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Progress in the development of effective chemotherapy is producing a growing population of patients with acute and 
chronic painful chemotherapy-induced peripheral neuropathy (CIPN), a serious treatment-limiting side effect for 
which there is currently no US Food and Drug Administration-approved treatment.
CIPNs induced by diverse classes of chemotherapy drugs have remarkably similar clinical presentations, leading to 
the suggestion they share underlying mechanisms. Sensory neurons share with immune cells the ability to detect 
damage associated molecular patterns (DAMPs), molecules produced by diverse cell types in response to cellular 
stress and injury, including by chemotherapy drugs. DAMPs, in turn, are ligands for pattern recognition receptors 
(PRRs), several of which are found on sensory neurons, as well as satellite cells, and cells of the immune system. 
In the present experiments, we evaluated the role of two PRRs, TLR4 and RAGE, present in dorsal root ganglion 
(DRG), in CIPN.
Antisense (AS)-oligodeoxynucleotides (ODN) against TLR4 and RAGE mRNA were administered intrathecally before 
(‘prevention protocol’) or 3 days after (‘reversal protocol’) the last administration of each of three chemotherapy drugs 
that treat cancer by different mechanisms (oxaliplatin, paclitaxel and bortezomib). TLR4 and RAGE AS-ODN pre-
vented the development of CIPN induced by all three chemotherapy drugs. In the reversal protocol, however, while 
TLR4 AS-ODN completely reversed oxaliplatin- and paclitaxel-induced CIPN, in rats with bortezomib-induced CIPN it 
only produced a temporary attenuation. RAGE AS-ODN, in contrast, reversed CIPN induced by all three chemotherapy 
drugs.
When a TLR4 antagonist was administered intradermally to the peripheral nociceptor terminal, it did not affect CIPN 
induced by any of the chemotherapy drugs. However, when administered intrathecally, to the central terminal, it at-
tenuated hyperalgesia induced by all three chemotherapy drugs, compatible with a role of TLR4 in neurotransmission 
at the central terminal but not sensory transduction at the peripheral terminal.
Finally, since it has been established that cultured DRG neurons can be used to study direct effects of chemotherapy 
on nociceptors, we also evaluated the role of TLR4 in CIPN at the cellular level, using patch-clamp electrophysiology in 
DRG neurons cultured from control and chemotherapy-treated rats. We found that increased excitability of small- 
diameter DRG neurons induced by in vivo and in vitro exposure to oxaliplatin is TLR4-dependent. Our findings suggest 
that in addition to the established contribution of PRR-dependent neuroimmune mechanisms, PRRs in DRG cells also 
have an important role in CIPN.
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Introduction
Chemotherapy-induced peripheral neuropathy (CIPN), a predomin-
antly sensory neurotoxicity presenting in a distal symmetric stocking- 
glove distribution,1,2 is a common, debilitating, painful and 
treatment-limiting condition,3 for which there is currently no US 
Food and Drug Administration (FDA) approved treatment. CIPN symp-
toms may range from pain and allodynia to hypoaesthesia, and in 
some patients may be accompanied by motor and autonomic neu-
ropathy,1,4 resulting in decreased quality of life.5,6 Symptoms generally 
improve over time following the discontinuation of chemotherapy, al-
though complete recovery is frequently not attained.1,7,8 It is estimated 
that 50–90% of patients who receive chemotherapy develop CIPN in the 
acute setting, which persists in 30–40% as chronic CIPN.1,8 The fre-
quency and severity of CIPN is dependent on the class of chemotherapy 
drug, its cumulative dose and duration of exposure.1,8,9 How diverse 
chemotherapy agents produce a phenotypically similar, distal, sym-
metric, small-fibre, painful, peripheral neuropathy,8,10-14 however, re-
mains a critically important question.

One of the most extensively studied mechanisms underlying CIPN 
pain, induced by diverse chemotherapy drugs involves neuroimmune 
mechanisms, interactions between cells of the immune system, and 
nociceptive sensory neurons.15,16 Cells of the immune system respond 
to damage associated molecular patterns (DAMPs) produced in re-
sponse to chemotherapy drugs,17-21 which act at pattern recognition 
receptors (PRRs) on immune cells that in turn release proinflamma-
tory cytokines, which can sensitize nociceptors.22 Importantly, sen-
sory neurons also express PRRs,23-30 including TLR4 and RAGE, 
which can further exacerbate cell stress and injury.18,31 In rat, TLR4 
and RAGE are expressed by nociceptors,32-37 and it has been shown 
that paclitaxel increases nociceptor TLR4 expression,35 associated 
with damage to the peripheral nervous system38 and the develop-
ment of mechanical allodynia.34,35 And, while it has been shown 
that oxaliplatin- and paclitaxel-induced hyperalgesia (CIPN) in 
rats and mice is attenuated by administration of TLR4 and RAGE 
antagonists,39 the location of the PRRs involved remains to be 
established.

We propose that the PRRs, TLR4 and RAGE, in DRG cells injured 
by exposure to neurotoxic chemotherapy drugs contribute to CIPN. 
To test this hypothesis, we explored the role of TLR4 and RAGE in 
CIPN induced by three commonly used neurotoxic chemotherapy 
drugs that are thought to produce CIPN by different mechanisms: 
oxaliplatin,40-42 paclitaxel43,44 and bortezomib.45-47 To directly 
evaluate the role of nociceptor PRRs in the enhanced excitability in-
duced by chemotherapy drugs, we used patch-clamp electrophysi-
ology to evaluate the effect of oxaliplatin on cultured dorsal root 
ganglia (DRG) neurons also treated in vitro with a PRR antagonist 
or in vivo with PRR oligodeoxynucleotide antisense.

Material and methods
For complete details, see the Supplementary material.

Animals

Experiments were performed on 260–460 g adult, male and female 
Sprague–Dawley rats (Charles River Laboratories). Animals were 
housed three per cage, under a 12-h light/dark cycle, in a 
temperature- and humidity-controlled animal care facility at 
the University of California, San Francisco. Food and water were 
available ad libitum. Experimental protocols were approved by 
the Institutional Animal Care and Use Committee (IACUC) at the 
University of California at San Francisco and adhered to the 
National Institutes of Health Guide for the Care and Use of 
Laboratory Animals. Effort was made to minimize the number of 
animals used and their suffering.

Nociceptive threshold testing

Mechanical nociceptive threshold was quantified using an Ugo 
Basile Analgesymeter® (Randall–Selitto paw-withdrawal device, 
Stoelting), which applies a linearly increasing mechanical force to 
the dorsum of a rat's hind paw, as previously described.48-54 To 
minimize restraint stress, rats were placed in cylindrical acrylic re-
strainers designed to provide ventilation and allow hind leg exten-
sion from lateral ports during the assessment of mechanical 
nociceptive threshold. To acclimatize rats to the testing procedure, 
they were placed in restrainers for 1 h prior to starting training ses-
sions for 3 days consecutively, daily, and for 40 min prior to experi-
mental manipulations. Nociceptive threshold was defined as the 
force in grams at which a rat withdrew its paw. Baseline nociceptive 
threshold was defined as the mean of the three readings taken be-
fore test agents were injected. Only one paw was used in an experi-
ment, and each experiment was performed on a separate group of 
rats. To minimize experimenter bias, individuals conducting the 
behavioural experiments (D.A. and I.J.M.B) were blinded to experi-
mental interventions.

Drugs

The following compounds were used in this study: oxaliplatin and 
paclitaxel (Sigma-Aldrich); bortezomib (LC Laboratories); and the 
TLR4 antagonist LPS-RS Ultrapure (lipopolysaccharide from 
Rhodobacter sphaeroides, InvivoGen).

Preclinical models of chemotherapy-induced peripheral 
neuropathy

Oxaliplatin-induced neuropathic pain

Oxaliplatin (2 mg/kg) was dissolved in saline and a single dose in-
jected intravenously. This is a well-described and reproducible pre-
clinical model in which distinct early and late phases of CIPN are 
present.55,56

Paclitaxel-induced neuropathic pain

Paclitaxel was prepared in a mixture of absolute ethanol and poly-
ethoxylated castor oil (Cremophor EL; 1:1; Sigma-Aldrich), and 
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further diluted in saline to a final concentration of 1 mg/ml, imme-
diately before use. Paclitaxel (1 mg/kg) was injected intraperitone-
ally (i.p.) every other day for a total of four doses.55,57

Bortezomib-induced neuropathic pain

Bortezomib (0.2 mg/kg)58,59 was dissolved in 3% dimethyl sulphox-
ide (DMSO, Sigma-Aldrich) and 97% saline. Bortezomib was admi-
nistered intravenously (i.v.)58,59 every other day for a total of four 
doses. The volume of drug solution injected was 1 ml/kg.

