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Significance

Albeit it has long been known 
that the RNA chaperone Hfq is 
critical for Klebsiella pneumoniae 
virulence and adaptation to 
various environmental stress 
conditions, the landscape of 
Hfq-associated transcripts in this 
organism has not been explored. 
In a global search for RNA–RNA 
interactions, we annotated 
targets of conserved as well as 
previously unknown regulatory 
RNAs. We show that a Klebsiella-
specific sRNA (small regulatory 
RNA), termed DinR, contributes 
to inhibition of cell cycle 
progression in the response to 
DNA damage by interfering with 
translation of the essential 
divisome component FtsZ. Acting 
at the posttranscriptional level, 
DinR complements other 
conserved mechanisms of FtsZ 
deactivation in the SOS response 
and fosters filamentation of K. 
pneumoniae.
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The ubiquitous RNA chaperone Hfq is involved in the regulation of key biological pro-
cesses in many species across the bacterial kingdom. In the opportunistic human path-
ogen Klebsiella pneumoniae, deletion of the hfq gene affects the global transcriptome, 
virulence, and stress resistance; however, the ligands of the major RNA-binding protein 
in this species have remained elusive. In this study, we have combined transcriptomic, 
co-immunoprecipitation, and global RNA interactome analyses to compile an inventory 
of conserved and species-specific RNAs bound by Hfq and to monitor Hfq-mediated 
RNA–RNA interactions. In addition to dozens of RNA–RNA pairs, our study revealed 
an Hfq-dependent small regulatory RNA (sRNA), DinR, which is processed from the 
3′ terminal portion of dinI mRNA. Transcription of dinI is controlled by the master 
regulator of the SOS response, LexA. As DinR accumulates in K. pneumoniae in response 
to DNA damage, the sRNA represses translation of the ftsZ transcript by occupation 
of the ribosome binding site. Ectopic overexpression of DinR causes depletion of ftsZ 
mRNA and inhibition of cell division, while deletion of dinR antagonizes cell elongation 
in the presence of DNA damage. Collectively, our work highlights the important role 
of RNA-based gene regulation in K. pneumoniae and uncovers the central role of DinR 
in LexA-controlled division inhibition during the SOS response.

Klebsiella pneumoniae | Hfq | RIL-seq | small RNA | SOS response

Klebsiella pneumoniae is a ubiquitous member of the gram-negative Enterobacteriaceae. 
Equipped with a thick polysaccharide capsule that facilitates host immune system evasion, 
K. pneumoniae causes a wide range of severe diseases in humans including urinary and 
respiratory tract infections, bacteremia, and pyogenic liver abscesses (1, 2). Classical  
K. pneumoniae strains are common nosocomial pathogens typically responsible for infections 
in immunocompromised patients (3). However, the ability of this bacterium to efficiently 
accumulate genetic traits that confer resistance toward an increasing number of antibiotics 
has prompted the World Health Organization to list K. pneumoniae as a pathogen of highest 
priority regarding the development of alternative therapeutic compounds (4).

Bacteria acquire genome-encoded drug resistances either through horizontal gene trans­
fer or by vertical evolution, i.e., the emergence and transmission of de novo mutations 
which enhance antibiotic tolerance (5). The frequency of mutations in bacteria increases 
in the presence of active stress responses, like the general stress response, the cellular 
responses to starvation, the presence of oxidative stress, or membrane damage which all 
may generate single-stranded DNA (ssDNA) at stalled replication forks and DNA lesions 
(6, 7). DNA damage typically activates the SOS response, a global regulatory pathway 
promoting DNA repair while the cell cycle is arrested (8). The two master regulators of 
the SOS response are the ssDNA-binding protein, RecA, and the transcriptional repressor 
protein, LexA. Recruitment of RecA to DNA lesions results in the formation of a nucleofil­
ament on ssDNA which stimulates LexA autoproteolysis (9). When cleaved, LexA disso­
ciates from its DNA operator sites—the so-called LexA boxes (10, 11)—to enable 
expression of ~40 genes in Escherichia coli required for DNA repair, DNA damage toler­
ance, and cell cycle control (10, 12). In E. coli, the SOS response stalls cell division to 
permit time for chromosome repair by activation of SulA which interferes with FtsZ 
polymerization to inhibit Z-ring formation at midcell (13, 14).

The coordination of the SOS response with additional environmental stresses requires 
precise fine-tuning of gene expression programs. Gene expression control in bacteria was 
long considered to occur predominantly at the level of transcription; however, extensive 
research over the past two decades has uncovered the broad contribution of posttranscrip­
tional regulation involving small, regulatory RNAs (sRNAs) and RNA-binding proteins 
(RBPs). The majority of bacterial sRNAs act by regulation of trans-encoded messenger RNAs 
(mRNAs) through short, often imperfect base-pairing interactions (15, 16). The formation 
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of sRNA–mRNA hybrids is generally aided by RBPs, the most 
prominent being Hfq which can simultaneously bind to an sRNA 
and its potential target and, given sufficient complementarity, facil­
itate complex formation (17).

Bacterial sRNAs may repress or stimulate expression of a tar­
geted transcript. In most cases, formation of the RNA duplex 
occludes the ribosome recognition site of the target. The inhibition 
of translation initiation increases the susceptibility of the mRNA 
to ribonucleolytic cleavage and results in rapid decay of the tar­
geted transcript alone or together with the bound sRNA (18, 19).

