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A B S T R A C T   

Background: Colorectal cancer (CRC) is a prevalent malignancy of the digestive tract. A new prognostic scoring 
model for colon adenocarcinoma (COAD) is developed in this study based on the genes involved in tumor cell- 
mediated killing of T cells (GSTTKs), accurately stratifying COAD patients, thus improving the current status of 
personalized treatment. 
Method: The GEO and TCGA databases served as the sources of the data for the COAD cohort. This study 
identified GSTTKs-related genes in COAD through single-factor Cox analysis. These genes were used to categorize 
COAD patients into several subtypes via unsupervised clustering analysis. The biological pathways and tumor 
microenvironments of different subgroups were compared. We performed intersection analysis between different 
subtypes to obtain intersection genes. Single-factor Cox regression analysis and Lasso-Cox analysis were con-
ducted to establish clinical prognostic models. Two methods are used to assess the accuracy of model predictions: 
ROC and Kaplan-Meier analysis. Next, the prediction model was further validated in the validation cohort. 
Differential immune cell infiltration between various risk categories was identified via single sample gene set 
enrichment analysis (ssGSEA). The COAD model’s gene expression was validated via single-cell data analysis and 
experiments. 
Result: We established two distinct GSTTKs-related subtypes. Biological processes and immune cell tumor in-
vasion differed significantly between various subtypes. Clinical prognostic models were created using five 
GSTTKs-related genes. The model’s risk score independently served as a prognostic factor. COAD patients were 
classified as low- or high-risk depending on their risk scores. Patients in the low-risk category recorded a greater 
chance of surviving. The outcomes from the validation cohort match those from the training set. Risk scores and 
several tumor-infiltrating immune cells were strongly correlated, according to ssGSEA. Single-cell data illustrated 
that the model’s genes were linked to several immune cells. The experimental results demonstrated a significant 
increase in the expression of HOXC6 in colon cancer tissue. 
Conclusion: Our research findings established a new gene signature for COAD. This gene signature helps to 
accurately stratify the risk of COAD patients and improve the current status of individualized care.   

Introduction 

Colorectal cancer (CRC) is a prevalent cancerous growth of the 
gastrointestinal system. In a 2020 research report, the incidence rate of 
CRC was estimated to reach the third-highest and the second-highest 

fatality rate [1]. A prevalent subtype of CRC is colon adenocarcinoma 
(COAD). Each year, COAD is attributed to around 10 % of all cancer 
cases and fatalities caused by cancer globally [2]. In both women and 
men, COAD is the third most prevalent type of malignancy, with cancer 
mortality ranking second globally [3,4]. Although the diagnosis and 
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treatment of COAD have developed rapidly recently, its annual inci-
dence rate is still steadily rising [5]. Radiation therapy, chemotherapy, 
and surgical treatment are the traditional treatment methods for COAD. 
However, surgery-based comprehensive treatment can achieve good 
therapeutic results in the early management stage of COAD [6]. At 
present, the use of novel therapies like biologically targeted therapy, 
precision therapy, and immunotherapy for colon cancer has significantly 
expanded. However, the therapeutic efficacy of these treatments is 
limited by the development of immune escape and drug resistance 
[7–9]. On the other hand, the late metastasis of COAD also makes cancer 
treatment more challenging, resulting in unsatisfactory 5-year survival 
rates [10]. The poor treatment status of COAD indicates that better and 
deeper research on the potential mechanisms that affect tumor occur-
rence and progression is necessary. Finding promising treatment targets 
and reliable prognostic biological markers for COAD is essential, which 
may help improve the treatment status of COAD patients. 

The emergence of immunotherapy has changed the current status of 
cancer treatment. The working principle of immunotherapy is to get rid 
of cancerous cells by boosting the body’s defensive mechanisms. Even 
though immunotherapy is rapidly becoming the preferred treatment 
option for cancer, the overall poor response rate is a significant road-
block [11]. An important mechanism of tumor escape is the upregula-
tion of the expression of immune regulatory ligands. In CRC, the 
expression of programmed death - 1 (PD-L1) on tumor cells and 
tumor-infiltrating lymphocytes (TILs) is particularly important for this 
immune escape phenotype [12,13]. A tumor cell’s reaction to endoge-
nous anti-tumor activity is characterized by the PD-1/PD-L1 pathway, 
which is the process behind adaptive immune resistance. Even though 
the PD-1/PD-L1 signal axis is crucial in CRC, anti-PD-1 medication is not 
often successful in this scenario, and a proportion of patients may still 
experience tumor progression after treatment [14]. The tumor killing 
mediated by T cells is among the key determinants of immunotherapy 
response [15,16]. Recent emerging studies have found that inhibition of 
Prbm1, Arid2, and Brd7 enhances T cell-mediated cytotoxicity against 
tumor cells [17]. The study by Ru et al. illustrated that CD47 and PTPN2 
genes are linked to the sensitivity of T-cell-mediated tumor killing (TTK) 
[18]. However, the mechanism of action of genes that regulate tumor 
cell sensitivity to T cell-mediated cytotoxicity (GSTTKs) in COAD re-
mains a blank field. 