Oligodeoxynucleotides antisense to TLR4 and RAGE 
mRNA

To investigate the role of TLR4 and RAGE in the hyperalgesia in-
duced by oxaliplatin, paclitaxel and bortezomib, validated oligo-
deoxynucleotides (ODNs) antisense (AS) for TLR448 and RAGE60

were employed.
AS-ODN sequences, directed against unique regions of the rat 

mRNA for TLR4 and RAGE, were as follows: TLR4 AS-ODN: 
5′-AGGAAGTGAGAGTGCCAACC-3′ (GenBank accession No. 
AF057025.2); and RAGE AS-ODN: 5′-AGCTACTGTCCCCGTTGG-3′ 
(GenBank accession No. L33413).

As a control, the following mismatch (MM) and sense (SE) ODN 
sequences were used: TLR4 MM-ODN: 5′-ACGATCGAGAGA 
GTCACCG-3′; and RAGE SE-ODN: 5′- CCAACGGGGACAGTAGCT-3′. 
ODNs were synthesized by Thermo Fisher Scientific. More details 
about ODN dilution and in vivo administration are included in the 
Supplementary material.

SDS-PAGE and western blotting

The effect of the antisense treatment on TLR4 expression in rat DRG 
was analysed 24 h and 9 days following the last intrathecal (i.t.) in-
jection. Rats were euthanized by exsanguination, while under iso-
flurane anaesthesia, and L4 and L5 DRG surgically removed and 
stored at −80°C until further use. Results were analysed using 
computer-assisted densitometry and levels of TLR4 immunoreac-
tivity normalized with respect to the β-actin control levels in each 
sample. The percentage decrease in TLR4 expression was calcu-
lated as: (normalized density for AS / normalized density for 
MM × 100) − 100.61,62 More details are included in the 
Supplementary material.

Dorsal root ganglia neuron culture and in vitro 
patch-clamp electrophysiology

Primary neuronal cultures were made from dissociated DRG har-
vested from adult male Sprague-Dawley rats (300–400 g) as de-
scribed previously.63,64

DRG neurons were used in electrophysiology experiments 24– 
96 h after plating. While small, medium and large sized DRG neu-
rons were routinely observed in the same preparation, this study 
focused on cells with soma diameter less than 30 μm, representing 
predominantly C-type nociceptors.65-69 All experiments were per-
formed at room temperature (20–22°C).

Whole-cell patch-clamp recordings, in ‘current clamp’ mode, 
were made to assess changes in the excitability of cultured DRG 
neurons. Holding current was adjusted to maintain membrane po-
tential at −70 mV. Rheobase, the minimum magnitude of a current 
step needed to elicit an action potential (AP), was determined using 
a protocol in which increasing square wave (40–80 ms) current 
pulses were applied every 2 s with step adjusted for 5–10% 
precision.63,70,71

AP threshold potential was determined from an approximation 
of the initial part of the response to a square wave pulse of rheobase 
magnitude with the sum of decaying and rising exponents, repre-
senting membrane capacitance recharge and initial rising phase 
of AP development.70,72,73 AP threshold was defined as a potential 
on the original recording where the difference from the decaying 
component of the fit raised above the arbitrary selected value of 
2 mV, representing sensitivity of the definition.64 More details are 
included in the Supplementary material.

Data analysis

All in vivo data are presented as mean ± SEM of n independent ob-
servations. Statistical comparisons were made using GraphPad 
Prism 9.0 statistical software (GraphPad Software, San Diego, CA, 
USA). A P-value < 0.05 was considered statistically significant. In 
the behavioural experiments, the dependent variable was change 
in mechanical paw-withdrawal threshold, expressed as percentage 
change from baseline. As specified in the figure legends, Student's 
t-test or two-way repeated-measures ANOVA followed by 
Bonferroni's post hoc test was performed to compare the magnitude 
of hyperalgesia induced by chemotherapeutic agents.

In in vitro electrophysiology experiments, values of AP threshold 
in the three groups were analysed for differences between their 
means with one-way ANOVA followed by Dunnett's or Holm– 
Šídák's post hoc test.

Results
Oxaliplatin, paclitaxel and bortezomib produce 
distal symmetric CIPN

To assess for the presence of symmetry in CIPN pain induced by ox-
aliplatin, paclitaxel and bortezomib, we measured changes in 
mechanical nociceptive threshold over time in both hind paws of 
the same rat, following the systemic administration of each chemo-
therapy drug. Rats receiving oxaliplatin (2 mg/kg, i.v., single dose), 
paclitaxel (1 mg/kg, i.p., on Days 0, 2, 4 and 6) or bortezomib 
(0.2 mg/kg, i.v., on Days 0, 2, 4 and 6) demonstrated a time-dependent 
symmetric decrease in mechanical nociceptive threshold from Days 
0 to 28 (Fig. 1; mean values: oxaliplatin 4.4%, paclitaxel 6.0% and bor-
tezomib 3.3%; n = 12 for oxaliplatin- and paclitaxel-, and n = 8 for 
bortezomib-treated rats).

Effect of attenuating TLR4 in dorsal root ganglia on 
prevention and reversal of CIPN

To evaluate if CIPN produced by diverse chemotherapy drugs share 
underlying PPR-dependent mechanisms, we evaluated the role of 
TLR4, present in DRG, in the onset and maintenance of CIPN in-
duced by oxaliplatin, paclitaxel and bortezomib using: (i) intra-
thecal administration of ODN antisense to mRNA for TLR4; and 
(ii) TLR4 antagonist (LPS-RS Ultrapure), administered at central 
(intrathecally) or peripheral (intradermally) nociceptor terminals.

To determine whether TLR4 plays a role in the onset of hyper-
algesia induced by oxaliplatin, paclitaxel or bortezomib, male rats 
received intrathecal AS-ODN or MM-ODN to TLR4 mRNA (120 μg/ 
20 μl) daily for 4 days consecutively, and then three more doses, 
one every other day (a total of seven doses). Approximately 20 h 
after the third intrathecal administration of ODN, oxaliplatin 
(2 mg/kg, i.v.), paclitaxel (1 mg/kg, i.p.) or bortezomib (0.2 mg/kg, 
i.v.) were administered to induce CIPN. Oxaliplatin was adminis-
tered as a single dose on Day 0; paclitaxel and bortezomib were 
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administered on Days 0, 2, 4 and 6. The mechanical nociceptive 
threshold was measured from Days −3 (before the first intrathecal 
administration of ODN) to 28. In the groups treated with TLR4 
AS-ODN, compared with the TLR4 MM-ODN-treated groups, oxali-
platin, paclitaxel and bortezomib were not able to induce hyper-
algesia (Fig. 2A–C, respectively), indicating that the knock down of 
TLR4 in DRG cells ‘prevented’ the development of CIPN induced 
by diverse chemotherapy drugs.

To determine if maintenance of CIPN induced by oxaliplatin, pa-
clitaxel and bortezomib is also PRR dependent, we next evaluated 
whether CIPN could be ‘reversed’ by intrathecal administration of 
TLR4 AS-ODN and if such reversal would again outlast the duration 
the TLR4 antisense action. Male rats received oxaliplatin (2 mg/kg, 
i.v., on Day 0), paclitaxel (1 mg/kg, i.p., on Days 0, 2, 4 and 6) or bor-
tezomib (0.2 mg/kg, i.v., on Days 0, 2, 4 and 6), and 3 days after the 
last administration of each chemotherapy drug, when hyperalgesia 
was already fully established, TLR4 AS-ODN or MM-ODN was admi-
nistered (120 μg/20 μl, i.t.) for 4 days consecutively; then three more 
doses were administered, one every other day (a total of seven 
doses). While TLR4 AS-ODN completely reversed the hyperalgesia 
induced by oxaliplatin and paclitaxel (Fig. 2D and E, respectively), 
it produced only a transient reversal of bortezomib-induced hyper-
algesia (Fig. 2F), compatible with the time course of action of intra-
thecal antisense. The reversal of oxaliplatin and paclitaxel CIPN 

hyperalgesia produced by TLR4 AS-ODN persisted long after anti-
sense was discontinued.