While hundreds of genomes from clinical K. pneumoniae isolates 
have been sequenced to determine phenotypes relevant to patho­
genesis of individual strains (20–22), significantly less is known 
about the RNA landscape of this bacterium. Importantly, muta­
tion of hfq results in deregulation of ~20% of all K. pneumoniae 
genes and has been associated with impaired stress responses and 
defects in intestinal colonization and systemic infection of mice 
(23). These results indicate that Hfq-mediated gene expression 
control is key for various aspects of K. pneumoniae’s lifestyle. The 
close genetic relationship to the genera Escherichia and Salmonella 
within the family of Enterobacteriaceae has fostered the extrapo­
lation of results obtained for these two well-studied model organ­
isms of bacterial RNA biology to Klebsiella. Indeed, transcriptome 
analyses have uncovered the conservation of ~50 Hfq-dependent 
sRNAs in the well-studied clinical isolate MGH 78578, including 
the highly expressed GcvB, CyaR, and GlmZ (23–25). However, 
no individual sRNA has been characterized in Klebsiella to date, 
and the strain-specific ligands of Hfq and their regulatory roles 
are still undetermined.

To address this paucity, we have applied differential RNA sequenc­
ing (dRNA-seq) to annotate ~3,750 transcriptional start sites (TSSs) 
at low and high cell density in the multidrug-resistant K. pneumoniae 
isolate MGH 78578. RNA co-immunoprecipitation and sequencing 
(RIP-seq) of Hfq-associated RNAs revealed growth phase-dependent 
and strain-specific transcripts interacting with the RBP, including 
numerous sRNA candidates encoded on core genome and accessory 
plasmids. In addition, we have employed RIL-seq [RNA interactions 
by ligation and sequencing (26)] to globally map the Hfq-dependent 
RNA interactome of K. pneumoniae in early stationary growth. 
Among thousands of RNA–RNA pairs, we identified previously 
uncharacterized targets of conserved sRNAs as well as strain-specific 
interactions. One of the candidate sRNAs, termed DinR, is released 
from the 3′ end of the LexA-controlled dinI mRNA through endo­
nucleolytic cleavage. In the presence of Hfq, DinR recognizes the 
translation initiation site of ftsZ mRNA, resulting in down-regulation 
of the target and cell filamentation. We therefore propose DinR as 
the noncoding tier of cell cycle control of the SOS response in  
K. pneumoniae.

Results

The Primary Transcriptome of K. pneumoniae MGH 78578. To 
map the transcriptomes of Klebsiella in exponential and stationary 
growth phase, we determined TSSs by dRNA-seq, a protocol 
employing the enrichment of primary transcripts through selective 
degradation of processed species from the total RNA pool (27). 
We cultivated K. pneumoniae MGH 78578, a multidrug-resistant 
strain isolated from the sputum of a pneumonia patient in 1994 
(28), under standard laboratory conditions in rich LB medium 
at 37 °C and isolated total RNA from samples harvested at two 
different time points over growth [OD600 of 0.25 (mid-exponential 
phase, MEP) and 2.0 (early stationary phase, ESP), respectively]. 
Library preparation and deep sequencing yielded at least 7 million 
cDNA reads per condition mapping to the 5,694,894 bp MGH 

78578 genome, covering the main chromosome and five accessory 
plasmids (pKPN3-7). Individual TSSs were classified regarding 
their genomic location relative to the annotated coding sequences 
(CDSs) as proximal (closest TSS of a gene), distal (alternative TSS, 
upstream of a proximal TSS), internal (within an open reading 
frame), antisense (expressed from the complementary strand of an 
annotated gene), or orphan TSSs (no clear association to a flanking 
gene), respectively (SI Appendix, Fig. S1A).

In total, we identified 3,748 individual TSSs under the tested 
conditions (SI Appendix, Fig. S1B and Dataset S1) and observed an 
enrichment for 5′UTRs with a length of 20 to 50 nt (SI Appendix, 
Fig. S1C). We detected at least two alternative TSSs for 178 genes, 
and 912 transcripts were differentially regulated between the two 
examined growth phases (SI Appendix, Fig. S1 B and D). Com­
parison of our data to a published transcriptome study of strain 
MGH 78578 cultivated in minimal medium (25) revealed an over­
lap of more than 1,000 TSSs with our annotation (SI Appendix, 
Fig. S1E), confirming the accuracy of our experimental approach.

The Hfq Interactome in K. pneumoniae. A key role of Hfq 
in posttranscriptional regulation is to facilitate base-pairing 
interactions between regulatory sRNAs and their target transcripts. 
However, the number and identity of specific ligands of the 
chaperone in Klebsiella have remained unknown. To close this 
gap, we conducted high-throughput sequencing of RNA co-
purified with Hfq carrying a C-terminal 3xFLAG epitope (RIP-
seq) and included wild-type (WT) MGH 78578 expressing 
untagged Hfq in our experiment as a control in both MEP and 
ESP (SI Appendix, Fig.  S2A). We verified that addition of the 
epitope tag did not impair growth (SI Appendix, Fig. S2B), and 
western blot analysis confirmed expression of Hfq-3xFLAG at all 
phases of growth and specific enrichment of the fusion protein 
in the RIP-seq protocol (SI  Appendix, Fig.  S2C and Fig.  1A). 
Consistently, recovery of the conserved Hfq-dependent sRNAs 
ChiX, GcvB, CyaR, and ArcZ was strongly enhanced in the Hfq-
3xFLAG coIP samples (Fig. 1B). When profiling the RNA species 
co-immunoprecipitating with Hfq in comparison to the control 
by deep sequencing, we observed an increase in the proportion of 
sRNAs (8.8-fold in MEP and 7.0-fold in ESP, respectively; Fig. 1C 
and Dataset S2). In addition, 5,277 mRNAs were detected under 
both conditions, and 450 of them were enriched at least threefold 
in the coIP fraction. In contrast, the fraction of rRNAs, tRNAs 
and house-keeping RNAs decreased from 35.2 to 14.6% (MEP) 
and 47.7 to 23.8% (ESP), respectively. When comparing relative 
abundances of individual sRNAs (reflected by the number of reads 
in Hfq-3xFLAG samples), we observed a cell density-dependent 
shift in the profiles of posttranscriptional regulators in different 
growth phases. For example, ChiX, GcvB, and Spot42 accounted 
for more than two-thirds of all reads in rapidly dividing cells, 
whereas CyaR, ArcZ, and RprA accumulated in cells upon shifting 
to stationary growth (Fig. 1D).