Therefore, this study integrated GSTTKs and identified GSTTKs- 
related subtypes from the COAD cohort integrated by the Cancer 
Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. 
Notably, the features of immune cell infiltration vary across GSTTK 
subtypes. Our goal is to design a new prognostic scoring model for COAD 
using GSTTKs and evaluate its clinical utility in the prognosis of CPAD 
patients. This model may characterize the immune microenvironment, 
predict COAD patient prognosis with high accuracy, and effectively 
stratify COAD patients, thus improving the current status of precise 
treatment for these patients. 

Methods 

Raw data download 

A total of two COAD datasets (TCGA-PAAD, GSE39582) were ac-
quired from TCGA and GEO databases. Firstly, we pre-processed the raw 
datasets, including background correction and quantile normalization. 
The TCGA-COAD and GEO datasets were merged into one COAD cohort, 
and the ComBat function of the "SVA" package in R was employed to 
eliminate batch processing effects in different datasets. A TCGA data-
base was also used to obtain data on somatic mutations and copy 
number variations (CNVs) of COAD patients. Thereafter, the TISIDB 
database (http://cis.hku.hk/TISIDB/) was searched for genes that are 
sensitive to T cell-mediated tumor killing in cancer immunotherapy 
[18]. 

Pattern recognition of different GSTTKs based on unsupervised clustering 
in COAD 

By means of univariate Cox regression analysis, we identified genes 
in the TCGA-COAD cohort that were substantially linked to overall 
survival (OS). We generated two clusters using the R software "Con-
sensusClusterPlus" for consensus clustering based on the GSTTKs asso-
ciated genes linked to prognosis. The heat map displays the association 
of various clusters with clinical characteristics [19]. Additionally, to 
identify differentially expressed genes (DEGs) among different clusters, 
the "limma" R program was utilized, with logFC=1 and P < 0.05 as the 
threshold. 

Functional enrichment analysis and single sample gene set enrichment 
analysis algorithm (ssGSEA) 

The MSigDB database was searched to retrieve the Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) gene set (C2. cp. kegg. V7.4). The 
biological functional variations between two distinct subgroups were 
identified via gene set variation analysis (GSVA) [20]. The potential 
molecular functions (MFs), cellular components (CCs), and biological 
processes (BPs) KEGG pathways of DEGs amongst various clusters are 
examined using the ’clusterProfiler’ in R. The biological pathways be-
tween various risk categories were investigated via GSEA. Significant 
enrichment was determined as per the criteria of log 2-fold change (FC) | 
≥ 1 and p-value<0.05. Furthermore, based on the ssGSEA algorithm, the 
association between BM-related subtypes and the proportion of 23 
infiltrating immune cells was examined using a Normalized Enrichment 
Score (NES). In the COAD cohort, ssGSEA was conducted to estimate the 
relative level of infiltration of 22 immune cells in the tumor microen-
vironment of COAD. Enrichment fraction is used to express each im-
mune cell type’s relative abundance. Wilcoxon rank sum test was 
completed to examine the variations in immune cell abundance between 
various clusters and the association between distinct clusters and infil-
trating immune cells in COAD. 

Development and validation of a clinical prognostic model using TTK- 
sensitive genes 

For the prognostic evaluation of DEGs, we implemented a univariate 
Cox regression model, followed by the use of the Least Absolute 
Shrinkage and Selection Operator (LASSO) and 10-fold cross-validation 
to further narrow the scope of screening for prognostic genes. Finally, a 
clinical prognosis model was developed with the Cox proportional risk 
regression algorithm. The formula is as indicated: riskscore= Σ 
(Expressioni * Coefi), whereby, Coefi and Expressioni represent the risk 
factors and each gene’s expression, respectively. 

The training and validation groups were generated by randomly 
classifying the COAD dataset. Patients were classified into low- and 
high-risk categories in the training and validation groups as per the 
median risk score. To contrast the survival rates of high- and low-risk 
populations, the Kaplan-Meier (KM) curve was employed. For both 
low- and high-risk groupings, the expression patterns of the genes used 
to develop clinical prognostic models were shown using heat maps. For 
both low- and high-risk groupings, the expression profiles of the genes 
used to build clinical prognostic models were shown using heat maps. 
Risk scores are examined via univariate and multivariate analyses to 
ascertain whether they function as independent prognostic indicators. 

Development and verification of column chart predictions 

The 1-, 3-, and 5-year OS rates of COAD patients were predicted using 
the "rms" and "survival" packages, which were also utilized to create a 
column chart model as per risk score and several clinical characteristics. 
The discrimination and accuracy of the column chart were estimated 
using the calibration curve. 
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Correlation between clinical prognosis model related to GSTTKs, TME 
invasion, and somatic mutation 

The CIBERSORT method evaluates the proportion of 22 types of 
immune cells from a vast volume of expression data from tumor samples 
using a set of reference gene expression matrices and is centered on the 
theory of linear support vector regression [21]. Using the CIBERSORT 
method, we investigated how risk scores and infiltrating immune cells in 
clinical prognostic models correlate. The ’maftools’ R package was 
employed to extract mutation annotation formats (MAFs) from the 
TCGA database and detect mutations in COAD patients across different 
risk groups. 

