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Abstract
Background  Neuroblastoma (NB), a prevalent pediatric solid tumor, presents formidable challenges due to its high 
malignancy and intricate pathogenesis. The role of disulfidptosis, a novel form of programmed cell death, remains poorly 
understood in the context of NB.
Methods  Gaussian mixture model (GMM)-identified disulfidptosis-related molecular subtypes in NB, differential gene 
analysis, survival analysis, and gene set variation analysis were conducted subsequently. Weighted gene co-expression 
network analysis (WGCNA) selected modular genes most relevant to the disulfidptosis core pathways. Integration of machine 
learning approaches revealed the combination of the Least absolute shrinkage and selection operator (LASSO) and Random 
Survival Forest (RSF) provided optimal dimensionality reduction of the modular genes. The resulting model was validated, 
and a nomogram assessed disulfidptosis characteristics in NB. Core genes were filtered and subjected to tumor phenotype 
and disulfidptosis-related experiments.
Results  GMM clustering revealed three distinct subtypes with diverse prognoses, showing significant variations in 
glucose metabolism, cytoskeletal structure, and tumor-related pathways. WGCNA highlighted the red module of genes 
highly correlated with disulfide isomerase activity, cytoskeleton formation, and glucose metabolism. The LASSO and RSF 
combination yielded the most accurate and stable prognostic model, with a significantly worse prognosis for high-scoring 
patients. Cytological experiments targeting core genes (CYFIP1, EMILIN1) revealed decreased cell proliferation, migration, 
invasion abilities, and evident cytoskeletal deformation upon core gene knockdown.
Conclusions  This study showcases the utility of disulfidptosis-related gene scores for predicting prognosis and molecular 
subtypes of NB. The identified core genes, CYFIP1 and EMILIN1, hold promise as potential therapeutic targets and 
diagnostic markers for NB.
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Introduction

Neuroblastoma (NB), the most common extracranial 
solid tumor in children, accounts for approximately 
8% of all pediatric tumors and 13% of pediatric tumor-
related deaths (Maris et al. 2007; Ward et al. 2014). NB 
is a malignant tumor of the sympathetic nervous system, 
originating in the developing sympathetic nervous system 
and commonly found in bilateral adrenal and sympathetic 
ganglia (Marshall et al. 2014). There are various staging 
systems for NB tumors based on size and metastasis, 
such as The International Neuroblastoma Staging System 
(INSS) (Brodeur et  al. 1988; Castel et  al. 1999) and 
the Children’s Oncology Group (COG) staging system 
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(Bagatell et al. 2023; Pinto et al. 2019). NB is categorized 
as low, medium, or high risk, with favorable outcomes for 
low and medium risk, often curable through surgery or 
experiencing spontaneous regression. However, high-risk 
patients face poor prognosis, with a less than 50% 5-year 
survival rate (Pinto et al. 2015), and approximately 60% 
of high-risk patients do not respond to initial treatments, 
experiencing recurrence or metastasis within 2  years 
(London et al. 2011; Whittle et al. 2017). Therefore, it is 
imperative to delve deeper into the pathogenesis of NB and 
explore novel therapeutic avenues.

Cancer is characterized by dysregulated cell death, 
leading to rapid tumor growth and metastasis. As research 
into tumor cell death deepens, various novel death modes 
have been discovered, providing new therapeutic targets 
for tumors. Recently, Liu et  al. (2023a, b) discovered 
a novel form of regulated cell death (RCD) known as 
disulfidptosis, which occurs when cells are deprived of 
glucose, upregulation of SLC7A11, and subsequent high 
uptake of cystine, resulting in the depletion of cytoplasmic 
NADPH and accumulation of disulfides, ultimately triggers 
the formation of abnormal disulfide bonds in the actin 
cytoskeleton proteins and collapse of the actin filament 
(F-actin) network, leading to cell death. This new mode 
of cell death has been found to affect the occurrence and 
progression of various tumors, such as hepatocellular 
carcinoma and thyroid cancer (Feng et al. 2023; Wang et al. 
2023), but its role in NB remains rarely reported.