With our approach, we detected 69 conserved enterobacterial 
sRNAs and annotated 53 candidate sRNAs, 83 of which interacted 
with Hfq (≥threefold enrichment when compared to the control, 
see SI Appendix, Table S1 and Dataset S2). Regarding a consistent 
nomenclature, all sRNA candidates without a functional assign­
ment were termed KpnR_NNN.

We classified the sRNAs by their genomic location, i.e., whether 
they were transcribed from their own promoters in intergenic 
regions (IGR) or encoded within mRNA 5′UTRs, CDS or 3′UTRs 
(SI Appendix, Fig. S3A and Table S1). We identified a high fraction 
of 75 IGR-encoded sRNAs which are transcribed from their own 
promoters and in general harbor a Rho-independent terminator, a 
structural element characterized by a 3′ terminal GC-rich hairpin 
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followed by a single-stranded uridine-stretch. The second most 
prominent class were 3′UTR-derived sRNAs (29 candidates) 
released from the rest of the protein-coding message by endonucle­
olytic cleavage. Hfq-associated mRNA 3′ ends may act as bona fide 
regulatory RNAs, and well-studied examples include the entero­
bacterial sRNAs GlnZ, DapZ, and CpxQ (29–33), which are also 
conserved in Klebsiella and enriched in our RIP-seq experiment 
(Fig. 1D, SI Appendix, Table S1, and Dataset S2). In addition, we 
detected 11 5′UTR-derived candidates that may originate from 
premature transcription termination and associate with Hfq inde­
pendent of the rest of the message, as well as ten asRNAs.

Northern blot analysis to assess relative expression patterns for 
selected, uncharacterized sRNA candidates revealed a decrease in 
sRNA abundance for KpnR_040, KpnR_069, KpnR_127, and 
KpnR_128 in the absence of Hfq, whereas KpnR_006, KpnR_105, 

KpnR_117, and KpnR_124 levels were not affected (SI Appendix, 
Fig. S3B).

Hfq RIL-seq Analysis. To examine the regulatory roles of conserved 
and candidate sRNAs in K. pneumoniae, we performed RIL-seq using 
Hfq as a bait. Our RIP-seq analysis had revealed highest diversity of 
sRNAs in ESP (OD600 of 2.0; Fig. 1D, SI Appendix, Table S1, and 
Dataset S2), and we thus chose this growth phase to globally map 
Hfq-dependent RNA–RNA interactions. Following the original 
protocol (34) with minor modifications, we used UV light to cross-
link RNA and proteins prior to co-immunoprecipitation of Hfq-
3xFLAG. A replicate experiment with the WT strain lacking the 
3xFLAG epitope served as control. Upon trimming of the RNA, we 
fused proximal transcript ends by ligation to obtain RNA chimeras 
and examined the purified RNA by paired-end sequencing. We 
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Fig. 1. RIP-seq analysis uncovers Hfq-associated sRNAs in K. pneumoniae. (A and B) K. pneumoniae MGH 78578 expressing FLAG-tagged Hfq (3xF; +) from the 
native chromosomal locus were cultivated in LB to MEP (OD600 of 0.25) or ESP (OD600 of 2.0) and subjected to immunoprecipitation with an anti-FLAG antibody. An 
untagged WT strain (−) served as control. Protein and RNA samples were collected prior to (input) and after purification (coIP). (A) Protein samples were analyzed 
on western blots to confirm expression and enrichment of the Hfq-3xFLAG protein. RNAP was probed as loading control. (B) RNA samples were analyzed on 
Northern blots to determine expression and enrichment of indicated sRNAs using gene-specific probes. KpnR_128 is expressed from its own promoter internal 
to an upstream gene. Both transcripts share the same termination site and the ~300 nt upstream transcript (#) is thus detected by the KpnR_128 probe. 5S 
rRNA served as loading control. (C) Relative abundance of different RNA classes recovered from RNA coIPs from WT and cells expressing FLAG-tagged Hfq (3xF) 
in MEP and ESP. (D) Read distribution of sRNAs enriched ≥threefold after coIP with FLAG-tagged Hfq in MEP (Left) and ESP (Right).
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recovered single fragments for which both of the two sequences 
mapped to the same position on the genome, as well as chimeric 
fragments representing potential RNA–RNA interactions which 
were excerpted during the sequencing analysis when the inserts of 
two corresponding reads mapped to different genomic locations.

Compared to the control, the Hfq-3xFLAG immunoprecipitate 
revealed a significant enrichment of single and chimeric fragments 
(SI Appendix, Fig. S4A). Taken together, we identified 7,068 Hfq- 
bound RNA–RNA interactions represented by at least five reads 
from a total number of ~1.7 million chimeric cDNAs recovered 
from two biological replicates, and more than half of all chimeric 
reads mapped to at least one sRNA (SI Appendix, Fig. S4B). As 
with RIL-seq analyses in other bacterial species (35–37), we also 
observed numerous sRNA–sRNA chimeras, suggesting that the 
approach is suitable to recover noncanonical, Hfq-mediated inter­
actions. When analyzing chimera organization, we observed a 
higher abundance of sRNAs and 3′UTR-derived transcripts in read 
2 than in read 1 (Fig. 2A), a tendency that has also been observed 
in other studies (35–39). Binding of the U-rich sequences at the 
3′ end of Rho-independent terminators (as found in most sRNAs 
and a subset of mRNAs) to the proximal surface of Hfq constrains 
ligation efficiency and results in an enrichment of sRNA sequences 
linked to their interacting RNAs via the 5′ terminus.