Since the effect of TLR4 AS-ODN on CIPN hyperalgesia persisted 
long after antisense was discontinued, we determined the level of 
TLR4 present in DRG from rats that received four consecutive doses 
of intrathecal TLR4 AS-ODN and had DRG collected 24 h (Fig. 3A) or 
9 days after the last injection of TLR4 AS-ODN (Fig. 3B). Evidence for 
AS-induced reduction of TLR4 expression in DRG can be seen in 
western blots (pooled L4 and L5 DRG) from TLR4 AS-ODN-treated 
rats (Fig. 3A), in which we observed a 28.02 ± 1.29% (in arbitrary 
units normalized to the reference protein, unpaired Student's 
t-test, n = 3, P < 0.05) decrease in the expression of TLR4 relative to 
the extracts derived from TLR4 MM-ODN-treated rats. However, 
western blot analysis of DRG extracts from rats injected with 
TLR4 AS-ODN or MM-ODN for 4 days consecutively, but the DRGs 
collected 9 days after the last intrathecal injection of ODNs, showed 
no significant decrease in their anti-TLR4 immunoreactivity 
(Fig. 3B; −2.32 ± 3.6%, unpaired Student's t-test, n = 3, P > 0.05). 
Additionally, we treated male rats with TLR4 AS-ODN or MM-ODN 
for 4 days consecutively, and then 9 days later, when the levels of 
TLR4 in DRG had recovered; oxaliplatin (2 mg/kg, i.v.) was adminis-
tered and the mechanical nociceptive threshold evaluated 30 min 
and 1, 7, 14, 21 and 28 days later. At a time when TLR4 levels in 
DRG had recovered, the rats that received the last administration 

Figure 1 Time-dependent symmetric decrease in mechanical nociceptive threshold produced by oxaliplatin, paclitaxel and bortezomib. Oxaliplatin 
[2 mg/kg, intravenously (i.v.), on Day 0], paclitaxel [1 mg/kg, intraperitoneally (i.p.), on Days 0, 2, 4 and 6] or bortezomib (0.2 mg/kg, i.v., on Days 0, 2, 
4 and 6) were administered to groups of male rats, and the magnitude of hyperalgesia was measured over 28 days. Top: Oxaliplatin decreased the noci-
ceptive threshold from the first time point (30 min), and it remained undiminished over the 28-day testing period. For paclitaxel and bortezomib, the 
time-dependent decrease in the nociceptive threshold reached a maximum on Day 7 and remained undiminished for the rest of the 28-day testing 
period. Bottom: A symmetry index was calculated at every time point, as the absolute (unsigned) value of the difference between the reduction in noci-
ceptive threshold in the right minus left paws, for each rat, expressed as a percentage of the baseline nociceptive threshold. There was no time depend-
ence of the symmetry index for any of the three agents tested, and the average levels remained very low at all time points (mean values: oxaliplatin 
4.4%, paclitaxel 6.0% and bortezomib 3.3%), supporting the presence of symmetry in hind paw mechanical hyperalgesia throughout the time course of 
the study (Days 0–28) for all three chemotherapy drugs. Values are presented as mean ± SEM; n = 12 for oxaliplatin- and paclitaxel-, and n = 8 for 
bortezomib-treated rats.

1028 | BRAIN 2024: 147; 1025–1042                                                                                                                              D. Araldi et al.



of TLR4 AS-ODN 9 days prior to oxaliplatin did not develop hyper-
algesia (Fig. 3C).

To evaluate the role of TLR4 in the peripheral and central term-
inals of DRG neurons, we administered LPS-RS Ultrapure, a select-
ive TLR4 antagonist, intradermally (Fig. 4A–C) or intrathecally 

(Fig. 4D–F). Male rats pretreated with oxaliplatin, paclitaxel or bor-
tezomib received the TLR4 antagonist intradermally (3 μg/5 μl), and 
the mechanical nociceptive threshold was measured 30 and 60 min 
later. Intradermal administration of LPS-RS Ultrapure did not affect 
oxaliplatin-, paclitaxel- or bortezomib-induced hyperalgesia 

Figure 2 Effect of TLR4 antisense on preventing and reversing oxaliplatin, paclitaxel and bortezomib CIPN. Top: Groups of male rats were treated intra-
thecally (i.t.) with antisense (AS)-oligodeoxynucleotides (ODN) or mismatch (MM)-ODN (both 120 μg in 20 μl/day) against TLR4 mRNA, once a day start-
ing 3 days before (Day −3) each chemotherapy drug, for seven doses, over 10 days. Rats received (A) oxaliplatin [2 mg/kg, intravenously (i.v.), on Day 0]; 
(B) paclitaxel [1 mg/kg, intraperitoneally (i.p.), on Days 0, 2, 4 and 6]; or (C) bortezomib (0.2 mg/kg, i.v., on Days 0, 2, 4 and 6). The mechanical nociceptive 
threshold was evaluated before the first intrathecal administration of ODN (Day −3) and then from Days 0 to 28. In the TLR4 antisense-treated rats, CIPN 
hyperalgesia was markedly inhibited in the oxaliplatin-, paclitaxel- and bortezomib-treated rats (A, B and C, respectively), and this attenuation was 
undiminished over the 28-day testing period (all data are mean ± SEM). Statistical analyses for (A) oxaliplatin: two-way repeated-measures ANOVA, 
Time × TLR4 AS-ODN interaction, F(6,60) = 27.22, P < 0.0001; TLR4 AS-ODN treatment, F(1,10) = 210.6, P < 0.0001; Bonferroni's multiple post hoc compar-
isons test, ****P < 0.0001 (TLR4 MM-ODN versus TLR4 AS-ODN); (B) paclitaxel: two-way repeated-measures ANOVA, Time × TLR4 AS-ODN interaction, 
F(7,70) = 39.54, P < 0.0001; TLR4 AS-ODN treatment, F(1,10) = 333.2, P < 0.0001; Bonferroni's multiple post hoc comparisons test, ****P < 0.0001, ***P =  
0.0001, *P = 0.0299 (TLR4 MM-ODN versus TLR4 AS-ODN); and (C) ortezomib; two-way repeated-measures ANOVA, Time × TLR4 AS-ODN interaction, 
F(6,60) = 7.817, P < 0.0001; TLR4 AS-ODN treatment, F(1,10) = 280.8, P < 0.0001; Bonferroni's multiple post hoc comparisons test, ****P < 0.0001, ***P =  
0.0004 (TLR4 MM-ODN versus TLR4 AS-ODN). n = 6 paws for each group. Bottom: Separate groups of male rats received: (D) oxaliplatin (2 mg/kg, i.v., 
on Day 0); (E) paclitaxel (1 mg/kg, i.p., on Days 0, 2, 4 and 6); or (F) bortezomib (0.2 mg/kg, i.v., on Days 0, 2, 4 and 6). Each group was then treated intra-
thecally with AS-ODN or MM-ODN (both 120 μg in 20 μl/day) against TLR4 mRNA once a day starting 3 days after the last dose of chemotherapy agent, 
for seven doses, over 10 days. The mechanical nociceptive threshold was evaluated from Days 0 to 28. In the TLR4 AS-ODN-treated group, CIPN hyper-
algesia was markedly attenuated in oxaliplatin- and paclitaxel-treated rats, and this attenuation was undiminished for the 28-day testing period. 
Bortezomib-induced hyperalgesia was reversed on Day 14, but hyperalgesia returned, after ending antisense administration, on Days 21 and 28. 
Statistical analyses for (D) oxaliplatin: two-way repeated-measures ANOVA, Time × TLR4 AS-ODN interaction, F(5,50) = 41.94, P < 0.0001; TLR4 
AS-ODN treatment, F(1,10) = 67.68, P < 0.0001; Bonferroni's multiple post hoc comparisons test, aaaP = 0.0002, ***P = 0.0008, ****P < 0.0001, cccP = 0.0001 
(MM-ODN versus AS-ODN); (E) paclitaxel: two-way repeated-measures ANOVA, Time × TLR4 AS-ODN interaction, F(4,40) = 75.11, P < 0.0001; TLR4 
AS-ODN treatment, F(1,10) = 100.6, P < 0.0001; Bonferroni's multiple post hoc comparisons test, ****P < 0.0001 (MM-ODN versus AS-ODN); and (F) borte-
zomib: two-way repeated-measures ANOVA, Time × TLR4 AS-ODN interaction, F(6,60) = 44.08, P < 0.0001; TLR4 AS-ODN treatment, F(1,10) = 23.6, P =  
0.0007; Bonferroni's multiple post hoc comparisons test, ****P < 0.0001 (MM-ODN versus TLR4 AS-ODN at Day 14 after first bortezomib administration). 
All data are mean ± SEM. n = 6 paws for each group. CIPN = chemotherapy-induced peripheral neuropathy.
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(Fig. 4A–C, respectively). However, when administered intrathecal-
ly (10 μg/20 μl), this TLR4 antagonist markedly inhibited 
oxaliplatin-, paclitaxel- and bortezomib-induced hyperalgesia 
(Fig. 4D–F, respectively), as measured 30, 60 and 120 min after 
TLR4 antagonist administration. Twenty-four hours after 
intrathecal administration of the TLR4 antagonist, the hyperalgesia 
recovered to pre-TLR4 antagonist levels in all chemotherapy- 
treated rats (data not shown). These data support the suggestion 
that agonist stimulation of TLR4 in the central but not peripheral 
terminal of the nociceptor plays a role in the expression of CIPN in-
duced by all three chemotherapy drugs.