High-throughput sequencing technology has facilitated 
the identification of biological characteristics in various 
tumors (Reuter et al. 2015). However, discerning pathogenic 
and protective genes from massive data is not an easy 

task. Bioinformatics, an amalgamation of biology with 
mathematics and computers, facilitates efficient data analysis 
and is progressively applied in medicine (Jiménez-Santos 
et al. 2022). The integration of genomics combined with 
deep machine learning plays an increasingly important role 
in disease diagnosis, prognosis assessment, and mechanism 
exploration (Greener et al. 2022). Numerous prognostic 
models for NB, utilizing diverse gene expression profiles, 
have been constructed to assess the disease risk and 
prognosis, contributing to the formulation of personalized 
diagnosis and treatment strategies. However, despite being 
the most prevalent pediatric malignancy, limited research 
has been conducted on the prognostic significance of genes 
associated with disulfidptosis in NB, and experimental 
exploration is yet to be undertaken (Zhu et al. 2023).

This study aims to analyze the expression of 
disulfidptosis-related genes in NB, explore the molecular 
subtypes, construct a prognostic model, identify potential 
therapeutic targets, guide personalized diagnosis and 
treatment for NB patients, and provide experimental 
evidence for further research.

Materials and methods

Collection of NB datasets

Clinical data and RNA sequencing data regarding NB patients 
were acquired from the Gene Expression Omnibus (GEO; 
https://​www.​ncbi.​nlm.​nih.​gov/​geo/) database, with 498 
samples (GSE49710) included and set as the TRAIN dataset. 
From the Therapeutically Applicable Research to Generate 
Effective Treatments (TARGET; https://​ocg.​cancer.​gov/​progr​
ams/​target) database, 247 samples were acquired and set as 
the TEST dataset, 2 patients without survival information 
were excluded. The two datasets were combined using the 
COMBAT function of the "SVA" R package to remove the 
batch effect and obtain the ALL dataset with 745 samples.

Gaussian mixture model (GMM) clustering 
for disulfidptosis‑related genes in NB

According to literature reports, 10 disulfidptosis genes 
including GYS1, OXSM, LRPPRC, NDUFA11, NUBPL, 
RPN1, SLC3A2, SLC7A11, and NCKAP1 were selected for 
analysis (Liu et al. 2023a, b). Based on the expression level of 
these 10 genes, 498 NB cases from GEO were classified using 
the GMM clustering analysis. Principal component analysis 
was employed to determine the differentiation of each subtype. 
The R package “mclust” was used to determine the number 
of clusters. The Kaplan–Meier method was used to estimate 
the difference in overall survival between different clusters. 
Log-rank test was performed to assess survival differences. 

Table 1   The sequences of primers for RT-qPCR

Gene name Primer sequence (5′–3′)

CYFIP1 Forward: GTT​CCT​GTA​CGA​CGA​AAT​TGAGG​
Reverse: GTG​GCT​CCC​TGA​TTC​TTG​C

EMILIN1 Forward: GGG​CCG​ACT​AGA​GCA​GTT​G
Reverse: CTG​AGG​ATC​TCG​CTG​ACT​TGA​

Vinculin Forward: CTC​GTC​CGG​GTT​GGA​AAA​GAG​
Reverse: AGT​AAG​GGT​CTG​ACT​GAA​GCAT​

Table 2   siRNA sequences for transfection

Gene name Sequence (5′–3′)

CYFIP1 Positive-sense strand: CAC​GUG​AUG​GAA​GUG​UAU​
UTT​

Antisense strand: AAU​ACA​CUU​CCA​UCA​CGU​GTT​
EMILIN1 Positive-sense strand: GGC​UAU​UAU​GAU​CCA​GAG​

ATT​
Antisense strand: UCU​CUG​GAU​CAU​AAU​AGC​CTT​

https://www.ncbi.nlm.nih.gov/geo/
https://ocg.cancer.gov/programs/target
https://ocg.cancer.gov/programs/target
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Fig. 1   Research overview. Flowchart of this study
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The DEGs between three clusters were analyzed using the R 
package “limma”.

Gene set variation analysis (GSVA) enrichment 
analysis of cellular functions and pathways

The R package “GSVA” was used to identify different Gene 
ontology (GO) terms and Kyoto Encyclopedia of Genes and 
Genome (KEGG) pathways to analyze the differences in 
biological function among the different disulfidptosis clusters. 
The gene sets of “c2.cp.kegg.v2023.1.Hs.symbols.gmt” and 
“c5.go.v2023.1.Hs.symbols.gmt” were downloaded from 
the MSigDB database to run GSVA enrichment analysis. 
The expression of disulfidptosis-related pathways and some 
classical tumor-associated signaling pathways was presented 
as heatmaps.