We detected Hfq-mediated interactions with trans-encoded mes­
sages for 74 sRNAs, 32 of which have been annotated in this study 

(Dataset S3). Inspection of all chimeras containing sRNAs repre­
sented in both replicates (n = 526) revealed distribution of the 
mapped sequences throughout the genome (Fig. 2B). A few inter­
acting hubs representing sRNAs with an extensive target spectrum 
dominate the plot, including well-studied examples like ArcZ, 
CyaR and GcvB (40–44) but also the previously unknown sRNA 
candidates KpnR_124, KpnR_023, and KpnR_128 (Fig. 2 B–D). 
An abundant class of RNA regulators overlap with the 3′ regions 
of mRNAs, either being released from the mature transcript through 
endonucleolytic cleavage or being transcribed from their own pro­
moters. 97 Hfq-dependent chimeras involved 3′ end-derived 
sRNAs of which the most abundant consisted of the skp mRNA 
and CpxQ sRNA (Fig. 2E and Dataset S4), a regulatory interaction 
known to contribute to inner membrane homeostasis in response 
to stress (33). Among the top-ranked interactions, we furthermore 
noticed an interaction between the previously unknown sRNA 
candidate KpnR_029 (derived from the 3′ end of dinI mRNA; 
DinR) and the 5′UTR of the ftsZ transcript.

Processing of the dinI mRNA Releases the Hfq-Dependent sRNA 
DinR. The prominent class of sRNAs derived from mRNA 3′ ends 
frequently function in the same pathways as the protein-coding 
transcript they are released from (45), and we were curious to 
investigate the biological role of candidate sRNA KpnR_029. 
The 83 aa protein DinI encoded in dinI mRNA impacts RecA 
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filamentation to modulate induction and shut-off of the SOS 
response (46). Comparison of dinI sequences indicated high 
conservation of the gene at the nucleotide and amino acid level 
(SI Appendix, Fig. S5 A and B), but also uncovered a Klebsiella-
specific sequence stretch upstream of the Rho-independent 
terminator (Fig. 3B and SI Appendix, Fig. S5A). Northern blot 
analysis of total RNA and RNA co-immunoprecipitated Hfq-
3xFLAG of dinI mRNA revealed a ~350 nt transcript representing 
the full-length mRNA as well as two shorter fragments (Fig. 3 A 
and B) for which we mapped the respective 5′ ends employing our 
dRNA-seq and Hfq RIP-seq datasets, as well as primer extension 
analysis (SI Appendix, Fig. S6). All three transcript isoforms were 
expressed during growth of K. pneumoniae in LB medium, with a 
decrease toward the stationary phase (Fig. 3C). In the absence of 
Hfq, only the full-length transcript was detectable. As prompted 
by the presence of a LexA box overlapping the TSS (Fig. 3B and 
SI Appendix, Fig. S5A), we anticipated that dinI expression was 
triggered by DNA damage. Chromatin-immunoprecipitation 
(ChIP) using a LexA-specific antibody confirmed reduced 
occupancy of the dinI promoter by LexA upon exposure of K. 
pneumoniae to mitomycin C (MMC) (Fig. 3D). In accordance 
with this finding, treatment with MMC, ciprofloxacin (CPX), or 
irradiation with ultraviolet light (UV), resulted in an induction 
of full-length dinI mRNA as well as an accumulation of the two 
shorter fragments (Fig. 3E). Reflecting its origin in the 3′ end 
of dinI, we renamed the abundant, 157 nt Hfq-bound sRNA 

candidate DinR. As we were unable to annotate a potential 
promoter upstream of either of the two shorter transcripts we 
suspected that the dinI mRNA was being processed. To test this 
hypothesis, we cloned dinI either including ~50 bp upstream 
the mapped TSS, or a promoterless version on a multicopy 
plasmid. We transformed the constructs into dinI mutant K. 
pneumoniae and compared dinI mRNA and DinR expression 
upon exposure of the cells to MMC to a WT strain carrying 
an empty control vector. Northern blot analysis confirmed 
that the dinI promoter was required for the expression of full-
length dinI mRNA as well as DinR, suggesting that the shorter 
transcripts are processing products (SI Appendix, Fig. S8A). The 
conserved endoribonuclease E (RNase E) is central to RNA 
processing and decay in enterobacteria and involved in the 
release of many Hfq-dependent sRNAs from mRNA 3′ ends 
(45). We tested the requirement for RNase E for the production 
of DinR employing a Salmonella strain carrying a temperature-
sensitive allele of the essential rne gene (rneTS; rne-3071) and 
its isogenic control strain expressing wt rne. Both strains exhibit 
full RNase E activity and DinR production when cultivated at 
30 °C. Upon shifting the rneTS-strain to the nonpermissive 
temperature for RNase E activity of 44 °C the DinR signal 
disappeared and solely full-length dinI mRNA was detectable 
(SI Appendix, Fig. S8B). Based on these results, we conclude 
that dinI is processed by RNase E at position 169 within the 
CDS to release the DinR sRNA.
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DinR Is an Hfq-Dependent Trans-Acting sRNA. Our RIL-seq 
analysis recovered several interactions with DinR (Figs.  2E and 
4A); however, the by far most abundant pair was formed with 
the 5′ end of the ftsZ mRNA, encoding the essential bacterial 
tubulin homologue. Upon localization to the division plane, FtsZ 
polymerizes to form the Z-ring, a scaffold structure to which 
additional cell division proteins are recruited and which guides 
septal peptidoglycan synthesis to mediate constriction (47). To 
prevent cell division prior to DNA repair, FtsZ polymerization is 
inhibited by the SOS response in E. coli through the LexA-regulated 
SulA, resulting in the characteristic cell filamentation (48).