Since TLR4 AS-ODN prevented oxaliplatin-induced hyperalge-
sia, we evaluated if a second administration of oxaliplatin 
(14 days after its first administration) could produce hyperalgesia 
in these TLR4 AS-ODN treated rats. Male rats were treated intra-
thecally with TLR4 AS-ODN or MM-ODN (120 μg/20 μl) for 4 days 
consecutively, and then three more doses were administered, one 
every other day (a total of seven doses). When oxaliplatin was in-
jected intravenously (2 mg/kg) on Day 0, the rats treated with 
TLR4 AS-ODN, compared with those treated with TLR4 MM-ODN, 
did not develop hyperalgesia. TLR4 AS-ODN was injected intra-
thecally until Day 6 after the first oxaliplatin administration, and 

Figure 3 TLR4 antisense attenuates TLR4 protein expression in L4 and L5 dorsal root ganglia and oxaliplatin-induced CIPN. Western blot analysis of 
dorsal root ganglia (DRG) extracts from male rats treated intrathecally with antisense-oligodeoxynucleotides (AS-ODN) against TLR4 mRNA, once a day 
for 4 days (120 µg in 20 µl/day). (A) TLR4 AS-ODN-treatment significantly decreased anti-TLR4 immunoreactivity 24 h after the last treatment (−28.06 ±  
1.29%, unpaired Student's t-test, n = 3, *P < 0.05). Of note, the magnitude of the attenuation of TLR4 in DRG neurons is probably an underestimate, as 
TLR4 levels in other cells in the DRG are not affected by intrathecal antisense but are measured on the western blots. (B) Nine days after the last ad-
ministration of TLR4 AS-ODN, anti-TLR4 immunoreactivity was not significantly different from the levels in DRG from TLR4 mismatch 
(MM)-ODN-treated rats (−2.32 ± 3.6%, unpaired Student's t-test, n = 3, P > 0.05). The calculated molecular weight of TLR4 is 96 kDa (according to 
UniProtKB database entry Q9QX05). The difference between the calculated and apparent molecular weights may be due to the glycosylation of 
TLR4. β-Actin, which was used as a loading control, has a calculated molecular weight of ∼42 kDa (according to UniProtKB database entry P60771). 
The full-length gels and blots are included in Supplementary Fig. 3. (C) Male rats were treated intrathecally with AS-ODN or MM-ODN (both 120 μg 
in 20 μl/day) against TLR4 mRNA once a day for 4 days consecutively. On Day 0 (9 days after the last intrathecal ODN injection), rats received oxaliplatin 
[2 mg/kg, intravenously (i.v.)], and the mechanical nociceptive threshold was evaluated before the first intrathecal administration of ODN (Day −12) 
and then from Days 0 to 28. In the TLR4 AS-ODN-treated group, oxaliplatin did not develop hyperalgesia until Day 28. Two-way repeated-measures 
ANOVA, Time × TLR4 AS-ODN interaction, F(6,60) = 35.66, P < 0.0001; TLR4 AS-ODN treatment, F(1,10) = 881.1, P < 0.0001; Bonferroni's multiple post 
hoc comparisons test, ****P < 0.0001 (TLR4 MM-ODN versus TLR4 AS-ODN). n = 6 paws for each group. All data are mean ± SEM. CIPN =  
chemotherapy-induced peripheral neuropathy.
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then on Day 14 (8 days after the last intrathecal injection of TLR4 
AS-ODN) oxaliplatin (2 mg/kg, i.v.) was injected again and the 
mechanical nociceptive threshold was evaluated 30 min and 24 h 
later. The second dose of oxaliplatin was also not able to produce 
hyperalgesia in rats that had received their last intrathecal admin-
istration of TLR4 AS-ODN 8 days earlier (Supplementary Fig. 4), at 
which time the levels of TLR4 in DRG had recovered, indicating 
that the effect of the transient attenuation of TLR4 in DRG neurons 
on CIPN persists long after antisense is discontinued. That knock-
down of TLR4 reversed, while intrathecal TLR4 antagonist (LPS-RS 
Ultrapure) only transiently attenuated CIPN hyperalgesia, supports 

the suggestion TLR4 crosstalk with other molecules in nociceptors 
may be needed to maintain CIPN.

TLR4 attenuation prevents and reverses 
oxaliplatin-induced sensitization of small-diameter 
DRG neurons

The results of our behavioural experiments provide support 
for the suggestion that oxaliplatin-induced hyperalgesia is 
TLR4-dependent in both the ‘induction’ and ‘maintenance’ of 
long-lasting CIPN hyperalgesia. To more directly elucidate the 

Figure 4 Intrathecal but not intradermal administration of a TLR4 selective antagonist reverses oxaliplatin, paclitaxel and bortezomib CIPN. Top: 
Groups of male rats received (A and D) oxaliplatin [2 mg/kg, intravenously (i.v.), on Day 0]; (B and E) paclitaxel [1 mg/kg, intraperitoneally (i.p.), on 
Days 0, 2, 4 and 6]; or (C and F) bortezomib (0.2 mg/kg, i.v., on Days 0, 2, 4 and 6). The mechanical nociceptive threshold was evaluated on Day 0 before 
the chemotherapy drug was administered and then at Day 28 after their administration. On Day 28 after chemotherapy drugs, rats received intrader-
mal vehicle (saline, 5 μl) or TLR4 antagonist (LPS-RS Ultrapure, 3 μg/5 μl), and the mechanical nociceptive threshold was evaluated 30 and 60 min later. 
Intradermal TLR4 antagonist did not attenuate CIPN hyperalgesia in the oxaliplatin-, paclitaxel- and bortezomib-treated rats (A, B and C, respectively). 
Statistical analyses for intradermal TLR4 antagonist (A) oxaliplatin: two-way repeated-measures ANOVA, Time × TLR4 antagonist interaction, F(3,12) =  
0.749, P = 0.5434; TLR4 antagonist treatment, F(1,10) = 0.347, P = 0.5876; Bonferroni's multiple post hoc comparisons test, not significant (ns; vehicle ver-
sus TLR4 antagonist); (B) paclitaxel: two-way repeated-measures ANOVA, Time × TLR4 antagonist interaction, F(3,12) = 1.136, P = 0.3738; TLR4 antagon-
ist treatment, F(1,10) = 2.009, P = 0.3393; Bonferroni's multiple post hoc comparisons test, ns (vehicle versus TLR4 antagonist); and (C) bortezomib: 
two-way repeated-measures ANOVA, Time × TLR4 antagonist interaction, F(3,12) = 2.157, P = 0.1462; TLR4 antagonist treatment, F(1,10) = 1.382, P =  
0.3050; Bonferroni's multiple post hoc comparisons test, ns (vehicle versus TLR4 antagonist). n = 6 paws for each group. Bottom: Separate groups of 
male rats, treated 28 days prior with (D) oxaliplatin (2 mg/kg, i.v.), (E) paclitaxel (1 mg/kg, i.p.) or (F) bortezomib (0.2 mg/kg, i.v.), received intrathecally 
vehicle (saline, 20 μl) or TLR4 antagonist (LPS-RS Ultrapure, 10 μg/20 μl), and the mechanical nociceptive threshold was evaluated 30, 60 and 120 min 
later. In the group treated with intrathecal TLR4 antagonist, oxaliplatin-, paclitaxel- and bortezomib-induced hyperalgesia was markedly attenuated 
(D, E and F, respectively), and this inhibition was undiminished for the 120-min testing period. Statistical analyses for intrathecal TLR4 antagonist (D) 
oxaliplatin: two-way repeated-measures ANOVA, Time × TLR4 antagonist interaction, F(4,40) = 74.54, P < 0.0001; TLR4 antagonist treatment, F(1,10) =  
168.3, P < 0.0001; Bonferroni's multiple post hoc comparisons test, ****P < 0.0001 (vehicle versus TLR4 antagonist); (E) paclitaxel; two-way repeated- 
measures ANOVA, Time × TLR4 antagonist interaction, F(4,40) = 73.01, P < 0.0001; TLR4 antagonist treatment, F(1,10) = 216.8, P < 0.0001; Bonferroni's 
multiple post hoc comparisons test, ****P < 0.0001 (vehicle versus TLR4 antagonist); and (F) bortezomib: two-way repeated-measures ANOVA, Time ×  
TLR4 antagonist interaction, F(4,32) = 32.66, P < 0.0001; TLR4 antagonist treatment, F(1,10) = 30.99, P = 0.0005; Bonferroni's multiple post hoc comparisons 
test, aP = 0.0341, *P = 0.0248, cP = 0.0252 (vehicle versus TLR4 antagonist). n = 6 paws for each group. All data are mean ± SEM. LPS-RS Ultrapure = lipo-
polysaccharide from Rhodobacter sphaeroides. CIPN = chemotherapy-induced peripheral neuropathy.
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role of nociceptor TLR4, in vitro experiments were used to address 
the following questions: (i) does oxaliplatin-induced hyperalgesia 
implicate long-lasting nociceptor sensitization; (ii) can such sensi-
tization be a direct effect of oxaliplatin on the nociceptor; and (iii) is 
TLR4 involved in the effect of oxaliplatin at the level of the nocicep-
tor? To address these questions, we assessed oxaliplatin-induced 
nociceptor sensitization in electrophysiological experiments on 
cultured DRG neurons, examining electrical excitability in putative 
nociceptors (DRG neurons with soma diameter <30 μm, which 
majorly constitute the population of C-fibre nociceptors). We se-
lected an AP threshold, the membrane potential at which an AP 
starts to develop as fast and significant depolarization (see the 
‘Materials and methods’ section for details of calculation and 
Fig. 5A for the illustration), a robust measure of electrical excit-
ability. To parallel in vivo behavioural experiments, in vitro experi-
ments were also performed using both ‘prevention’ (Fig. 5B–D) 
and ‘reversal’ protocols (Fig. 5E).