Weighted gene co‑expression network analysis 
(WGCNA)

WGCNA analysis was carried out using the "WGCNA" 
software package. The differential gene matrix between 
cluster 1 and cluster 3 was used for WGCNA analysis to 
obtain modules related to glucose metabolism, cytoskeleton, 
and disulfide isomerase. Automated networks were used 
to create co-expression networks, which were detected 
using hierarchical clustering and dynamic tree-cutting 
functions in this module. Module membership and gene 
significance  were used to connect the modules to the 
GSVA enrichment results, and the modules most relevant to 
disulfidptosis-related pathways such as glucose metabolism, 
disulfide isoenzymes, and cytoskeletal changes were filtered 
for subsequent analyses.

Construction of NB prognostic models with multiple 
machine learning

Various machine learning methods including CoxBoost, 
Gradient Boosting Machine (GBM), plsRcox, Random 
Survival Forest (RSF), stepCox, superPC, and survival 
Support Vector Machine (survival-SVM) were, respectively, 
combined with the Least absolute shrinkage and selection 
operator (LASSO) by employing “CoxBoost”, “gbm”, 

“plsRcox”, “randomForestSRC”, “BART”, “superpc”, 
“survivalsvm”, and “glmnet” R packages, followed by the 
use of the “compareC” R package to compare the C-index of 
the prognostic models obtained from different combinations 
and select the model with the highest prediction accuracy. 
The TRAIN dataset was used for training, and the TEST and 
ALL datasets were employed for external validation. After 
comparing different machine learning combination methods, 
the model obtained by combining LASSO and RSF with the 
best prediction accuracy was finally chosen, which contains 
44 genes.

The final prognostic model was constructed using the 
"randomForestSRC" and "glmnet" R packages and can be 
succinctly summarized by the following equation:

Validation of NB prognostic models

Patients were divided into high-risk and low-risk groups 
based on the optimal cut-off value calculated by the 
“Survminer” R package. Survival analyses were performed 
to assess the prognosis of patients in different groups. 
The ROC curve was plotted using the “survivalROC” R 
package, the area under the curve (AUC) was calculated, 
and the predictive power of the feature was assessed.

Clinical specimens

Collecting tissue slices from the pathology department 
of Zhujiang Hospital (8 cases, from May 2022 to August 
2023) for immunohistochemical identification. The research 
protocol has obtained approval from the Ethics Committee of 
Zhujiang Hospital, Southern Medical University. Specimen 
collection has been conducted with informed consent from 
the guardians of the pediatric patients.

RT‑qPCR

Total RNA was isolated with TRIzol reagent, and cDNA 
was reversed using Evo-M-MLV RT kit and gDNA clean 
qPCR II Reverse Transcription Kit (Accurate Biology, 
China). The SYBR Green Premix Pro Taq HS qPCR kit 
(Accurate Biology, China) was used for qPCR assays 
using the human vinculin gene as an internal reference. 
The qPCR amplification procedure was performed in the 
following three-step manner: pre-denaturation at 95 °C for 
5 min once, followed by 40 cycles (denaturation at 95 °C 
for 10 s, annealing at 50–60 °C for 30 s), and extension 
data collection at 72 °C for 30 s. Relative expression levels 
of target genes were detected by the Bio-RadCFX96 Touch 
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Fig. 2   Disulfidptosis genes in neuroblastoma and GMM clustering 
based on the expression of these genes to obtain molecular subtypes. 
a Univariate Cox analysis of disulfidptosis in the GSE49710 dataset. 
b Circle plot of co-expression relationships of disulfidptosis genes 
in GSE49710 dataset. c Sample distributions of 3 subtypes in 
Gaussian clustering. d Density distribution of 3 subtypes in Gaussian 
clustering. e BIC curves for different subtype numbers. f Heatmap 
comparing clinical characteristics among 3 disulfidptosis molecular 
subtypes

◂
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(Bio-Rad, USA) and analyzed using ∆∆CT method. The 
sequences of all primers (RuiBioTech, China) are listed in 
Table 1.

