynthetic process (GO:0032958); GOBP_POLYOL_BIOSYNTHETIC_PROCESS = Gene Ontology polyol biosynthetic process (GO:0046173); Het =  
heterogeneity; OR = odds ratio.

Table 2 Meta-analysis of rare variant analysis of putative 
causal genes

Set P-value FDR P-value

GBA1 Rarefunctional 2.04 × 10−12 6.22 × 10−10

GBA1 Rarenonsyn 3.38 × 10−11 5.15 × 10−9

GBA1 RareLOF 1.22 × 10−6 1.24 × 10−4

GBA1 RareCADD 2.32 × 10−6 1.77 × 10−4

LSM7 RareLOF 3.69 × 10−6 2.25 × 10−4

KCNIP3 RareLOF 1.12 × 10−5 5.69 × 10−4

GCH1 RareLOF 2.02 × 10−5 8.80 × 10−4

LRRK2 RareCADD 6.07 × 10−5 2.31 × 10−3

Polyol Rarefunctional 1.59 × 10−4 5.38 × 10−3

Polyol Rarenonsyn 2.86 × 10−4 8.74 × 10−3

NUCKS1 RareCADD 4.13 × 10−4 1.14 × 10−2

Polyol RareLOF 1.54 × 10−3 3.91 × 10−2

SYT17 Rarenonsyn 4.61 × 10−3 9.37 × 10−2

P2RY12 RareLOF 4.38 × 10−3 9.37 × 10−2

CYLD RareLOF 4.48 × 10−3 9.37 × 10−2

SYT17 Rarefunctional 7.39 × 10−3 1.38 × 10−1

LCORL RareLOF 7.66 × 10−3 1.38 × 10−1

CAMK2D RareLOF 8.62 × 10−3 1.46 × 10−1

FBRSL1 RareLOF 1.12 × 10−2 1.80 × 10−1

CTSB RareLOF 1.20 × 10−2 1.82 × 10−1

KPNA1 RareCADD 1.35 × 10−2 1.96 × 10−1

ASXL3 RareLOF 1.52 × 10−2 2.10 × 10−1

KPNA1 RareLOF 1.76 × 10−2 2.33 × 10−1

LRRK2 Rarefunctional 2.57 × 10−2 3.14 × 10−1

MICU3 RareLOF 2.56 × 10−2 3.14 × 10−1

VAMP4 Rarenonsyn 2.93 × 10−2 3.43 × 10−1

MBNL2 RareCADD 3.04 × 10−2 3.43 × 10−1

LRRK2 Rarenonsyn 3.28 × 10−2 3.57 × 10−1

KPNA1 Rarefunctional 3.46 × 10−2 3.64 × 10−1

LSM7 Rarefunctional 3.58 × 10−2 3.64 × 10−1

HIP1R Rarenonsyn 3.93 × 10−2 3.87 × 10−1

KPNA1 Rarenonsyn 4.23 × 10−2 3.91 × 10−1

HIP1R Rarefunctional 4.22 × 10−2 3.91 × 10−1

FDR = false discovery rate; Rarefunctional = rare functional variants; Rarenonsyn =  
rare non-synonymous variants; RareLOF = rare loss-of-function variants; RareCADD =  
rare variants with CADD score > 20; Set = variant set across genes/pathway.
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pentakisphosphate (5-IP7) or 1-diphosphoinositol pentakispho
sphate (1-IP7) to bis-diphosphoinositol tetrakisphosphate (1,5-IP8), 
while PPIP5K2 convert 5-IP7 to 1,5-IP8 and IP6 to 1-IP7.39 In mice, 
IP6K2 has been implicated in cell death, apoptosis and neuroprotec
tion.40 One study proposed that IP6K2 regulates mitophagy via the 
parkin/PINK1 pathway, but further evidence would be required to 
confirm this hypothesis.40 PPIP5K2 has not previously been impli
cated in PD but is associated with hearing loss and colorectal carcin
oma.41,42 Finally, INPP5F is involved with a different inositol 
pathway; it encodes SAC2, which converts phosphoinositides such 
as PI(4,5)P2 to phosphatidylinositol during endocytosis.35

Inositol phosphate has been suggested to be involved in obesity, 
insulin resistance and energy metabolism.43 In post-mortem brain 
tissues of PD patients, 3H-inositol 14,5-trisphosphate binding sites 
were found to be reduced in certain brain regions such as the caud
ate nucleus, putamen and pallidum.44 Additionally, IP6 was shown 
to be associated with PD. IP6 has a neuroprotective effect on dopa
minergic cells by preventing 6-OHDA-induced apoptosis.45 IP6 inhi
bits the activity of β-secretase 1 (BACE1), an enzyme that cleaves 
amyloid-β precursor protein into toxic amyloid-β peptides.46

Paraquat-induced neurodegeneration in Drosophila was suggested 
to increase the levels of inositol phosphates metabolites.47

Previous studies have also suggested that different stereoisomers 
of inositol such as scyllo-inositol can inhibit the aggregation 
of α-synuclein48 or decrease the myoinositol concentration in pa
tients with PD.49,50

Recent studies on inositol investigated the role of SYNJ1, an 
autosomal recessive form of early-onset parkinsonism.51 SYNJ1 is 
a lipid phosphatase of phosphatidylinositol-34,5-trisphosphate 
(PIP3).52 SYNJ1 knockout cell models were associated with an in
crease of α-synuclein and PIP3 levels. PIP3 dysregulation was sug
gested to promote α-synuclein aggregation, which increases the 
risk of PD. Together with our data, there is strong evidence for the 
involvement of the inositol phosphate biosynthetic pathway in 
PD, and this pathway should be further studied using both basic sci
ence and translational approaches.