To determine if oxaliplatin-induced hyperalgesia is associated 
with long-lasting nociceptor sensitization, we compared the AP 
threshold in neurons from naïve animals (control group) to neurons 
derived from animals 3 weeks after in vivo oxaliplatin administra-
tion, at which time robust mechanical hyperalgesia was still pre-
sent (Fig. 2A). In neurons from oxaliplatin-treated rats, the AP 
threshold was significantly lower than in neurons from the control 
group of rats [Fig. 5B; F(2,26) = 6.3; t(26) = 3.6, adjusted P = 0.003], re-
vealing enhanced electrical excitability, an indication of nociceptor 
sensitization. The presence of sensitization in cultured neurons 
isolated from their complex cellular in vivo environment supports 
the suggestion that in vivo exposure of nociceptors to oxaliplatin 
produces long-lasting neuroplasticity. Submitting animals to the 
same prevention protocol used for behavioural experiments, pre-
treatment with TLR4 AS-ODN before administering oxaliplatin, 
which prevents oxaliplatin-induced hyperalgesia in vivo (Fig. 2A), 
and then preparing neuronal cultures at the same 3 week time  
point, revealed a significantly higher AP threshold compared with 
the oxaliplatin-treated group [Fig. 5B; t(26) = 2.1, adjusted P = 0.04]. 
This finding supports the suggestion that transient attenuation of 
TLR4 in vivo attenuates oxaliplatin-induced nociceptor sensitiza-
tion, thus implicating a role of TLR4 signalling in the induction of 
such nociceptor sensitization.

Although in vivo administration of oxaliplatin induces nocicep-
tor sensitization, this does not rule out the possibility that indirect 
signalling to the nociceptor (e.g. by neuroimmune interactions) is 
responsible for its sensitization. Therefore, we next examined if ex-
posure to oxaliplatin in vitro could directly sensitize nociceptors, re-
ducing the AP threshold, and whether this effect was attenuated by 
an in vivo prevention protocol. Indeed, oxaliplatin (50 μM, preincu-
bation for 3 h) induced a significant reduction in the AP threshold 
compared with the control group [Fig. 5C; F(2,29) = 10.5, P = 0.0004; 
q(29) = 4.1, adjusted P = 0.0005], while in a group of nociceptors 
that received TLR4 AS-ODN in vivo and then in vitro oxaliplatin, 
the AP threshold remained significantly higher [q(29) = 3.9, adjusted 
P = 0.001], similar to the value in control nociceptors. These findings 
support the suggestion that direct action of oxaliplatin on nocicep-
tors, which is TLR4 dependent, contributes to oxaliplatin-induced 
nociceptor sensitization.

To test the hypothesis that nociceptor TLR4 is involved in the 
sensitizing effect of oxaliplatin, we modelled prevention in vitro 
by incubating cultured neurons with a selective TLR4 antagonist, 
LPS-RS Ultrapure (10 μg/ml), for 24 h before exposure to oxaliplatin 
in vitro. In the TLR4 antagonist-treated group of nociceptors, the AP 
threshold was significantly higher compared with the oxaliplatin- 

treated group of nociceptors [Fig. 5D; F(2,28) = 7.0, P = 0.004; 
q(28) = 2.4, adjusted P = 0.04]. This finding supports the suggestion 
that nociceptor TLR4 is involved in the sensitization induced by 
oxaliplatin.

Finally, to examine if nociceptor TLR4 is involved in the main-
tenance of oxaliplatin-induced nociceptor sensitization, we mod-
elled in vivo reversal, in vitro, by incubating cultured neurons, 
derived from animals that received oxaliplatin in vivo 3 weeks prior, 
with LPS-RS Ultrapure (10 μg/ml) for 24 h before measuring the AP 
threshold in vitro. In this ‘reversal’ group of nociceptors, the AP 
threshold was also significantly higher compared with an 
oxaliplatin-treated group [Fig. 5E; F(2,25) = 9.5, P = 0.0009; q(25) = 3.9, 
adjusted P = 0.0014]. This finding supports the suggestion that 
nociceptor TLR4 plays an important role in the long-lasting 
oxaliplatin-induced nociceptor neuroplasticity.

We also evaluated the resting membrane potential and 
Rheobase of cultured DRG neurons with and without oxaliplatin 
(Supplementary Fig. 5). Additionally, we assessed several other 
electrophysiological parameters of the examined neurons, includ-
ing input resistance at the resting membrane potential, input re-
sistance at baseline, series resistance, AP overshoot, AP 
amplitude from baseline, AP amplitude from AP threshold, baseline 
membrane potential and the holding current required to achieve 
the baseline membrane potential (Supplementary Table 1). No stat-
istically significant differences were observed between the groups 
in any of these parameters.

Taken together, our in vitro findings support the hypothesis that 
nociceptor sensitization, and, in turn, hyperalgesia induced by ox-
aliplatin are mediated by a direct action of oxaliplatin on small- 
diameter DRG neurons. The accompanying long-lasting nociceptor 
neuroplasticity and its maintenance are TLR4 dependent.

AS-ODN for RAGE prevents and reverses bortezomib 
as well as oxaliplatin and paclitaxel CIPN

TLR4 and RAGE both act as PRRs for DAMPs, molecules produced in 
response to cell stress and injury.74 Since TLR4 antisense only tran-
siently reversed bortezomib-induced CIPN (Fig. 2F), we evaluated 
whether the transient attenuation of another PRR found in DRG 
cells, RAGE, also plays a role in CIPN. Male rats received RAGE 
AS-ODN or MM-ODN (120 μg/20 μl, i.t.) for 4 days consecutively, 
and then three more doses were administered, one every other 
day (a total of seven doses). Approximately 20 h after the third ad-
ministration of ODN, oxaliplatin (2 mg/kg, i.v., on Day 0), paclitaxel 
(1 mg/kg, i.p., on Days 0, 2, 4 and 6) or bortezomib (0.2 mg/kg, i.v., 
on Days 0, 2, 4 and 6) was administered, and the mechanical noci-
ceptive threshold evaluated from Days −3 (before the first ODN in-
jection) to 28. RAGE AS-ODN prevented hyperalgesia induced by 
oxaliplatin, paclitaxel and bortezomib (Fig. 6A–C, respectively). 
These data indicate that RAGE in DRG cells, like TLR4, is essential 
for the induction of CIPN triggered by diverse chemotherapy 
drugs.