The cellular FtsZ protein levels need to be accurately balanced 
as a reduction by ≥30% causes cell elongation and inhibition 
of division while a ≥twofold increase results in mini-cell forma­
tion (49). To test the effect of DinR on ftsZ expression, we 
performed a microscopy-based screen to monitor cell morphol­
ogy. Overexpression of the K. pneumoniae sRNA DinR from an 
arabinose-inducible promoter resulted in highly elongated cells 
and reduced FtsZ protein levels in both Klebsiella and E. coli 
by ~50% but did not affect Vibrio cholerae FtsZ (Fig. 4 B–D 
and SI Appendix, Fig. S9A), pointing at potent inhibition of 
FtsZ production by the sRNA in the enterobacterial species. 
Comparison of the genomic sequences upstream of the ftsZ start 
codon between the three species revealed significant differences 
in V. cholerae (SI Appendix, Fig. S9B), hinting at an interaction 
between DinR and the mRNA within its 5′UTR. To verify that 
DinR repression of ftsZ occurred at the RNA level, we 
pulse-expressed the sRNA and quantified ftsZ mRNA levels by 

Northern blot analysis. Compared to the control, induction of 
DinR resulted in twofold down-regulation of the ftsZ transcript, 
suggesting that the reduction in FtsZ protein in the presence 
of DinR was the result of mRNA repression (Fig. 4E).

Using the RNAhybrid algorithm (50), we identified an extensive 
interaction between the ftsZ 5′UTR in proximity to the start codon 
and a sequence stretch upstream of the DinR terminator (Fig. 5 A 
and B). Probing of in vitro synthesized, 5′-end-labeled DinR sRNA 
with RNases T1 and V1, or lead(II), revealed specific protection 
of the predicted site in the presence of ftsZ mRNA and Hfq 
(Fig. 5C). In a reciprocal experiment, we also confirmed the 
expected base-pairing site of DinR on the ftsZ 5′UTR (SI Appendix, 
Fig. S10). We introduced a series of point mutations in DinR at 
different sites of the interaction (M1 to M4; Fig. 5B) and queried 
the potential of the individual sRNA variants to interact with ftsZ 
mRNA in vivo and in vitro. Based on the protection pattern, 
base-pairing efficiency of mutants M2 and M3 was strongly 
reduced when compared to WT DinR, whereas mutants M1 and 
M4 were still proficient to interact with the ftsZ mRNA 
(SI Appendix, Fig. S10). When scoring filamentation upon over­
expression of either of the DinR variants in Klebsiella, we observed 
partial reduction of the cell elongation phenotype in the presence 
of M1, M2, and M3, suggesting that these residues were involved 
in base-pairing with ftsZ (SI Appendix, Fig. S11 A and B). Moreover, 
overexpression of M4 did not result in filamented cells, contradict­
ing the result obtained with purified components in vitro. 
Determination of sRNA abundance by Northern blot analysis, 
however, revealed poor expression of DinR-M4 compared to the 
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respectively. (D) FtsZ protein levels were determined by western blot analysis using a FtsZ-specific antiserum in total protein samples collected from strains 
described in (B), which were diluted from overnight cultures into fresh medium, and cultivated for 5 h in the absence (−) or presence of arabinose (+). GroEL 
served as loading control. (E) K. pneumoniae carrying either pBADKP-ctrl. or pBADKP-DinR were grown to OD600 of 2.0 when expression from the araBAD promoter 
was induced by the addition of arabinose. Expression of DinR and ftsZ mRNA was determined by Northern blot analysis of RNA samples collected at indicated 
time points. 5S rRNA served as loading control.
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other variants (SI Appendix, Fig. S11C), explaining its inability to 
down-regulate ftsZ mRNA in vivo. We constructed a posttran­
scriptional reporter in which the 5′UTR plus the first 20 codons 
of ftsZ fused to gfp are expressed from a constitutive promoter. As 
the filamentation phenotype impeded a reporter assay involving 
long-term overexpression of DinR, we instead pulse-expressed the 
sRNA for 5 min and quantified ftsZ::gfp mRNA levels by Northern 
blot analysis. Introduction of a SNP in either of the two interact­
ing RNAs (DinR-M3 or ftsZ-M3::gfp) abrogated the inhibitory 
effect of the sRNA, and restoration of the RNA duplex by com­
plementary mutations of both sRNA and mRNA rescued ftsZ 
regulation (Fig. 5 D and E). Collectively, our data suggest that 
DinR acts as an Hfq-dependent posttranscriptional repressor of 
the ftsZ mRNA.