Exploring the dry characteristics and drug sensitivity analysis of gene 
signature in clinical prognosis 

From the Cancer Drug Sensitivity Genomics (GDSC) database, we 
evaluated drug response predictions using the "pRRophic" R-package, 
where Ridge regression was utilized to measure the median maximum 
inhibitory concentration (IC50) for each patient. 10-fold cross- 
validation was utilized to measure the prediction ability. 

Tumor immune single cell hub (TISCH) database 

The comprehensive single-cell RNA sequencing database known as 
TISCH was specifically designed for TME, targeting tumor immune 
single-cell centers (http://tisch.comp-genomics.org) [22]. From this 
platform, an extensive investigation was conducted into the TME het-
erogeneity across distinct datasets and cell types. 

Cell culture and transient transfection 

Human colon cancer cell lines SW480, SW620 and Human normal 
colon epithelial cells NCM460 were obtained from BNCC (Beijing, 
China). SW480, SW620 and NCM460 cells were cultured in DMEM F12 
with 10 % FBS (Gibco, Thermo Fisher, USA). Cells were grown at 37 ◦C 
in a humidified environment containing 5 % CO2. The target sequences 
of NPM1 siRNA were shown in Table 1. 

Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) 

TRIzol (Thermo Fisher, USA) reagent was used to extract total RNA 
from the SW480, SW620 and NCM460 cell lines. Using FastStart Uni-
versal SYBR Green Master, quantitative reverse transcription- 
polymerase chain reaction (qRT-PCR) was performed on the RNA 
extracted from each sample (2 μg) on a LightCycler 480 PCR System 
(Roche, USA). The cDNA was utilized as a template with a reaction 
volume of 20 μl (2 μl of cDNA template, 10 μl of PCR mixture, 0.5 μl of 
forward and reverse primers, and an appropriate water volume). The 
following procedures were utilized for the PCR reactions: Cycling con-
ditions started with an initial DNA denaturation phase at 95 ◦C for 30 s, 
followed by 45 cycles at 94 ◦C for 15 s, 56 ◦C for 30 s, and 72 ◦C for 20 s. 
Three separate analyses were performed on each sample. Based on the 2- 
ΔΔCT method, data from the threshold cycle (CT) were obtained and 
standardized to the levels of GAPDH in each sample. The expression 
levels of mRNA were compared to controls obtained from normal tis-
sues. The sequence table of primer pairs for the target genes was shown 
in Table 2 

Immunohistochemistry (IHC) staining 

The tissue sections through deparaffinization and dehydration were 
incubated with polyclonal rabbit anti-human HOXC6 antibodies (1:500, 
Abcam, ab151575) overnight at 4 ◦C after epitope retrieval, H2O2 
treatment, and non-specific antigens blocking. Next, sections were 
incubated with secondary antibodies (1:1000, Proteintech, SA00001–2) 
for two hours at room temperature, and then the signal was detected 
with an enhanced DAB staining kit (Proteintech, China). 

Cell viability 

Cell viability was detected using the Cell Counting Kit-8 assay 
(Beyotime, China). Cells from different treatments were cultured in 96- 
well plates at a density of 1 × 103 cells per well. CCK-8 solution was 
applied at the indicated time points. After incubation at 37 ◦C for 2 h, the 
O.D 450 values of each well were detected using a microplate reader 
(Thermo Fisher, USA). 

Transwell assay 

Transwell assays for migration and invasion of SW480 and SW620 
cell lines were performed. Briefly, cells (5 × 104) were inoculated into 
chambers coated (for invasion) or uncoated with Matrigel (BD Bio-
sciences, USA) (for migration). Serum-free medium was added to the 
upper layer and a complete DMEM medium was added to the lower 
layer. After 24 h of incubation, migrating or invading cells were fixed 
with 4 % paraformaldehyde and stained with 0.1 % crystalline violet. 

Statistical analysis 

R version 4.01 was applied to conduct all analyses of statistical data. 
For a comparison between the two groups, we employed the Wilcoxon 
test. The Kruskal-Wallis test and one-way ANOVA were employed to 
examine variations across two or more groups. For survival analysis, the 
KM method was employed, and Pearson correlation analysis was 
executed to assess correlations. Limma was applied to construct prin-
cipal component analysis (PCA) between different clusters. ROC curve 
analysis was conducted based on the "survival" and "timeROC" R pack-
ages. P < 0.05 denotes the significance criterion. 