We also evaluated whether RAGE antisense can reverse CIPN in-
duced by oxaliplatin, paclitaxel and bortezomib. Male rats received 
oxaliplatin (2 mg/kg, i.v., on Day 0), paclitaxel (1 mg/kg, i.p., on Days 
0, 2, 4 and 6) or bortezomib (0.2 mg/kg, i.v., on Days 0, 2, 4 and 6), and 
the mechanical nociceptive threshold was evaluated from Days 0 to 
28. RAGE AS-ODN or SE-ODN was administered intrathecally 
(120 μg/20 μl) for 4 days consecutively, and then three more doses 
were administered, one every other day (a total of seven doses). 
Intrathecal treatment with ODNs started 3 days after administra-
tion of oxaliplatin and 3 days after the fourth administration of 
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Figure 5 Oxaliplatin-induced nociceptor sensitization, in vitro, is TLR4 dependent. (A) Example traces for the lower (more negative) action potential 
(AP) threshold in a small dorsal root ganglia (DRG) neuron of an oxaliplatin-treated rat (middle) compared with naïve rats (left), and the lack of such 
oxaliplatin-induced lowering of the AP threshold after in vivo pretreatment with TLR4 antisense-oligodeoxynucleotides (AS-ODN) in the prevention 
protocol (right). Traces show APs generated in response to a current step with height equal to rheobase (minimum current required to induce an 
AP) in three different neurons. The scale is the same for all panels. AP threshold is indicated by short grey tick. Rectangle inset in the upper right corner 
of each panel shows magnified region of recordings near the position of the AP threshold. Thin light grey line shows fit of the initial phase of the de-
polarization with a single exponent corresponding to passive charging of the neuron's capacitance. Deviation of the actual neuronal depolarization of 
2 mV above the fit was defined as the AP threshold (see the ‘Materials and methods’ section for details). (B) Effect of oxaliplatin administered in vivo on 
AP threshold, and the attenuation of this effect by TLR4 AS-ODN administered in vivo, in the prevention protocol. Oxaliplatin induced a reduction in the 
AP threshold compared with the control group [untreated naïve animals; one-way ANOVA: F(2,26) = 6.3, P = 0.006; Holm–Šídák's post hoc test: t(26) = 3.6, 
**adjusted P = 0.003]. TLR4 AS-ODN administered before oxaliplatin produced a significant shift in the AP threshold back towards the control value 
[t(26) = 2.1, #adjusted P = 0.04 compared with in vivo oxaliplatin]. (C) Effect of in vitro administration of oxaliplatin on the AP threshold, and its attenu-
ation by TLR4 AS-ODN administered in vivo, in the prevention protocol. Oxaliplatin (50 μM) induced a significant reduction in the AP threshold (after 
preincubation for 3 h before recording) compared with the control group [one-way ANOVA: F(2,29) = 10.5, P = 0.0004; Dunnett's post hoc test: q(29) =  
4.1, ***adjusted P = 0.0005]. TLR4 AS-ODN administered in vivo, before oxaliplatin, produced a significant shift in the AP threshold back towards the con-
trol value [Dunnett's post hoc test: q(29) = 3.9, ##adjusted P = 0.0010 compared with in vitro oxaliplatin]. (D) Effect of in vitro administration of LPS-RS 
Ultrapure, a selective inhibitor of TLR4, on oxaliplatin-induced reduction in AP threshold (‘all in vitro’ prevention). Preincubation of cultured neurons 
with LPS-RS Ultrapure (10 μg/ml for 24 h) before adding oxaliplatin (for 3 h before and during the recording) significantly shifted the AP threshold back 
towards the control value compared with the significantly more negative AP threshold observed in in vitro oxaliplatin-treated neurons [one-way 
ANOVA: F(2,28) = 7.0, P = 0.004; Dunnett's post hoc test: q(25) = 3.7, **adjusted P = 0.0018 for in vitro oxaliplatin, when compared with control; q(28) =  
2.4, #adjusted P = 0.04 for LPS-RS Ultrapure, when compared with in vitro oxaliplatin]. (E) Effect of LPS-RS Ultrapure administered in vitro on AP threshold 
in neurons derived from animals treated with oxaliplatin in vivo (in vitro reversal after in vivo induction of nociceptor sensitization). Incubation of such 
neurons with LPS-RS Ultrapure (10 μg/ml for 24 h) produced a significant shift in the AP threshold back towards the control value when compared with 
the significantly more negative AP threshold observed in neurons from oxaliplatin-treated animals [one-way ANOVA: F(2,25) = 9.5, P = 0.0009; 
Dunnett's post hoc test: q(25) = 3.7, **adjusted P = 0.0019 for in vivo oxaliplatin, when compared with control; q(25) = 3.9, ##adjusted P = 0.0014 for 
LPS-RS Ultrapure, when compared with in vivo oxaliplatin]. Number of cells: B, C, D and E share the same data set for the control group (left bars), n  
= 14; B and E share the same data set for the in vivo oxaliplatin group (middle bars), n = 8; C and D share the same dataset for the in vitro oxaliplatin group 
(middle bars), n = 9. Number of cells in prevention or reversal groups (right bars): n = 7 in B, n = 9 in C, n = 8 in D, n = 6 in E. LPS-RS Ultrapure = lipopoly-
saccharide from Rhodobacter sphaeroides.
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paclitaxel and bortezomib. In RAGE AS-ODN-treated rats, neither 
oxaliplatin (Fig. 6D), paclitaxel (Fig. 6E) nor bortezomib (Fig. 6F) 
were able to develop hyperalgesia at any time point evaluated, 
when compared with their respective RAGE SE-ODN-treated 
groups. The reversal of oxaliplatin, paclitaxel and bortezomib 
CIPN by RAGE AS-ODN persisted at time points when their levels 
in DRG would have been expected to have recovered, supporting 
the suggestion that RAGE-dependent activity in DRG is necessary 
for the maintenance of CIPN pain.

To determine if bortezomib-induced hyperalgesia is associated 
with long-lasting nociceptor sensitization, we compared the AP 
threshold in neurons from naïve animals (control group) to that 
in neurons derived from animals 3 weeks after in vivo bortezomib 
administration, at which time robust mechanical hyperalgesia 
was still present (Fig. 2C). In neurons from bortezomib-treated 
rats, the AP threshold was significantly lower, compared with neu-
rons from a control group of rats [Supplementary Fig. 6; F(2,28) = 4.4; 
t(28) = 2.5, adjusted P = 0.02], revealing enhanced electrical 

Figure 6 RAGE antisense prevents and reverses oxaliplatin, paclitaxel and bortezomib CIPN. Top: Separate groups of male rats were treated intra-
thecally (i.t.) with antisense (AS)- or sense (SE)-oligodeoxynucleotides (ODN) (both 120 μg in 20 μl/day) against RAGE mRNA, once a day, starting 
3 days before the chemotherapy agents, for seven doses, over 10 days. Rats received: (A) oxaliplatin [2 mg/kg, intravenously (i.v.), on Day 0]; (B) pacli-
taxel [1 mg/kg, intraperitoneally (i.p.), on Days 0, 2, 4 and 6]; or (C) bortezomib (0.2 mg/kg, i.v., on Days 0, 2, 4 and 6). The mechanical nociceptive thresh-
old was evaluated before the first intrathecal administration of ODN (Day −3) and then from Days 0 to 28. In the RAGE AS-ODN-treated groups, CIPN 
hyperalgesia was markedly inhibited in the oxaliplatin-, paclitaxel- and bortezomib-treated rats (A, B and C, respectively), and this attenuation was 
undiminished for the 28-day testing period. Statistical analyses for (A) oxaliplatin: two-way repeated-measures ANOVA, Time × RAGE AS-ODN inter-
action, F(5,50) = 6.772, P < 0.0001; RAGE AS-ODN treatment, F(1,10) = 637.3, P < 0.0001; Bonferroni's multiple post hoc comparisons test, ****P < 0.0001 
(RAGE SE-ODN versus AS-ODN); (B) paclitaxel: two-way repeated-measures ANOVA, Time × RAGE AS-ODN interaction, F(7,70) = 21.52, P < 0.0001; 
RAGE AS-ODN treatment, F(1,10) = 151.6, P < 0.0001; Bonferroni's multiple post hoc comparisons test, ***P = 0.0002, ****P < 0.0001, aaaP = 0.0006, cccP =  
0.0004 (RAGE SE-ODN versus AS-ODN); and (C) bortezomib: two-way repeated-measures ANOVA, Time × RAGE AS-ODN interaction, F(6,60) = 19.11, 
P < 0.0001; RAGE AS-ODN treatment, F(1,10) = 238.3, P < 0.0001; Bonferroni's multiple post hoc comparisons test, **P = 0.0071, ****P < 0.0001, ***P =  
0.0002, aaaP = 0.0007, cccP = 0.0006 (RAGE SE-ODN versus AS-ODN). Bottom: Separate groups of male rats received: (D) oxaliplatin (2 mg/kg, i.v., on Day 
0); (E) paclitaxel (1 mg/kg, i.p., on Days 0, 2, 4 and 6); or (F) bortezomib (0.2 mg/kg, i.v., on Days 0, 2, 4 and 6). Each group was then treated intrathecally 
with an AS-ODN or SE-ODN (both 120 μg in 20 μl/day) against RAGE mRNA once a day starting 3 days after the last dose of chemotherapy drug, for seven 
doses, over 10 days. The mechanical nociceptive threshold was evaluated from Days 0 to 28. In the RAGE AS-ODN-treated groups, CIPN hyperalgesia 
was markedly attenuated in oxaliplatin-, paclitaxel- and bortezomib-treated rats, and this attenuation was undiminished for the 28-day testing period. 
Statistical analyses for (D) oxaliplatin: two-way repeated-measures ANOVA, Time × RAGE AS-ODN interaction, F(4,40) = 94.86, P < 0.0001; RAGE AS-ODN 
treatment, F(1,10) = 862.4, P < 0.0001; Bonferroni's multiple post hoc comparisons test, ****P < 0.0001 (RAGE SE-ODN versus AS-ODN); (E) paclitaxel: two- 
way repeated-measures ANOVA, Time × RAGE AS-ODN interaction, F(4,40) = 91.51, P < 0.0001; RAGE AS-ODN treatment, F(1,10) = 69.15, P < 0.0001; 
Bonferroni's multiple post hoc comparisons test, ****P < 0.0001 (RAGE SE-ODN versus AS-ODN); and (F) bortezomib: two-way repeated-measures 
ANOVA, Time × RAGE AS-ODN interaction, F(6,60) = 78.44, P < 0.0001; RAGE AS-ODN treatment, F(1,10) = 246.5, P < 0.0001; Bonferroni's multiple post 
hoc comparisons test, ****P < 0.0001 (RAGE SE-ODN versus AS-ODN). n = 6 paws for each group. All data are mean ± SEM. CIPN = chemotherapy-induced 
peripheral neuropathy.
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excitability, an indication of nociceptor sensitization. Submitting 
animals to the same reversal protocol used for behavioural experi-
ments, treatment with RAGE AS-ODN 3 days after the last adminis-
tration of bortezomib, which reverses bortezomib-induced 
hyperalgesia in vivo (Fig. 6C), and then preparing neuronal cultures 
at the same 3 week time point, revealed a significantly higher 
AP threshold compared with the bortezomib-treated group 
[Supplementary Fig. 6; t(28) = 2.7, adjusted P = 0.02]. This finding 
supports the suggestion that transient attenuation of RAGE in vivo 
attenuates bortezomib-induced nociceptor sensitization, thus im-
plicating a role of RAGE signalling in the reversal of such nociceptor 
sensitization.