Outside of the inositol pathway, SPNS1 and MLX were found to 
be the top causal gene in their respective loci with putative causal 
missense SNPs: rs7140 and rs665268. Rs7140 corresponds to 
p.Leu563Val on the SPNS1 transcript variant X1. We found that 
SPNS1 expression is lower in the SOX6_ATGR1 dopaminergic neu
ron subpopulation in PD compared with controls. This subcluster 
was previously highlighted to be the most susceptible to neurode
generation in PD.12 SPNS1 encodes a sphingolipid transmembrane 
transporter in the lysosome. The autophagy-lysosomal pathway 
has been well-established to be crucial in PD pathogenesis, espe
cially the lysosomal sphingolipid metabolism pathway, which in
cludes well established PD-associated genes including GBA1, 
GALC, SMPD1 and others.53,54 SPNS1 deficiency results in lipid accu
mulation in the lysosome and impaired lysosomal function.28

The second nominated gene in which we identified rare var
iants, MLX, encodes a Max-like protein X which belongs to a family 
of transcription factors regulating glucose metabolism. Rs665268 is 
a missense variant (p.Gln139Arg) that was found to be associated 
with Takayasu’s arteritis, an autoimmune systemic vasculitis.55

MLX was also reported to be associated with age at onset of 
Alzheimer’s disease in females.56 This variant was suggested to af
fect two important PD pathways by increasing oxidative stress and 
suppressing autophagy in immune cells.55,56 SPNS1 and MLX have 
not previously been implicated in PD. Both variants, rs7140 and 
rs665268, were found in high LD with the top candidate GWAS 
SNP. When examining missense SNPs in LD with the top GWAS 

SNPs, SPNS1, MLX and CD19 were the only genes with such features. 
CD19 was not nominated in our study, as it is located in the same 
locus as SPNS1, and it ranked lower than SPNS1. These findings in
dicate that these genes could play a role in PD and should be further 
studied.

Other studies have attempted to use machine learning to char
acterize genes involved in PD. Using machine learning, Ho et al.57 in
tegrated tissue-specific eQTLs and the genotypes of PD patients and 
controls to identify PD-specific genes. They nominated the roles of 
two key variants in PD (rs7617877, rs6808178) and the potential role 
of heart atrial appendage tissue. Interestingly, AGTR1, a gene asso
ciated with many PD single-nuclei subpopulations included in our 
model, encodes for angiotensin II receptor type 1 protein.58 This 
protein is part of the renin-angiotensin system, which regulates 
blood pressure and the balance of fluids and salts in the body.58

Ho et al.57 also validated some of the top genes from our model 
such as INPP5F, P2RY12, HIP1R, STK39 and CTSB. Transcriptional 
changes to these genes could contribute to PD.

Interestingly, in certain regions of the genome, such as VPS13C, 
the top genes showed lower probability scores (Fig. 2). This could be 
due to complex LD structure, which weakens the effect size of 
eQTLS, as the variants in LD are associated with multiple genes. 
In such scenarios, the model might encounter challenges in pre
cisely predicting the responsible gene. Additionally, the number 
of samples employed in statistically assessing attributes like 
eQTLs and enhancer-promoter interactions significantly impacts 
the model’s training. Features derived from studies with limited 
sample sizes may be less powered to detect eQTLs and more likely 
to be excluded from the model. For example, while data regarding 
enhancer-promoter interactions were incorporated into the train
ing attributes, it might not have been important for the majority 
of variant-gene pairs. Overall, while VPS13C had a low probability 
score for a gene in the training set, it was still the top gene in its re
spective locus.

Although we identified candidate genes and new rare muta
tions, there were several limitations to this study. This study was 
based on a GWAS of European populations only. Therefore, our re
sults are potentially restricted to Europeans. While there are some 
studies on the association of chromosome X in PD, the statistical 
power was limited compared with a PD GWAS of autosomes. As a 
result, no analysis was performed on chromosome X. In addition, 
the training set for the machine learning model was limited to a 
small set of known or highly likely PD genes with the assumption 
of one causal gene per locus. The study also lacked samples for a 
testing set due to the small number of well-established PD genes. 
Since these limitations may have introduced some bias, we used 
different strategies such as controlling for an imbalanced dataset 
and choosing balanced accuracy as an evaluation function to maxi
mize the performance of the model. Although the distance between 
variants and genes holds significant predictive power in the model, 
it is crucial to acknowledge that not all top genes can accurately be 
predicted solely based on distance. Of the 78 genes analysed, 13 
were not the closest genes in terms of distance from the gene to 
the top GWAS SNPs, and 25 were not the closest genes based on dis
tance to the transcription start site. Additionally, when comparing 
the scRNA and bulk RNAseq results, most of the differentially ex
pressed genes did not overlap across our datasets. For example, 
while INPP5F was nominated in scRNA of both datasets, it was not 
significant in the bulk RNAseq analysis. Lastly, the meta-analysis 
of rare variants can also be somewhat biased due to case/control 
imbalance. Larger GWAS and functional studies will be required 
to validate our findings.
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Our results nominated multiple genes that have not been thor
oughly studied in PD and provide a foundation for future functional 
studies of these genes. As larger PD GWASs will nominate more SNPs 
and loci, prioritizing causal genes will be crucial to understanding 
the underlying biological mechanisms and disease pathophysiology 
through additional studies. Future gene prioritization studies will be 
able to leverage larger datasets with more positive labels as new PD 
genes are discovered, increasing the accuracy of predictions.
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