Results 

Genetic characteristics and transcriptional changes of GSTTKs in COAD 

In the TCGA-COAD cohort, univariate analysis was conducted to 
identify potential prognosis-related genes. The threshold was set at P <
0.01. An aggregate of 25 prognosis-related genes was discovered. The 
differential expression of these 25 prognosis-related genes in the TCGA- 
COAD cohort is depicted in Fig. 1A. More specifically, we determined 
the prevalence of somatic mutation and CNV in 25 GSTTKs in COAD. 98 
out of 447 COAD samples (20.58 %) had mutations. We then examined 
the copy number alterations of these 25 GSTTKs. Among them, the CNV 
of ATP6V0C, RNF146, IFNA8, RALGDS, PRMT2, ANKRD6, LRRC8A, 
MLEC, GRSF1, SPRY4, DNASE1L3, LEF1, MSN, and B3GAT3 signifi-
cantly decreased. The copy number of other genes significantly 
increased. (Fig. 1C) The placement of these GSTTKs’ CNVs on the 
chromosome is depicted in Fig. 1D. The molecular interactions between 
25 GSTTKs are depicted in Fig. 1E. In COAD patients, upregulation of 
IFNA8, CS, GRSF1, TAPBPL, MLEC, AURKA, and DNASE1L3 was linked 
to a better OS. The upregulation of other genes (HOXC11, WWTR1, 
LEF1, MSN, SLC2A3, KLF2, TIMP1, RNF146, PICALM, ANKRD6, SPRY4, 
ARIH1, B3GAT3, RALGDS, ATP6V0C, PHF1, PRMT2, and LRRC8A) was 
associated with poor OS in PAAD patients. (Fig. 2) 

Table 1 
The target sequences for NPM1 siRNA.  

Gene target sequence (5′− 3′) 

si HOXC6#1 CCGTATGACTATGGATCTAATTC 
si HOXC6#2 GACTATGGATCTAATTCCTTTTA  

J. Chen et al.                                                                                                                                                                                                                                     
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Determination of COAD subtypes associated with GSTTKs 

The TCGA-COAD dataset and the GEO dataset were merged into a 
single COAD cohort. A consensus clustering approach was applied to 
cluster and evaluate COAD samples in the PAAD cohort to explore the 
expression features and probable biological properties of GSTTKs in 

COAD, yielding two subtypes (cluster A and cluster B) (Fig. 3A-C). The 
survival curve results show that cluster A’s OS is superior to cluster B’s 
OS. The heat map (Fig. 3D) exhibits the correlation between two 
different subtypes of GSTTKs and clinical characteristics. The PCA dia-
gram (Fig. 3E) shows a significantly different distribution between 
clusters A and B (Fig. 3F). 

Table 2 
A list of the sequences of primer pairs for target genes.  

Gene Forward primer sequence (5′− 3′) Reverse primer sequence (5′− 3′) 

C11orf96 TCACGCCAACACTCTCGCTGAA CAATCCTCCAGACGCAGTAGCA 
CXCL9 CTGTTCCTGCATCAGCACCAAC TGAACTCCATTCTTCAGTGTAGCA 
HOXC6 TTACCCCTGGATGCAGCGAATG CCGCGTTAGGTAGCGATTGAAG 
VSIG4 GATGGCAACCAAGTCGTGAGAG CCTGGCATTGAAGGCTAATCCTC 
CXCL13 TATCCCTAGACGCTTCATTGATCG CCATTCAGCTTGAGGGTCCACA 
CXCL1 AGCTTGCCTCAATCCTGCATCC TCCTTCAGGAACAGCCACCAGT 
CXCL8 GAGAGTGATTGAGAGTGGACCAC GAGAGTGATTGAGAGTGGACCAC 
IL1B CCACAGACCTTCCAGGAGAATG GTGCAGTTCAGTGATCGTACAGG 
IL4 CCGTAACAGACATCTTTGCTGCC GAGTGTCCTTCTCATGGTGGCT 
IL10 TCTCCGAGATGCCTTCAGCAGA TCAGACAAGGCTTGGCAACCCA 
GAPDH GTCTCCTCTGACTTCAACAGCG ACCACCCTGTTGCTGTAGCCAA  

Fig. 1. Genetic characteristics of GSTTKs in COAD. (A) The differential expression of 25 genes linked to prognosis between tumors and normal samples in the TCGA- 
COAD cohort. (B) The waterfall plot shows the mutation frequency of 25 GSTTKs in 447 TCGA-COAD samples. The list shows a single patient, TMB appears on the 
upper bar chart, the percentage of each variant type is depicted in the right Bar Chart, and each patient’s conversion score is displayed in the lower stacked bar chart. 
(C) The CNV variation frequency of 25 GSTTKs in TCGA-COAD. Green: deletion frequency; Red dot: Amplify the frequency. (D) The position of 25 GSTTKs on 
chromosomes. (E) The interaction network between 25 GSTTKs. 
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Characteristics of biological pathways and TME between subtypes of 
GSTTKs in COAD 

The results of GSVA showed a significant correlation between cluster 
A and metabolic pathways such as butyric acid metabolism and pyruvate 
metabolism. Cluster B is significantly correlated with ECM receptor in-
teractions, MAPK signaling pathways, and cancer pathways. (Fig. 4A) 
Using the CIBERSORT and ssGSEA methods, we evaluated the variations 
in immune cell infiltration levels between Clusters A and B. Cluster B’s 
immune score is substantially greater than Cluster B’s (Fig. 4B). Addi-
tionally, Cluster B has a greater proportion of infiltrating immune cells 
than Cluster A. The infiltration level of immune cells such as Mono-
cytena and Type.17.T.helper.cellna in Cluster A is higher than that in 
Cluster A and Cluster B. (Fig. 4C) 

Differential expression analysis and functional annotation between 
subtypes of GSTTKs 

We identified 312 DEGs by performing a differential expression 
analysis between clusters A and B using the "limma" program. We sub-
sequently employed these DEGs to perform functional enrichment 
analysis (Fig. 5A). The GO findings illustrated that these DEGs were 
significantly correlated with BPs including extracellular matrix struc-
tural components, extracellular matrix tissue, and basement membrane. 
(Fig. 5B) KEGG results illustrate that the ECM receptor interaction, PI3K 
Akt signaling pathway, and NF-κB pathways including the B signaling 
pathway are enriched. (Fig. 5C) 

Fig. 2. Survival curve of 25 GSTTKs in the TCGA-COAD cohort.  