Attenuating TLR4 and RAGE reverses CIPN induced 
by oxaliplatin in female rats

Given that studies have reported sexual dimorphism in chronic 
pain mechanisms,50,75-78 including for CIPN,55-57,79 we evaluated 
whether TLR4 (Fig. 7A) and RAGE (Fig. 7B) AS-ODN also reversed 
oxaliplatin-induced CIPN in female rats. Oxaliplatin was injected 
intravenously (2 mg/kg) on Day 0, and the mechanical nociceptive 
threshold was measured 30 min and 24 h after its administration. 
All female rats developed hyperalgesia (Fig. 7A and B). On the fourth 
day after administration of oxaliplatin, AS-ODN or MM/SE-ODN 
(120 μg/20 μl) for TLR4 or RAGE were administered intrathecally 
for 4 days consecutively, and then three more doses were adminis-
tered, one every other day (a total of seven doses). In the female 
TLR4 (Fig. 7B) and RAGE (Fig. 7B) AS-ODN-treated groups, 
oxaliplatin-induced hyperalgesia was completely reversed, an ef-
fect that persisted even at time points when TLR4 and RAGE levels 
in DRG had recovered. These data support the suggestion that CIPN 
dependence on TLR4 and RAGE is not sexually dimorphic.

Discussion
While small-fibre, painful peripheral neuropathy is a common, de-
bilitating side-effect of diverse classes of cancer chemotherapy 

drugs,8,13,16,80,81 including taxanes,44,82 vinca alkaloids,83-85

platinum-based compounds,86-89 proteasome inhibitors (e.g. 
bortezomib),90-92 immunomodulators (e.g. thalidomide)93,94 and 
epothilones (e.g. ixabepilone),95,96 there are still no FDA approved 
treatments, and only duloxetine is recommended by the American 
Society of Clinical Oncology (ASCO) to treat CIPN pain. Although 
the primary cellular targets of these diverse classes of neurotoxic 
chemotherapy drugs, in tumour cells, differ markedly (e.g. while tax-
anes hyper-stabilize microtubules, platinum-based chemotherapies 
form DNA adducts and bortezomib is a potent selective proteasome 
inhibitor), the vast majority of chemotherapy drugs produce a 
phenotypically similar, distal, symmetric, small-fibre, painful, sen-
sory neuropathy, which is, where studied, responsive to serotonin- 
noradrenaline reuptake inhibitors (SNRIs).8,10-14,97-112 In the present 
study, we first demonstrated a symmetric, time-dependent decrease 
in the mechanical nociceptive threshold in the hind paws of rats dur-
ing the onset and maintenance phases of oxaliplatin-, paclitaxel- 
and bortezomib-induced CIPN.

While most classes of chemotherapy drugs are neurotoxic, 
damaging DRG neurons and peripheral nerves,113-115 how they pro-
duce clinically similar painful CIPN remains a critically important 
question. Moreover, even though the primary mechanisms by 
which diverse classes of chemotherapy drugs injure neurons differ, 
animals treated with chemotherapeutics as diverse as paclitaxel, 
oxaliplatin and vincristine exhibit remarkably similar painful per-
ipheral neuropathies.113-117 This has led to the suggestion that the 
neuropathies produced by diverse chemotherapy drugs share 
underlying mechanisms, which may be different from those medi-
ating their antineoplastic effects.114 While a substantial literature 
developed over the past two decades provides compelling evidence 
for a contribution of neuroimmune mechanisms in CIPN induced 
by diverse chemotherapy drugs,35,43,114,118-125 we tested the hy-
pothesis that there is an important contribution of PRRs, TLR4 
and RAGE, in nociceptors (and non-neuronal cells in the DRG) 
that have been stressed or injured by exposure to representatives 
of three different classes of chemotherapy drugs: platinum-based, 
taxanes and proteasome inhibitors.

Figure 7 TLR4 and RAGE antisense reverses oxaliplatin CIPN in female rats. Female rats received oxaliplatin [2 mg/kg, intravenously (i.v.)] on Day 0, 
and 4 days later, they were treated with intrathecal antisense-oligodeoxynucleotides (AS-ODN) or mismatch (MM)/sense (SE)-ODN (both 120 μg in 20 μl/ 
day) against (A) TLR4 or (B) RAGE mRNA, once a day for 4 days consecutively, and then three more doses, one every other day, for a total of seven doses, 
over 10 days. The mechanical nociceptive threshold was evaluated from Days 0 to 28. Oxaliplatin-induced hyperalgesia was markedly reversed in the 
(A) TLR4 and (B) RAGE AS-ODN-treated groups of female rats, and this reversal was undiminished over the 28-day testing period. Statistical analyses for 
A: two-way repeated-measures ANOVA, Time × TLR4 AS-ODN interaction, F(5,50) = 64.68, P < 0.0001; TLR4 AS-ODN treatment, F(1,10) = 95.41, P < 0.0001; 
Bonferroni's multiple post hoc comparisons test, ****P < 0.0001 (MM-ODN versus AS-ODN); and B: two-way repeated-measures ANOVA, Time × RAGE 
AS-ODN interaction, F(5,50) = 77.11, P < 0.0001; RAGE AS-ODN treatment, F(1,10) = 368.2, P < 0.0001; Bonferroni's multiple post hoc comparisons test, 
****P < 0.0001 (SE-ODN versus AS-ODN). n = 6 paws for each group. All data are mean ± SEM. CIPN = chemotherapy-induced peripheral neuropathy.
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Importantly, sensory neurons share with cells of the immune 
system the presence of PRRs and the ability to detect cell generated 
danger signals, DAMPs, a large family of molecules generated by di-
verse cell types13,114,118-121,123,125,126 in response to cell stress and 
injury,17,19-21,23,127 that, in turn, act as ligands at PRRs, such as 
TLR4 and RAGE, through which they can further exacerbate cellular 
stress and injury. In rats treated with AS-ODN to TLR4 or RAGE 
mRNA, CIPN produced by oxaliplatin, paclitaxel and bortezomib 
was prevented, even at time points when the effect of AS-ODN on 
PRR levels was no longer present. Thus, while we demonstrated, 
by western blot, a reduction of TLR4 expression in DRG from rats 
treated for 4 days consecutively with TLR4 AS-ODN and had DRG 
collected 24 h after the last intrathecal administration of TLR4 
AS-ODN, when the DRGs were collected 9 days after the last TLR4 
AS-ODN administration, no decrease in anti-TLR4 immunoreactiv-
ity between the TLR4 AS- and MM-ODN-treated groups was de-
tected. That is, TLR4 protein levels in DRG neurons had returned 
to baseline when measured 9 days after the last TLR4 AS-ODN ad-
ministration, in accordance with previous studies demonstrating 
that at 7 days after intrathecal AS-ODN cessation, the target protein 
levels in DRG neurons had returned to pre-AS-ODN levels.128,129

These data support the suggestion that, following knockdown of 
TLR4 in DRG cells, chemotherapy drugs are not capable of activat-
ing the signalling pathways responsible for the development of 
CIPN; also, this inhibition seems to be permanent, indicating that 
even when the level of TLR4 in DRG neurons returns to baseline, 
oxaliplatin does not induce CIPN. We have previously shown a con-
tribution of hyperalgesic priming mechanisms to CIPN;130 interven-
tions that reverse hyperalgesic priming also markedly attenuate 
CIPN.130 Interventions that permanently reverse priming also per-
manently reverse CIPN.130 Importantly, we have recently shown a 
role of TLR4 in hyperalgesic priming;48 transient attenuation of 
TLR4 also permanently reverses priming.48 How transient attenu-
ation of priming mechanisms, or TLR4 and CIPN, permanently re-
verses priming is an active area of investigation.