Western blot

Proteins were extracted with RIPA buffer (Servicebio, China) 
and quantified by BCA analysis. Equal quantities of proteins 
were separated by 8% SDS-PDS gel electrophoresis and 
transferred to a PVDF membrane (Immobilon, Germany). 
After blocking with 5% skim milk powder and washing with 
TBST, the membranes were incubated with anti-CYFIP1 
(1:1000, bs-14139R, Bioss, China), anti-vinculin (1:2000, 
AB-2936321, Abmart, China), and anti-EMILIN1 (1:1000, 
sc-365737, SantaCruz, USA) antibodies overnight at 4 °C; 
then the prepared membranes were incubated with second 
antibodies for 1 h at room temperature. Finally, Immobilon 
ECL Ultra Western HRP substrate was added to detect 
the protein blot and the relevant data were analyzed using 
ImageJ software.

Immunohistochemistry staining

Paraffin NB tissue slices were dewaxed and hydrated, then 
incubated in endogenous peroxidase enzymes blocking 
buffer for 10 min at room temperature, then blocked with 
Normal Goat Serum for 10 min, and dried. The slices 
were incubated overnight at 4 °C with CYFIP1 (1:1000, 
bs-14139R, Bioss, China) and EMILIN1 (1:1000, 
sc-365737, SantaCruz, USA) antibodies, washed, and 
then incubated with secondary antibody working solution 
for 10 min at room temperature and washed thoroughly, 
then Streptavidin-HRP was added and incubated for 10 
min at room temperature. Staining was done with DAB 
chromogenic working solution. After sealing the sections, 
photographs were taken with a 3D HISTECH bright-field 
scanner. All reagents used in this experiment were obtained 
from SP Rabbit and Mouse HRP Kit (CWBIO, CW2069S, 
China).

Cell culture and cell transfection

Human neuroblastoma cells SH-SY5Y(RRID:CVCL_0019) 
and SK-N-AS(RRID:CVCL_1700) were purchased 
from HyCyte (Soochow, China) and cells were cultured 
according to the instructions. Cells were knocked down 
using si-CYFIP1, si-EMILIN1, and negative control 
provided by TSINGKE(Beijing, China). The transfection 
was performed  in six-well plates using TSnanofect V2 
(TSINGKE, China). siRNA sequences are listed in Table 2.

Colony formation assays

The transfected cells were evenly seeded into a 6-well 
plate at a density of 1000 cells per well. The cells were 
then cultured for 14 days, with medium change and cell 
observation every 2 days. After that, the cells were washed 
once with PBS, fixed with 4% paraformaldehyde for 15 min, 
and stained with 1% crystal violet dye to observe colony 
formation.

Wound‑healing assay

Cells were cultured in six-well plates until evenly spread, 
and the wells were delineated with a 10 μ lance tip, followed 
by starvation culture in serum-free medium. Photographs 
were taken at 0, 24 h, and 48 h with a Zeiss Axio Scope A1 
microscope and subsequently analyzed using ImageJ software.

Transwell assay

Transfected NB cells (2 × 104/ml) were inoculated into 
Transwell chambers (FALCON, USA) containing 250 μ 
serum-free medium, and 500 μ serum-containing medium 
was added to the bottom of the chambers. After 48 h, the 
chambers were fixed with 4% paraformaldehyde and stained 
with crystal violet. Five randomly selected fields of view were 
photographed using Zeiss Axio Scope A1 microscope and cell 
counting was performed using Image J.

Actin staining and fluorescence analysis

Transfected cells were seeded onto cell culture slides to 
achieve a confluency of 50%. The cells were washed and fixed 
with 4% paraformaldehyde for 10 min. After fixation, the cells 
were washed three times with PBS and permeabilized with 
a 0.5% Triton X-100 solution (Solarbio, China) for 5 min. 
A 200 µL working solution of TRITC-labeled phalloidin 
(Yeasen, China) was added to cover the cells on the slides, 
and they were incubated in the dark at room temperature for 30 
min. For nuclear counterstaining, the cells were briefly stained 
with 200 µL of DAPI solution (concentration: 100 nM) for 
approximately 30 s. The slides were then washed with PBS 

Fig. 3   Differential gene analysis and GSVA pathway analysis 
between 3 disulfidptosis molecular subtypes. a Survival analysis 
among the 3 disulfidptosis subtypes. b Volcano plot of differential 
genes between cluster 1 and cluster 3. c Volcano plot of differential 
genes between cluster 2 and cluster 3. d–e Venn diagrams showed 
2006 genes upregulated and 1147 genes downregulated in all 3 
clusters. f Heatmap of cytoskeletal actin-related pathways expression 
in 3 molecular subtype samples. g Heatmap of glucose metabolism-
related pathways expression in 3 molecular subtype samples

◂
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and coverslips were applied. Finally, fluorescence imaging was 
performed using the Nikon ECLIPSE Ti2 inverted microscope 
with TRITC excitation/emission filters (Ex/Em = 545/570 nm) 
and DAPI excitation/emission filters (Ex/Em = 364/454 nm).