DinR Contributes to Cell Cycle Arrest of Klebsiella in Response to 
DNA Damage. DinR levels strongly increase in response to DNA 
damage in a LexA-dependent manner (Fig. 3 D and E). As SulA 
has been documented to inhibit FtsZ function at the protein level 
under this condition (13, 14), we hypothesized that DinR could add 
to this regulation through posttranscriptional repression of the ftsZ 
mRNA. Klebsiella mutant strains lacking either sulA, dinIR, dinR 
alone or in combination were not affected in cell morphology in 
the absence of DNA damage (Fig. 6 A, Top and Fig. 6B). We next 
treated the cells during exponential growth with MMC to induce 
DNA damage, and Northern blot analysis confirmed activation of 
sulA and dinIR under this condition (Fig. 6C). Cell morphology 
was analyzed by phase contrast microscopy after 5 h, and the degree 
of filamentation in each mutant was determined by measuring 
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as loading control. (E) Quantification of ftsZ::gfp or ftsZ-M3::gfp mRNA levels 5 min after addition of arabinose determined as described in (D). mRNA levels were 
determined relative to the expression levels prior to addition of the inducer; error bars represent the SD calculated from three independent biological replicates.
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cell lengths. As observed in other bacterial species (51), the SOS 
response of K. pneumoniae is heterogeneous and we detected a 
distribution of cell sizes within the population. As expected, the 
mean cell length in sulA mutants was decreased when compared to 
the WT, however, did not recover the short cell morphology of cells 
observed in the absence of DNA damage (Fig. 6 A and B). Deletion 
of either dinIR or dinR alone also resulted in partial reduction 
of the filamentous phenotype. To better separate the individual 
functions of DinI protein and the sRNA DinR, we complemented 
the dinIR double mutant with constructs expressing the WT allele 
or a derivative in which the dinI start codon had been inactivated 
(SI Appendix, Fig. S12B). Both variants fostered a similar increase 
in cell length, suggesting that the protein coding function of dinIR 
was not essential for cell elongation (SI Appendix, Fig. S12C). Cells 
carrying a third construct in which the base-pairing site of DinR 
was missing phenotypically resembled the dinIR mutant strain. 
We measured the most severe reduction of cell elongation when 
cells were unable to express neither dinR nor sulA, suggesting that 
DinR and SulA may work together to efficiently inhibit cell cycle 
progression during the SOS response (Figs. 6 A and B and 7).

Discussion

Bacterial pathogenesis is critically dependent on the microorgan­
ism’s ability to respond to environmental changes and host-specific 
cues. Complex networks of stress adaptation warrant accurate and 

timely rewiring of gene expression, and sRNAs have herein been 
recognized as key posttranscriptional regulators. Work in enteric 
pathogens, including Salmonella and uropathogenic E. coli, has 
revealed a critical role for Hfq in the establishment of an infection 
and mutation of the hfq gene has been associated with pleiotropic 
phenotypes (52, 53). Although it had previously been shown that 
hfq mutants of K. pneumoniae are impaired in virulence and stress 
resilience (23), the RNA ligands of Hfq and the network of RNA-
mediated regulation in this organism were unidentified. In this 
study, we have combined three high-throughput analyses to estab­
lish a global atlas of sRNA activity in the multidrug-resistant  
K. pneumoniae isolate MGH 78578. A high-resolution transcrip­
tome map obtained through dRNA-seq in combination with Hfq 
co-immunoprecipitation of RNA enabled us to chart conserved 
as well as numerous candidate sRNAs. On this basis, we have 
applied RIL-seq to unearth an intricate network of sRNAs and 
their RNA interaction partners and identified DinR, a 3′UTR-
derived, Hfq-dependent sRNA as an inducer of cell filamentation 
in the SOS response elicited by DNA damage.

sRNAs Functioning in the SOS Pathway and the Response to 
DNA Damage. The SOS response is an integral part of the defense 
against DNA-damaging agents in bacteria (8). Activation of the 
SOS response has been reported to result in the expression of 
several noncoding regulators, which are part of toxin-antitoxin 
systems and thus are bona fide cis-acting regulators (54). In 
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Fig. 6. DinR and SulA contribute to cell filamentation in response to DNA damage. (A) K. pneumoniae WT, ΔdinIR, ΔdinR, ΔsulA, ΔdinIR ΔsulA, and ΔdinR ΔsulA 
cells were diluted from overnight cultures into fresh medium, and grown for 30 min. Cultivation was continued for 5 h in the presence (+) or absence (−) of MMC 
to induce DNA damage. Cell morphology was assessed by phase contrast microscopy. Details on mutant design at the dinIR locus are provided in SI Appendix, 
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contrast, DinR is an Hfq-dependent (i.e., trans-acting) sRNA that 
is activated by LexA, the master regulator of the SOS response. 
Further inspection of the 3,748 TSS identified in our dRNA-
seq dataset revealed potential LexA binding sites upstream of 71 
transcription units (SI Appendix, Table S2), 25 of which have also 
been reported for E. coli (10, 55). Six genes linked to an SOS box 
were enriched greater than threefold in at least one condition 
in the Hfq coIP samples; however, none of them was associated 
with an sRNA gene except for dinIR (SI Appendix, Table  S2). 
While dinI is highly conserved in the enterobacteria (SI Appendix, 
Fig.  S5), it remains to be determined whether processing also 
releases a stable fragment from the mRNA 3′ end in other species 
which could act as a regulatory RNA alike Klebsiella DinR. Of 
note, the stretch of DinR predicted to base-pair with ftsZ mRNA 
spans the highly variable region of the dinI 3′UTR specific to 
Klebsiella (Fig. 3B and SI Appendix, Fig. S5A).