J. Chen et al.                                                                                                                                                                                                                                     
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Development and verification of a clinical prognostic model incorporating 
GSTTKs 

We used 312 DEGs between clusters A and B for conducting uni-
variate analysis and obtained 163 GSTTKs related to prognosis for 
constructing clinical prognosis models. Finally, we constructed a clinical 
prognosis model containing 5 characteristic genes (C11orf96, VSIG4, 
HOXC6, CXCL9, and CXCL13) using the LASSO–COX algorithm. The 
formula (Fig. 5A and B) is as follows: riskscore=(0.2100) * C11orf96+
(0.2018) * VSIG4+(0.1650) * HOXC6+(− 0.1489) * CXCL9+(− 0.1115) 
* CXCL13 

In the training group, COAD patients were divided into low-risk and 

high-risk groups based on the risk score of the model. More fatalities and 
shorter OS periods were linked to higher risk scores. The expression 
levels of five characteristic genes (C11orf96, VSIG4, HOXC6, CXCL9, 
and CXCL13) were substantially varied across high- and low-risk sub-
groups (Fig. 6C) As opposed to the high-risk patients, those at low-risk 
exhibited a superior OS, according to a KM analysis (P < 0.001). 
(Fig. 6D) AUC values serve as a representation of the risk score’s 1-, 3-, 
and 5-year survival probabilities, which were 0.691, 0.649, and 0.665, 
respectively. More importantly, the model was well-validated in the 
validation group (Fig. 6E). As per the model’s risk score, the COAD 
patients in the validation group were classified into low- and high-risk 
categories. More fatalities and shorter OS periods are linked to higher 

Fig. 3. Identification of GSTTKs-related subtypes in COAD. (A) When k = 2, merge the heatmap of the cohort cluster. (B) The Cumulative Distribution Function 
(CDF) curve’s distribution. (C) The area under the CDF curve. (D) The variations in survival between the two subtypes are shown by the Kaplan-Meier survival curve. 
(E) The link between the subtypes of GSTTKs and the clinical pathological parameters is displayed in the heat map. (F) Two GSTTK subtypes were compared by 
principal component analysis (PCA). 
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risk scores. Furthermore, the expression patterns of the five character-
istic genes varied significantly between high- and low-risk groupings 
(Fig. 6F) When contrasted with the high-risk patients, those with lower 
risk recorded increased OS, according to a KM analysis (P < 0.001). 
(Fig. 6G) The 1-year, 3-year, and 5-year survival probabilities of the risk 
score are represented by AUC values, which are 0.673, 0.663, and 0.740, 
respectively. The results of the forest plot illustrated that the risk score of 
the clinical prognosis model is a potential risk factor. (Fig. 6I). 

Development of a column chart to predict the COAD patients’ survival rate 

Depending on the data collected, we used the rms program to 
generate a column chart that predicted the COAD patients’ life expec-
tancy at 1-, 3-, and 5-year periods (Fig. 7A). The nomogram outperforms 
the ideal model, as shown by the calibration diagram (Fig. 7B). In 
addition, the cumulative risk of high-risk patients is significantly higher 

than that of low-risk patients over time. (Fig. 7C). 

Correlation between clinical prognosis model and TME 

To assess the association of risk score with infiltrating immune cells, 
the CIBERSORT method was applied. Neutrophils, activated mast cells, 
macrophage M0, and macrophage M2 all had positive associations with 
the model’s risk score. Conversely, the T cells follicular helper, T cells 
CD4 memory activated, CD8T cells, Macrophages M1, Dendritic cells 
resting, B cells naive, and Plasma cells exhibited an inverse correlation 
with the risk score of the model (Fig. 8). 

Association between risk score and mutation in clinical prognosis models 

We examined the somatic mutation distribution differences between 
the low- and high-risk categories utilizing the maftools program in the 

Fig. 4. Characteristics of biological pathways and tumor microenvironment between GSTTKs related subtypes in COAD. (A) the biological pathway between Clusters 
A and B is in an activated state. (B) Variations between Clusters A and B in terms of estimated scores, immune scores, and matrix scores. (D) Clusters A and B have 
varying degrees of immune cell infiltration. 