Statistics analysis

All bioinformatic data and images were processed and plotted 
using RStudio in R software (version 4.2.1, New Zealand). 
GraphPad (version 9.4.1, USA) and ImageJ (version 1.53e, 
USA) were used to process the experimental data and images. 
All statistical p-values were two sided, and p < 0.05 was 
considered a statistically significant difference.

Results

Exploring the function of disulfidptosis genes in NB: 
prognostic implications and Gaussian clustering 
analysis

The flowchart of this study is shown in Fig. 1. To investigate 
the expression patterns and prognostic impact of 10 
disulfidptosis genes in NB, a univariate Cox analysis was 
performed in conjunction with the GSE49710 dataset 
(Fig. 2a). The results showed that 8 genes (including GYS1, 
OXSM, LRPPRC, NDUFA11, NUBPL, RPN1, SLC3A2, 
SLC7A11) were adverse prognostic factors, while 1 gene 
(NCKAP1) was a favorable factor. A circle plot (Fig. 2b) and 
correlation heatmaps (Sup. 1a–b) were generated to visualize 
the interactions among these genes in the GSE49710 dataset. 
Based on the expression levels of 10 disulfidptosis genes, 
GMM clustering analysis (Kageyama et  al. 2021; Zhao 
et al. 2019) was performed on GSE49710, and the optimal 
clustering result yielded three subtypes (Fig. 2c–e, Sup. 1c). 
A heatmap (Fig. 2f) comparing the clinical traits between the 
3 clusters showed that the proportion of patients with mostly 
high-risk progression status, N-MYC gene amplification, and 
poor prognosis was significantly higher in the cluster 3 group.

Cluster‑wise differential gene analysis, survival 
analysis, and GSVA pathway enrichment

Survival analysis showed significant prognostic differences 
among the three disulfidptosis subtypes (p = 9.7e−22), with 
cluster 1 having a considerable survival advantage and 
cluster 3 having the worst prognosis (Fig. 3a), and there 
was a significant difference in gene expression among the 
three clusters (Fig. 3b–c, Sup. 2a–b). The Venn diagrams 
showed that there were 2006 genes upregulated and 1147 
genes downregulated in all 3 clusters (Fig. 3d–e). Using 
the GSVA algorithm, we heatmapped the classical tumor 
KEGG pathways (Sup. 2c), cytoskeletal and glucose 
metabolism-related GO pathways (Fig. 3f–g) among the three 
clusters. Significant differences in pathway expression were 
observed among the clusters. Cluster 3 exhibited significant 
downregulation in cytoskeletal proteins (ACTIN-related 
proteins), glucose import and glucose metabolic pathways. 
Additionally, there was a trend of downregulation in response 
to glucose starvation, while showing a positive regulation in 
glucose catabolic pathways.

WGCNA unveils modules linked to key pathways 
in disulfidptosis

The cut-off R2 value was set to 0.9 and the soft threshold 
β value to 6 (Fig. 4a–b), under which the network obeyed 
a power law distribution, which was closer to the real 
biological network state. Subsequently, a hierarchical 
clustering analysis based on weighted correlation was 
performed (Fig. 4c, Sup. 3a–b). A total of 20 modules 
were identified by WGCNA, with each color representing 
a different module. Then a heatmap about the module-
GSVA pathway trait relationships was plotted according 
to the Spearman correlation coefficient to assess the 
association of each module with the important pathways 
in disulfidptosis (Fig. 4d). Among all the modules, the 
red module containing 297 genes had a strong correlation 
with disulfide isomerase activity (cor = 0.74, p = 9.7e−53) 
(Fig.  4e), actin filament (cor = 0.94, p = 8.3e−140) 
(Fig.  4f), actin mediated cell contraction (cor = 0.83, 
p = 8.9e−77) (Fig. 4g), actin cytoskeleton (cor = 0.89, 
p = 1.3e−102), cytoskeleton organization (cor = 0.7, 
p = 4.9e−45), actin filament polymerization (cor = 0.84, 
p = 2.6e−80), and glucose catabolic process (cor = 0.48, 
p = 1.6e−18) (Sup Fig. 3c–h).