Despite the lack of other sRNAs directly regulated by LexA, 
sRNAs are well known to respond to DNA-damaging conditions 
and antibiotic treatment. For example, the highly conserved GcvB 
sRNA affects homology-directed mutagenic DNA break repair 
(MBR) in E. coli by modulating the competition between the two 
alternative sigma factors RpoE and RpoS (56). RpoS is required 
for MBR activation (7) and subject to complex transcriptional, 
posttranscriptional, and posttranslational control. Three sRNAs, 
i.e., DsrA, RprA, and ArcZ, have been described to increase rpoS 
translation in response to various stress conditions, including the 
fluoroquinolone antibiotics which activate DsrA and ArcZ expres­
sion (57, 58). ArcZ, as well as the Hfq-binding sRNA SdsR, also 
inhibit the expression of the mutS mRNA, encoding an essential 
component of the mismatch repair system (59, 60). Transcription 
of sdsR is induced by RpoS (61) and mutation of either rpoS or 
sdsR reduced the frequency of mutations conferring antibiotic 
resistance in E. coli (60). Taken together, there is accumulating 
evidence that base-pairing sRNAs play important roles in the 
response, repair, and defense mechanisms associated with DNA 
damage in bacteria and it is likely that RNA interactome studies 
involving global approaches such as RIL-seq and CLASH will 
further extend this view over the next few years. Of note, non­
coding RNAs, called damage-induced small RNAs, are also 
involved in DNA repair processes in eukaryotic organisms (62), 

implying that gene regulation at the posttranscriptional level can 
help maintain genome integrity across the domains of life.

DinR Inhibits Cytokinesis through Posttranscriptional Repression 
of ftsZ mRNA. Activation of the SOS pathway triggers a graded, 
multilayered stress response that involves over 50 genes (63). 
Following DNA damage and derepression of the LexA-controlled 
regulon, two main pathways of the SOS response are activated: DNA 
repair and cell division inhibition. Filamentation of the cell as a 
consequence of the latter is a hallmark of the bacterial SOS response; 
however, the underlying mechanisms show significant variation in 
individual species (48). For instance, in Caulobacter crescentus, the 
small inner membrane protein SidA interferes with the activity 
of the late cell division proteins FtsN, FtsI, and FtsW, thereby 
inhibiting the final constriction of the Z-ring (64). In contrast, in 
the gram-positive bacteria Bacillus subtilis and Staphylococcus aureus, 
the SOS-induced YneA and SosA proteins, respectively, promote 
cell elongation by acting on currently unknown components of the 
divisome (65, 66).

In E. coli and related species, SOS-associated cell filamenta­
tion has been documented to rely on the LexA-controlled cyto­
solic protein SulA, which impedes FtsZ polymerization and thus 
promotes cell elongation (14). Our work uncovered an additional 
layer of SOS-dependent FtsZ regulation by the Hfq-dependent 
sRNA DinR. In contrast to SulA, DinR acts at the posttranscrip­
tional level and represses translation of the ftsZ mRNA by 
directly base-pairing in the vicinity of the ribosome binding site 
(Fig. 5). Thus, both SulA and DinR inhibit cell division through 
FtsZ; however, the underlying regulatory mechanisms differ. 
Interestingly, the SulA protein can be rapidly degraded by the 
Lon and ClpYQ protease, allowing immediate resuscitation of 
cell division when the SOS pathway is inactivated (67–69). We 
currently do not know whether similar mechanisms exist to 
counteract DinR activity upon stress activation; however, our 
RIL-seq data suggest that DinR also base pairs with other tran­
scripts, which could help to release the inhibitory effect of DinR 
on ftsZ. The dialogue between the two regulators SulA and DinR 
acting at different functional levels and the temporal control of 
their activities within the SOS response is a promising direction 
for future analyses.
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Fig. 7. DinR sRNA functions in the SOS response to DNA damage. In the absence of DNA damage (Upper part), LexA repressor dimers are bound to operator 
sequences (SOS boxes) within the promoters of SOS genes. Under SOS-inducing conditions (Lower part), RecA assembles on ssDNA to form a nucleoprotein 
filament which catalyzes LexA autoproteolysis, resulting in SOS gene derepression. Repair pathways of different fidelity are induced to ensure removal of DNA 
lesions. SulA protein constrains FtsZ activity and Z-ring formation to allow the bacterium to repair its DNA prior to cell division. In this study, we identify the 
Hfq-dependent sRNA DinR as an additional inhibitor of cytokinesis in K. pneumoniae, repressing ftsZ mRNA at the posttranscriptional level through a direct 
base-pairing interaction. DinR is processed from the 3′ end of dinI mRNA, encoding for a small protein modulating RecA filament stability. With lexA being a SOS 
gene itself, a negative-feedback loop ensures re-establishment of LexA-mediated repression once the stress signal is ceased.
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RNA-Mediated Regulation of FtsZ Expression. Transcriptional 
control of ftsZ in E. coli has been associated with several independent 
promoters and is subject to regulation by the secondary messenger 
guanosine 5′-diphosphate 3′-diphosphate (ppGpp) (70, 71). 
Posttranscriptional regulation of ftsZ is similarly complex and 
involves several cis- and trans-acting sRNAs. Specifically, three 
isoforms produced from consecutive promoters have been reported 
for the StfZ RNA that is located antisense to the ftsZ gene (72, 
73). Although StfZ overexpression reduces FtsZ protein levels, 
physiological conditions resulting in differential expression of the 
sRNA have not been identified, suggesting that StfZ might function 
by fine-tuning ftsZ mRNA levels, rather than blocking cell division 
in response to a distinct stress (72).

Another sRNA known to control cell division by base-pairing 
with the ftsZ mRNA is DicF which is processed from a polycistronic 
message of the cryptic E. coli Qin prophage and accumulates under 
oxygen-limited conditions (74–76). Analogous to DinR, DicF 
down-regulates ftsZ translation by sequestration of the mRNA’s 
Shine-Dalgarno sequence, and overexpression of the sRNA results 
in cell filamentation (77). DicF also inhibits the expression of several 
additional genes involved in metabolic regulation; however, it is not 
clear how these functions tie together with the regulation of cell 
division via ftsZ (78).