Fig. 5. Analysis of differential expression and functional annotation of GSTTK-related subtypes. (A) The differentially expressed genes (DEGs) at the intersection 
between Clusters A and B. (B) GO enrichment analysis between these DEGs. (C) The potential KEGG pathway of these DEGs. 
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Fig. 6. Construction and validation of clinical prognostic models related to GSTTKs. (A, B) Regression screening of characteristic genes based on the minimal 
criterion for least absolute shrinkage and selection operator (LASSO). (C) COAD patients with various risk scores, survival statuses, and GSTTK expression profiles 
were shown in the training set. (D) High- and low-risk patients in the training set were analyzed utilizing the Kaplan-Meier method. (E) The clinical prognostic 
model’s ability in predicting patient prognosis in the training cohort is demonstrated by the receiver operating characteristic (ROC) curve. (F) Patients with COAD 
were shown in the validation cohort along with their risk scores, survival statuses, and GSTTKs. (G) Patients in the high-risk category had considerably worse 
prognoses in the validation cohort. (H) The clinical prognostic model’s prognostic effectiveness in the validation cohort is displayed by the ROC curve. (I) Multi-
variate COX regression analysis indicates that risk scores can serve as independent prognostic factors. 

Fig. 7. Generating and evaluating prognostic column charts. (A) A column chart was used to evaluate 1-, 3-, and 5-year survival rates. (B) The calibration curve of the 
column chart. (C) Cumulative incidence rate by risk stratification. 

Fig. 8. The link between the tumor microenvironment and the risk scores of the clinical prognostic models.  
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TCGA-PAAD cohort. Additionally, the findings demonstrated that the 
low-risk patients exhibited a higher prevalence of mutations. The most 
prominent somatic mutations were APC (74 %) and TP53 (54 %) in the 
low-risk population and APC (68 %) and TP53 (50 %) in the high-risk 
population. Nevertheless, when contrasted with the low-risk popula-
tion, the high-risk patients recorded a larger percentage of KRAS mu-
tations (44 % vs 42 %) (Fig. 9A and B). According to Fig. 9C, there are 
more MSI-L cases in the low-risk category than in the high-risk category. 
In comparison to the high-risk patients, those at low risk exhibited a 
lower proportion of MSI-H. 

Drug sensitivity analysis 

The pRRophytic algorithm was used to estimate the responsiveness 
to two commonly used chemotherapeutic medications (Fig. 7A). The 
sensitivity of many chemotherapeutic agents varied substantially 

between high- and low-risk categories. The estimated IC50 values for 
Bortezomib, Erlotinib, Nilotinib, Gefitinib, Sorafenib, and Paclitaxel in 
the high-risk patients were greater compared to those in the low-risk 
category (Fig. 10A-F). This implies that low-risk patients have a better 
chance of gaining benefits from these chemotherapy medications. 
Interestingly, the low-risk group’s IC50 values for dasatinib were 
elevated relative to those for the high-risk patients (Fig. 10G). 

Analysis of the correlation between characteristic genes of the model and 
TME 

We applied the single-cell dataset GSE146771 from the TISCH 
database for CRC to determine the expression of five characteristic genes 
(C11orf96, VSIG4, HOXC6, CXCL9, and CXCL13) in TME. There are 20 
cell populations and 13 intermediate cell types in the GSE146771 
dataset, and the images present their distribution and quantity (Fig. 11A 

Fig. 9. The association of risk scores with mutations in clinical prognostic models. (A, B) Waterfall plots of tumor body mutations established in high- and low-risk 
patients. (C) The association of MSI with the risk scores of the clinical prognostic models. 
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and B). C11orf96 is mainly expressed in fibroblasts. (Figs. 11C and 10D) 
VSIG4 is predominantly expressed in monocytes or macrophages. 
(Fig. 11E and F) CXCL9 is mainly expressed in endothelial cells, fibro-
blasts, monocytes, and macrophages. (Fig. 11G and H) CXCL13 is mainly 
expressed in tprolif cells. (Fig. 11I and J) However, no expression of 
HOXC6 was detected in this dataset. 

Experimental validation of bioinformatics models 

We examined the expression of C11orf96, CXCL9, HOXC6, VISG4 
and CXCL13 by qRT-PCR in human colon cancer cell lines SW480, 
SW620 and human normal colon epithelial cells NCM460. (Fig. 12A-E) 
The qRT-PCR results indicated that HOXC6 expression was elevated in 

SW480 and SW620 relative to NCM460. We then examined the 
expression of HOXC6 in cancer and paracancer tissues in a tissue 
microarray of colon cancer. The results of IHC showed that the expres-
sion of HOXC6 was significantly elevated in colon cancer tissues. 
(Fig. 12F and G) We then tested the efficiency of using small interfering 
RNAs to inhibit HOXC6 expression in SW460 and SW480, and the results 
showed that si HOXC6#1 exhibited good inhibition efficiency. 
(Fig. 12H-K) Meanwhile, the cell viability of SW480 and SW620 cell 
lines was significantly decreased after the inhibition of HOXC6 expres-
sion. The results of Transwell experiments showed that the invasion and 
migration abilities of SW480 and SW620 cell lines were significantly 
decreased after the inhibition of HOXC6 expression.(Fig. 13A and B) 
Finally, we examined the expression of immune-related cytokines in 

Fig. 10. Drug sensitivity analysis. (A-F) Bortezomib, Erlotinib, Nilotinib, Gefitinib, Sorafenib, and Paclitaxel have higher IC50 values in the high-risk group. A: 
Bortezomib; B: Erlotinib; C: Nilotinib; D: Gefitinib; E: Sorafenib; F: Paclitaxel (G) Dasatinib has a higher IC50 value in the low-risk patients. 