Construction of disulfidptosis prognostic model 
with multiple machine learning algorithms

To identify the signature genes, we utilized the GSE49710 
dataset as the TRAIN set, the TARGET dataset as the 
TEST set, and the merged dataset of both as the ALL set 

Fig. 4   WGCNA analysis of differential genes between cluster 1 
and cluster 3. a–b Analysis of network topology for various soft-
thresholding powers, the cut-off R3 value was set to 0.9 and the soft 
threshold β value to 6. c Construct co-expression networks based 
on optimal soft thresholds to divide genes into different modules. 
d Heatmap of correlations between each module and the important 
pathways in disulfidptosis. e–g Correlation scatterplot of the red 
module with the protein disulfide isomerase activity pathway, the 
actin filament pathway, and the actin-mediated cell contraction 
pathway

◂
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(Sup. 4). Using the LASSO algorithm along with multiple 
machine learning algorithms in the three cohorts, the 
C-index of each model was compared. The combination of 
LASSO and RSF achieved a C-index of 0.788, surpassing 

other machine learning-based models, indicating superior 
accuracy and stability (Fig. 5a). In LASSO modeling, 77 
prognosis-related genes were identified, gradually reducing 
as the penalty value λ increased, with the optimal results 
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at λ.min (Fig. 5b–c). Given the impracticality of a large 
number of genes in clinical detection, further refinement 
of disulfidptosis prognostic genes while maintaining high 
accuracy was needed. RSF analysis further reduced the size 
of independent prognostic genes, achieving a significant 
decrease in prediction error rate with the increase in 
survival trees (Fig. 5d). The resultant model comprised 44 
genes (Fig. 5e), with TNAP, CYFIP1, FKBP10, EMILIN1, 
ANTXR2, LOX, and INTS2 as core genes with high variable 
Importance (VIMP) and depth in the model (Fig. 5f).

Validation of disulfidptosis prognostic model

NB patients in the 3 datasets were classified into high-risk 
and low-risk groups based on the optimal cut-off value. 
Kaplan–Meier curves were plotted (Fig. 5g, j) to evaluate the 
1-, 3-, and 5-year survival rates of the two groups, indicating 
a worse prognosis with higher scores across the TRAIN and 
TEST cohorts. Patients ranking by score revealed a notable 
increase in death outcomes with higher scores (Fig. 5h, 
k). The ROC curves demonstrated the model's accuracy in 
predicting patient prognosis across different datasets, with 
satisfactory AUC values (Fig. 5i, l).

Construction of a nomogram for predicting survival 
in NB

To better predict the survival rates of NB patients, we 
constructed a nomogram (Fig. 6a) that integrates prognostic 
models and clinical determinants, including age, gender, 
N-MYC gene amplification status, COG risk score, 
and INSS stage. Each item was scored according to the 
patient's actual condition, and the total score obtained by 
summing up can be used to predict the survival rate at 1, 
3, and 5 years. Subsequently, the 1-, 3-, 5-year predictive 
accuracy of the constructed nomogram was validated, as 
shown by the calibration curves (Fig. 6b–d). The red line 
represents the observed survival rate, while the gray line 

represents the optimized survival rate, demonstrating a 
good fit between the observed and optimized values in the 
model. Additionally, the ROC curves of the nomogram were 
plotted (Fig. 6e–g), with the area under the curve for age, 
N-MYC amplification status, COG risk score, INSS stage, 
and disulfidptosis score being greater than 0.65 at 1, 3, and 
5 years. To clearly show the differences in each clinical 
trait in the high- and low-risk groups, a pie chart of trait 
percentages was plotted (Fig. 6h).

Integrated analysis of disulfidptosis modeling 
genes: functional enrichment, interaction networks, 
and prognostic assessment

To understand the functional roles and interaction 
relationships of the modeling genes, GO and KEGG 
enrichment analysis on 44 disulfidptosis modeling genes 
was conducted. GO analysis highlighted their involvement in 
biological processes such as elastic fiber formation, collagen 
synthesis and metabolism, and extracellular matrix assembly. 
The enriched components included collagen trimers and 
extracellular matrix, while the molecular functions were 
primarily associated with intermediate filament binding 
and extracellular matrix composition (Fig.  7a). KEGG 
analysis revealed enrichment in sulfur metabolism, selenium 
compound metabolism, focal adhesion, regulation of actin 
cytoskeleton, Ras signaling pathway, and PI3K-AKT 
signaling pathway (Fig. 7b).