A third sRNA reported to modulate FtsZ levels is OxyS. In con­
trast to DinR, StfZ, and DicF, OxyS does not act by base-pairing to 
the ftsZ mRNA, but rather interacts with the mRNA encoding the 
elongation factor NusG (79). Translational inhibition of nusG by 
OxyS results in derepression of the prophage-encoded KilR small 
protein, which in turn blocks FtsZ polymerization (79, 80). Beyond 
the known examples, global RNA-RNA interactome studies may in 
the future reveal an even more complex network of post-transcriptional 
regulation of FtsZ levels by sRNAs that function under various phys­
iological conditions using a diverse set of regulatory mechanisms.

Materials and Methods

Bacterial Strains and Plasmids. All strains, plasmids, and oligonucleotides 
used in this study are listed in SI Appendix, Tables S3–S5. Details on strain and 
plasmid construction are provided in SI Appendix, Supporting Methodology.

RNA Isolation and Northern Blot Analysis. Total RNA was prepared using the 
Hot Phenol method as described previously (81). For Northern blot analysis, 5 to 
10 µg of total RNA were separated on 5 to 8 % polyacrylamide gels and electroblot-
ted. Membranes were hybridized with 5′ end-labeled DNA-oligonucleotides at 
42 °C or with riboprobes at 68 °C and washed in three subsequent steps with SSC 
wash buffers (5x/1x/0.5x SSC) supplemented with 0.1 % SDS.

dRNA-seq and TSS Prediction. Total RNA was prepared in biological dupli-
cates from K. pneumoniae WT cells grown to MEP (OD600 of 0.25) or to early 
stationary phase (ESP; OD600 of 2), respectively, and subjected to dRNA-seq anal-
ysis (27). Libraries for Illumina sequencing of cDNA were constructed by vertis 
Biotechnologie AG, Germany. Details on sample preparation and processing of 
sequencing data are provided in SI Appendix, Supporting Methodology.

Hfq RIP-seq. Duplicates of K. pneumoniae WT and hfq::3xFLAG strains were cul-
tivated in LB medium to MEP (OD600 of 0.25) and ESP (OD600 of 2), respectively, 
and Hfq co-immunoprecipitation was performed as described previously (82). 
cDNA libraries were prepared from equal RNA amounts using the NEBNext Small 
RNA Library Prep Set for Illumina (NEB; E7300L) according to the manufacturer’s 
instructions. cDNA libraries were pooled and sequenced by vertis Biotechnology 
AG, Germany using an Illumina NextSeq 500 system with 1 × 75 bp read length. 

Details on the processing of sequencing data are provided in SI  Appendix, 
Supporting Methodology.

RIL-seq Experimental Procedures. Duplicates of K. pneumoniae WT and hfq::3x-
FLAG strains were cultivated in LB medium to OD600 of 2, and samples were pro-
cessed following the original RIL-seq protocol (34); a previously published protocol 
(83) was adapted for the strain-specific depletion of rRNA. Details on the processing 
of sequencing data are provided in SI Appendix, Supporting Methodology.

Microscopy and Image Analysis. Bacteria were imaged on a Zeiss Axio 
Imager.Z2 using a 64x oil immersion objective. For quantification, pictures 
were automatically analyzed using the ImageJ-based visual programming 
language JIPipe (84). Details on the workflow and its individual components, 
all results, as well as the utilized software versions are provided in SI Appendix, 
Supporting Methodology.

Protein Sample Analysis. Whole-protein samples were collected and ana-
lyzed by western blotting as described previously (81). 3xFLAG-tagged fusion 
proteins were detected using a monoclonal anti-FLAG antibody (1:1,000; mouse; 
Sigma #F1804), and FtsZ levels were probed with a polyclonal antiserum (MJV8; 
1:10,000; rabbit; kindly provided by Miguel Vicente, CSIC Madrid). RNAP or GroEL 
served as loading control and were probed with anti-RNAP (BioLegend; #WP003) 
or anti-GroEL (Merck; #G6532) antibodies, respectively. Signals were visualized 
on a Fusion FX imager (Vilber).

RNA Structure Probing. RNA structure probing and mapping of Hfq/RNA foot-
prints was conducted as described previously (85) with some alterations. Briefly, 
5′ end-labeled RNA was denatured and mixed with E. coli Hfq (kindly provided 
by Kasia Bandyra and Ben Luisi, University of Cambridge) or Hfq dilution buffer 
in the presence of 1X structure buffer and 1 μg yeast RNA (Invitrogen, #AM7118) 
and incubated at 37 °C for 15 min. Subsequently, unlabeled sRNA or water was 
added, and reactions were incubated at 37 °C for another 15 min. After RNase T1 
or lead (II) acetate treatment, reactions were stopped by addition of precipitation 
buffer. RNA was precipitated, washed, and separated by denaturing PAGE.

Data, Materials, and Software Availability. Sequencing data have been 
deposited in the Gene Expression Omnibus at NCBI under accession number 
GSE244640 (86). The results of the dRNA-seq (including mapped TSSs) and the 
Hfq RIP-seq experiments are accessible online (https://kp-rnaseq.uni-jena.de/?-
config=MGH78578/config.json) (87). The RIL-seq data have been implemented 
into an interactive browser (https://kp-interactome.uni-jena.de/) (88). Details on 
image analysis are provided at https://asbdata.hki-jena.de/RuhlandEtAl2023_
PNAS (89). All data generated or analyzed during this study are included in the 
manuscript and supporting information.
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