We also demonstrated that while oxaliplatin and paclitaxel 
CIPN were reversed by treatment with TLR4 AS-ODN, in the 
bortezomib-treated group TLR4 AS-ODN only transiently attenu-
ated hyperalgesia, by roughly the duration of action of AS-ODN 
on nociceptors (7 days after the last TLR4 AS-ODN administration, 
bortezomib-induced hyperalgesia had returned to the control 
group level). Why CIPN induced by bortezomib, but not oxaliplatin 
or paclitaxel, recovers post TLR4 AS-ODN treatment remains to be 
explained. To test the hypothesis that for persistence of bortezomib 
CIPN, other PRRs may be more important than TLR4, we tested the 
ability of AS-ODN for RAGE to reverse CIPN. While both TLR4 and 
RAGE are found in nociceptors32-37 and have substantial 
crosstalk,131-133 they have differential regulation of expression 
and independent signalling mechanisms and effects on cell 
function.134-138 For example, siRNA depletion of RAGE, but not 
TLR4, suppressed HMGB1 (high mobility group box 1)-induced p38 
MAPK (mitogen-activated protein kinase) activation139; and RAGE, 
but not TLR4, signal via CaMKK-β (calmodulin-dependent 
protein kinase kinase β) and ERK1/2 (extracellular signal-regulated 
kinase 1/2),140 second messengers known to be involved in 
nociceptor neuroplasticity.141-143 Furthermore, bortezomib in-
creases the expression of RAGE,144,145 activating STAT3 (signal 
transducer and activator of transcription 3),144,145 which has been 
implicated in pain mechanisms.146,147 How these diverse mechan-
isms could contribute to the differential role of TLR4 and RAGE in 
bortezomib, but not oxaliplatin and paclitaxel CIPN, remains to be 
established.

Nociceptors have two terminal fields: peripheral, involved in 
sensory transduction; and central, involved in neurotransmission. 
Thus, our finding that intrathecal, but not intradermal TLR4 
antagonist markedly attenuated oxaliplatin-, paclitaxel- and 
bortezomib-induced hyperalgesia provides support for the novel 
suggestion that increased neurotransmission at the central termin-
al, rather than enhanced sensory transduction at the peripheral 
terminal, is enhanced in CIPN. The fact that TLR4 AS-ODN 

Figure 8 Schematic summary of the effects of chemotherapeutic agents on pattern recognition receptors in dorsal root ganglia. Oxaliplatin, paclitaxel 
and bortezomib, administered systemically, act on pattern recognition receptors (PRRs; TLR4 and RAGE), present on cells in dorsal root ganglia (DRG) to 
produce chemotherapy-induced peripheral neuropathy (CIPN) hyperalgesia. Once TLR4 and RAGE are knocked down, in DRG cells, chemotherapeutic 
drugs are not able to produce CIPN hyperalgesia. It has previously been demonstrated that immune cells infiltrate DRG after administration of che-
motherapeutic drugs158-160 and release potent pro-inflammatory mediators such as tumor necrosis factor-α (TNFα), interleukin-1β (IL-1β), monocyte 
chemoattractant protein-1 (MCP-1), nerve growth factor (NGF), nitric oxide (NO) and prostanoids.161 Additionally, chemotherapeutic drugs activate 
microglia in the spinal dorsal horn,157 releasing chemokines and cytokines, which can activate astrocytes.155,156 Chemotherapy also alters the expres-
sion and function of ion channels in the spinal dorsal horn.155,162 The schematic summary was designed using BioRender.com.
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permanently reversed CIPN while a TLR4 antagonist, LPS-RS 
Ultrapure, only transiently attenuated CIPN indicates that there 
may be crosstalk between TLR4 and other molecules in nociceptors 
that play a critical role in maintenance of CIPN. In another study, 
where rats received paclitaxel (2 mg/kg, i.p.) every other day for a 
total of four injections, and were treated every 12 h with intrathecal 
LPS-RS Ultrapure (20 μg/20 μl) or PBS (vehicle), beginning 2 days be-
fore the first dose and continuing to 2 days after the last dose of pa-
clitaxel or vehicle,35 paclitaxel-LPS-RS Ultrapure-treated rats 
showed an attenuated development of mechanical hypersensitiv-
ity.35 Our results and similar ones by others raise several interesting 
questions that will form the basis for follow-up investigations. For 
example, the results with the TLR4 antagonist suggest a tonic 
stimulation at TLR4. One candidate is reactive oxygen species, 
which have been implicated in the pathophysiology of CIPN148,149

and which are TLR4 agonists.150 Chemotherapeutics elicit the re-
lease of other DAMPs, including HMGB1,151 which stimulate TLR4 
in neurons151 and promote neuropathic pain.152

Since TLR4 plays an important role in the ‘induction’ and ‘-
maintenance’ of CIPN in vivo, we next directly evaluated the cellular 
effects of a chemotherapy drug, oxaliplatin, on nociceptor excit-
ability using in vitro patch-clamp electrophysiology. Consistent 
with our in vivo findings, we observed a significantly lower AP 
threshold in small-diameter DRG neurons cultured from rats treated 
in vivo with oxaliplatin, when compared with the naïve (control) 
group, confirming that oxaliplatin-induced sensitization can be ob-
served in vitro. We next demonstrated, in DRG neurons cultured 
from rats that received TLR4 AS-ODN followed by oxaliplatin, 
both in vivo, an AP threshold not significantly different from that 
in nociceptors from the naïve group, indicating that treatment 
with TLR4 AS-ODN in vivo was able to prevent the reduction in AP 
threshold in cultured DRG neurons induced by oxaliplatin in vivo. 
The AP threshold was also reduced when oxaliplatin was applied 
in vitro to DRG neurons cultured from naïve control rats. This reduc-
tion in AP threshold induced by in vitro oxaliplatin was prevented 
both in vivo by treatment with TLR4 AS-ODN and in vitro by a specific 
TLR4 antagonist (LPS-RS Ultrapure). Using a reversal protocol, in 
vivo oxaliplatin-induced reduction in the AP threshold in DRG neu-
rons was reversed by the in vitro application of a selective TLR4 an-
tagonist. The induction of membrane depolarization and reduction 
in rheobase induced by in vitro oxaliplatin have previously been re-
ported.153,154 Using nociceptors harvested from rats treated in vivo 
with TLR4 AS-ODN, our data further support the suggestion that 
PRR signalling in nociceptors, which maintains CIPN pain in vivo, 
also maintains oxaliplatin-induced nociceptor sensitization in vitro.

Since several studies have reported sexually dimorphic me-
chanisms in CIPN pain,55-57,79 we evaluated if oxaliplatin CIPN in fe-
male rats is also TLR4 and/or RAGE dependent. As observed in male 
rats, oxaliplatin-induced hyperalgesia was reversed by TLR4 and 
RAGE AS-ODN in females, indicating that at this point, the signal-
ling pathway activated by oxaliplatin, downstream of TLR4 and 
RAGE, is not sexually dimorphic.

CIPN pain, induced by diverse chemotherapy drugs, involves neu-
roimmune mechanisms, interactions between cells of the immune 
system and nociceptive sensory neurons.15,16 Recent studies have 
highlighted the role of immune mechanisms and the release of 
pro-inflammatory mediators in CIPN pain, while neurons and satellite 
cells may contribute to the maintenance of the neuroinflammatory 
process in the DRG.120 Neuroinflammation has also been observed in 
the spinal cord, with microglia and astrocytes playing significant roles 
in CIPN development.155-157 However, since the intrathecal adminis-
tration of TLR4 and RAGE antisense may affect other cell types in 

the DRG and spinal cord, as well as different subtypes of sensory neu-
rons, it cannot be concluded that the knockdown of PRRs exclusively 
in nociceptors is the sole factor responsible for the prevention and re-
versal of CIPN. A summary of our current findings, as well as those 
from other studies, is provided in Fig. 8.

In conclusion, our in vivo and in vitro data support the hypothesis 
that PRRs in DRG cells, injured by exposure to diverse classes of 
chemotherapy drugs, contribute to the maintenance as well as 
the induction of CIPN pain. Our study provides evidence that the 
transient attenuation of TLR4 and RAGE may be useful for treating 
CIPN pain.
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