Furthermore, the expression and prognostic impact of 7 
core modeling genes were validated within the 3 datasets. 
ANTXR2, CYFIP1, EMILIN1, FKBP10, INTS2, and 
LOX exhibited higher expression in the high-risk group 
(Fig.  7f), serving as risk factors for poor prognosis, 
with EMILIN1 showing significantly unfavorable 
prognosis in all 3 datasets, with hazard ratios all > 1.4 
(Fig.  7c–e). Conversely, TNAP gene expression was 
downregulated (Fig. 7f) and acted as a protective factor 
for prognosis (Fig. 7c–e). The correlations between the 
7 core modeling genes and the 10 disulfidptosis genes 
were examined (Fig. 7g). Red lines indicate positively 
correlated regulation between the genes, blue lines 
indicate negatively correlated regulation, and the color 
shades represent the magnitude of the correlations. 
CYFIP1 was positively correlated with the genes of 
SLC7A11, FKBP10, EMILIN1, TNAP, and EMILIN1 
and was negatively correlated with the genes of NDUFS1, 
NCKAP1, and INTS2. To investigate the interaction 
between the modeling genes and disulfidptosis genes, a 
protein–protein interaction (PPI) network was constructed 
using the STRING database (Fig. 7h). The PPI network 
illustrated clear interactions between the modeling 
genes and disulfidptosis genes, suggesting that the genes 
identified in this study may influence disease progression 

Fig. 5   Prognostic models constructed using multiple machine 
learning algorithms and model validation. a Combine LASSO with 
9 different machine learning algorithms and compare the C-index. b 
Partial likelihood deviation of LASSO coefficient distribution. The 
two vertical dashed lines represent λ.min and λ.1se, respectively, λ.
min = 0.03335637, λ.1se = 0.04064099. c Tenfold cross-validation 
for tuning parameter selection in the LASSO model. d Model 
prediction error rates for different numbers of survival trees. e VIMP 
values for 44 modeled genes. f Histogram of genes with the highest 
VIMP values and their depth in the model. g Kaplan–Meier curves 
for patients in the prognostic high and low scoring groups in the 
TRAIN dataset. h Survival status of patients ranked by risk score in 
the TRAIN dataset. i ROC curves for 1-, 3-, 5-year survival in the 
TRAIN dataset. j Kaplan–Meier curves for patients in the prognostic 
high and low scoring groups in the TEST dataset. k Survival status of 
patients ranked by risk score in the TEST dataset. l ROC curves for 
1-, 3-, 5-year survival in the TEST dataset
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and prognosis in NB by modulating the disulfidptosis 
pathways.

Tissue and cellular validation of the mechanism 
of CYFIP1 and EMILIN1 in tumor phenotype 
and cytoskeletal alterations

During the modeling process, CYFIP1 exhibited the 
highest VIMP value, indicating its significant impact on 
the outcome in the disulfidptosis model and its crucial 
role in the decision tree for segmentation. Univariate Cox 
analysis indicated that EMILIN1, not only served as one 
of the core genes in the construction of the disulfidptosis 
model but also exhibited high HR across three datasets, 
indicating an adverse prognostic impact. Consequently, 
these two genes were chosen for further experimental 
investigation. Tissue immunohistochemistry revealed an 
upregulation in the expression of CYFIP1 and EMILIN1 in 
tumor tissues compared to adjacent normal tissues (Fig. 8a). 
To further validate the impact of these two genes on NB 
cell functionality at the cellular level, siRNA transfection 
was employed to knock down gene expression in SK-N-AS 
and SH-SY5Y neuroblastoma cells. RT-qPCR (Fig. 8b) 
and Western blotting (WB) (Fig. 8c–d) demonstrated a 
significant reduction in the expression levels of both genes 
in the knockdown group compared to the negative control 
group, indicating successful inhibition of CYFIP1 and 
EMILIN1 expression. Subsequent experiments, including 
scratch assays (Fig.  8e), plate colony formation assays 
(Fig.  8f), and Transwell assays (Fig.  8g), consistently 
showed a substantial reduction in the migratory, colony-
forming, and invasive abilities of NB cells following 
CYFIP1 and EMILIN1 knockdown. To investigate the 
impact of CYFIP1 and EMILIN1 on the cytoskeleton during 
the process of disulfidptosis, fluorescence staining with 
DAPI and phalloidin was employed on NB cells from both 
the negative control and knockdown groups. The outcomes 
revealed a noticeable reduction and disappearance of NB cell 
synapses, accompanied by deformations and distortions in 
the cellular cytoskeleton after the knockdown of both genes 
(Fig. 8h).