J. Chen et al.                                                                                                                                                                                                                                     



Translational Oncology 43 (2024) 101918

12

SW480 and SW620 cell lines before and after HOXC6 inhibition, and we 
could observe a rise in the expression of pro-inflammatory cytokines 
CXCL1, CXCL8 and IL1β after inhibition of HOXC6 expression. Whereas 
the expression of anti-inflammatory cytokines such as IL4 and IL10 was 
suppressed upon inhibition of HOXC6 expression. (Fig. 13C-L) 

Discussion 

Colon cancer has the highest prevalence among primary malignant 
tumors. The current treatment status of COAD is still inadequate because 
of its high rates of recurrence and metastasis, as well as its growth 
resistance [23,24]. Consequently, there is a pressing need to investigate 
novel characteristics for COAD patients to assess prognosis, detect 
high-risk populations, and provide individualized care. We compre-
hensively evaluated the expression and prognosis of GSTTKs in this 
study and divided COAD patients into 2 categories (clusters A and B) as 
per the expression patterns of GSTTKs. Between clusters A and B, there 
were considerable variations in OS, the proportion of immune cells that 
infiltrate tumors, and immune scores. This implies that these 
GSTTKs-related genes are implicated in the COAD TME. Cluster A was 
significantly correlated with metabolic pathways such as butyric acid 
and Pyruvic acid metabolism. Cluster B was significantly correlated with 
ECM receptor interactions, MAPK signaling pathways, and cancer 
pathways. To additionally examine the mechanistic basis of 
GSTTKs-related genes in COAD, we analyzed the DEGs between two 

subtypes and conducted LASSO and multiple Cox regression analysis on 
DEGs to establish a gene signature based on GSTTKs improve patient risk 
stratification for COAD and facilitate individualized screening. 

The gene signature of the GSTTKs-related genes constructed in this 
study includes five genes (C11orf96, VSIG4, HOXC6, CXCL9, and 
CXCL13). HOXC6 belongs to the family of homeobox genes and is 
involved in the embryonic development of vertebrates and performs 
crucial functions in breast cancer, lung cancer, prostate cancer, leuke-
mia, and other cancer types [25–29]. The study by Lina Qi et al. 
discovered that HOXC6 is overexpressed in right colon cancer and is 
linked to a dismal prognosis. Overexpression of HOXC6 can be achieved 
by activating the Wnt/β-catenin signaling pathway and inhibiting DKK1 
production to induce EMT, thereby promoting the motility and inva-
siveness of colon cancer cells [30]. In addition, our experiment also 
demonstrated a significant increase in the expression of HOXC6 in colon 
cancer tissue. After inhibiting the expression of HOXC6, the expression 
of pro-inflammatory cytokines CXCL1, CXCL8, and IL1β increases. The 
expression of anti-inflammatory cytokines such as IL4 and IL10 is 
inhibited when inhibiting HOXC6 expression. CXCL13 belongs to the 
family of CXC chemokines [31]. CXCL13 is an exclusively selective 
ligand of CXCR5, a member of the G protein-coupled receptor (GPCR) 
family [32]. According to Zhenyu Zhu et al., CXCL13 can stimulate colon 
cancer cells to proliferate, migrate, and invade matrix gel. The 
CXCL13-CXCR5 axis can boost colon cancer cell proliferation, motility, 
and invasive potential through the PI3K/AKT pathway [33]. V-set and 

Fig. 11. The expression of characteristic genes for constructing models in the COAD single-cell dataset. (A) There are 20 cell populations in the GSE146771 dataset. 
(B) 20 cell populations were annotated as 13 cell subpopulations. The levels of C11orf96, VSIG4, CXCL9, and CXCL13 expressed in COAD samples. C. D: C11orf96; E. 
F: VSIG4; G. H: CXCL9; I. J: CXCL13. 
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immunoglobulin domain containing 4 (VSIG4) is a Complement recep-
tor of the immunoglobulin superfamily [34]. According to earlier 
research, VSIG4 binding to the macrophages’ immunosuppressive 
function in the microenvironment can accelerate cancer progression 
[35–37]. CXCL9 is also known as γ Interferon-induced single factor and 
primarily mediates lymphocyte infiltration into lesions and inhibits 
tumor growth [38,39]. However, there is still limited research on the 
mechanisms of action of C11orf96, VSIG4, and CXCL9 in COAD. 
Therefore, our future research needs to additionally investigate the 
exact action mechanisms of C11orf96, VSIG4, and CXCL9 in COAD. 

Subsequently, using risk scores, we classified COAD patients into 
high- and low-risk categories. In the training and validation cohorts, 
patients’ OS in the low-risk subgroup was considerably higher than in 
the high-risk category, demonstrating that risk scores can be employed 

as a distinguishing factor in the COAD survival rate. Risk score could be 
applied independently as a predictor of COAD prognosis, according to 
multivariate analysis. The 1-, 3-, and 5-year OS of CRC patients were 
better quantified using a column chart that included these independent 
prognostic variables. The nomogram’s prognostic prediction ability was 
significantly good, as evidenced by the calibration curve and cumulative 
incidence curve results. This study concludes that this quantitative 
characteristic can act as a supplemental tool to facilitate prognosis 
assessment and individualized COAD treatment. 

We also found a strong link between the gene signature of COAD 
patients and tumor-infiltrating immune cells. Neutrophils, Mast cells 
activated, Macrophages M2, and Macrophages M0 were significantly 
positively linked to risk scores. On the other hand, the association of risk 
score with T cells follicular helper, CD8 T cells, memory-activated CD4 T 

Fig. 12. HOXC6 is elevated in colon cancer tissues. (A-E) The expression of C11orf96, CXCL9, HOXC6, VISG4 and CXCL13 in NCM460, SW480 and SW620 was 
detected by qRT-PCR and analyzed for relative quantification. (F-G) The expression of HOXC6 in cancer and paracancer tissues was detected and quantified using 
IHC. (H) The inhibition efficiency of small interfering RNAs was detected and analyzed for relative quantification in SW480 cell line. (I) Cell viability of SW480 was 
assayed after inhibition of HOXC6 expression in SW480 cell line. (J) The inhibition efficiency of small interfering RNAs was detected and analyzed for relative 
quantification in SW620 cell line. (K) Cell viability of SW480 was assayed after inhibition of HOXC6 expression in SW620 cell line. N = 3. *≤0.05, **≤0.01, 
***≤0.001, ****≤0.0001. N = 6/3, The results are presented as mean ± SD. 
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cells, and Macrophages M1 was substantially negative. Among the in-
flammatory cells in the TME, mast cell and their mediators not only 
participate in tumor progression but also play an anti-tumor role. [40]. 
By secreting growth factors and cytokines, mast cells can accelerate 
tumor development. More importantly, Mast cells could also suppress 
tumor development by secreting IL-1, IL-6, Monocyte chemoattractant 
protein-3 and − 4, etc [41]. At present, more and more studies have 
proved that Mast cells perform an integral function in CRC [42–44]. 
Jochen Wedemeyer et al. illustrate that B6Kit (W)/Kit (W-v) mice 
lacking Mast cells were less susceptible to chemically induced intestinal 
tumors [45]. Ji Hyun Lee et al. found that the lack of Mast cells can 
inhibit the progress of colitis and colon cancer by minimizing 

inflammation and regulating different inflammatory markers [46]. 
However, there is also some evidence that Mast cells seem to have a 
protective function in the development of CRC. Feifei Song et al. found 
that Mast cells are capable of selectively inducing Endoplasmic Reticu-
lum Stress and triggering the Unfolded Protein Response in CRC cells, 
thereby inhibiting the development of CRC [47]. Consequently, more 
investigations are required to validate the apparent Mast cell mechanism 
in COAD. 

Currently, chemotherapy remains an important strategy for treating 
COAD patients [48]. Therefore, We evaluated how two risk categories of 
patients responded to immunotherapy and chemotherapy. Bortezomib, 
Erlotinib, Gefitinib, Nilotinib, Sorafenib, and Paclitaxel exhibited higher 

Fig. 13. HOXC6 promotes invasion and immunosuppression of colon cancer cell lines. (A-B) Alterations in cell migration as well as invasive capacity after inhibition 
of HOXC6 expression in SW480 and SW620 cell lines. (C-G) The expression levels of CXCL1, CXCL8, IL1β, IL4 and IL10 in SW480 cell line were detected by qRT-PCR 
before and after HOXC6 inhibition. (H-L) The expression levels of CXCL1, CXCL8, IL1β, IL4 and IL10 in SW620 cell line were detected by qRT-PCR before and after 
HOXC6 inhibition. N = 3. *≤0.05, **≤0.01, ***≤0.001, ****≤0.0001. N = 6/3, The results are presented as mean ± SD. 
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sensitivity among low-risk patients. Furthermore, high-risk patients 
were more responsive to Dasatinib. This indicates that the clinical model 
of GSTTKs-related genes can serve as a tool for screening COAD patients 
suitable for chemotherapy and immunotherapy. 

Several limitations remain in this study. Firstly, the sample size 
included in the research is limited. In order to expand the sample size, 
increase the statistical power and improve the reliability of the results, 
we combined the TCGA dataset and the GEO dataset. Although the "sva" 
package can eliminate the batch effect between different datasets, there 
may still be some risks. Therefore, the clinical model still needs further 
validation in multicenter trials and larger patient cohorts. Secondly, due 
to technical constraints, we are unable to verify the possible mechanisms 
of unreported genes. In the future, additional research will be required 
to validate the findings of our analysis. 

Conclusion 

In summary, this study innovatively investigated a gene signature 
based on genes associated with GSTTKs, offering a fresh approach to risk 
assessment and possible biological markers for COAD patients. This 
clinical model feature can help with stratified screening and individu-
alized COAD patient treatment by assessing the prognosis, immune 
infiltration, and chemotherapy responsiveness among COAD patients. 
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