Discussion

The observed challenges and complexities associated with 
NB underscore the necessity for a thorough understanding 
at the molecular level to identify variations that can inform 
targeted, individualized therapies for high-risk NB patients, 
ultimately improving prognosis in affected children 
(Johnsen et al. 2018; Lundberg et al. 2022; Maris 2010). 
With advancement in high-throughput omics technologies, 
exploring distinctive molecular expression patterns and 
seeking out new precision targets stand out as pivotal 
directions in NB treatment (Jiang et al. 2022).

The pivotal role of RCD in cancer development, governed 
by diverse factors and signaling pathways, has prompted the 
exploration of various RCD modes, including apoptosis, 
necroptosis, ferroptosis, and cuproptosis (Peng et al. 2022; 
Tong et al. 2022). Among these, disulfidptosis, a novel form 
of RCD discovered in 2023 (Liu et al. 2023a, b), has drawn 
attention for its occurrence in cells expressing elevated 
SLC7A11 levels during glucose starvation. The subsequent 
accumulation of disulfides, stemming from heightened 
cystine uptake facilitated by SLC7A11, leads to the 
formation of disulfide bonds between cytoskeletal proteins, 
particularly those in the actin cytoskeleton and F-actin 
(Machesky 2023). This process triggers destabilization, 
inducing morphological and structural changes in cells. 
Importantly, disulfidptosis is unaffected by known cell 
death inhibitors, yet can be induced using glucose transport 
inhibitors, providing potential solutions to overcome the 
problem of drug resistance (Zheng et al. 2023a, b). Future 
studies could focus on disulfidptosis-related signaling 
pathways such as WAVE protein complex and Rac (WRC) 
to explore new cancer therapeutic approaches (Zheng et al. 
2023a, b).

A growing body of literature has highlighted the 
significant role of disulfidptosis in various tumors, 
showcasing its potential as a prognostic marker and 
therapeutic target. Huang et  al. (2023) constructed 
disulf idptosis-related genetic markers in lung 
adenocarcinoma and analyzed their impact on the disease 
and its relationship with the tumor microenvironment. 
Wang et al. (2023) integrated disulfidptosis with immune 
infiltration in hepatocellular carcinoma patients, offering 
new targets and directions for the prognosis and treatment 
of hepatocellular carcinoma. In addition, the interaction 
between disulfidptosis, immunity, and metabolism in 
cancer provides new insights into tumor biology. Zhu et al. 
(2023) discovered that disulfidptosis significantly affects 
the activation and infiltration of immune in the tumor 
microenvironment, suggesting its potential in enhancing 
immunotherapy for disulfidptosis-sensitive tumors. This 
also prompts further study into disulfidptosis's role in tumor 

Fig. 6   Construction of a nomogram and the evaluation of its effects. 
a The nomogram predicting the risk for NB patients with clinical 
characteristics. b–d 1-, 3-, and 5-year calibration curves of the 
nomogram. e–g 1-, 3-, and 5-year ROC curves for each characteristic 
in the nomogram. h Pie chart of the percentage of each clinical trait 
in the high- and low-risk groups
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immune evasion, potentially aiding new immunotherapeutic 
strategies. Metabolically, disulfidptosis relates to glycolipid 
metabolism, sulfide metabolism, redox balance, and cellular 
structures stability. Recent studies have indicated a close 
relationship between disulfidptosis and metabolic processes, 
indicating new directions for metabolic NB treatment (Liu 
et al. 2023a, b; Zheng et al. 2023a, b; Zhang et al. 2023), 
though detailed molecular understanding and clinical 
application require more research.

The intricate process of disulfidptosis engages various 
genes, including GYS1, OXSM, LRPPRC, NDUFA11, 
NUBPL, RPN1, SLC3A2, SLC7A11, and NCKAP1 
(Liu et al. 2023a, b). Specifically, SLC7A11 encodes a 
cysteine transporter protein, and NCKAP1 contributes to 
the assembly of the WRC, fostering actin polymerization 
and the formation of lamellipodia. Focusing on the 
aforementioned genes, our analysis revealed significant 
expression differences among NB patients, markedly 
impacting the prognosis of NB. Based on their expression 
profiles, GMM clustering identified distinct subtypes, with 
cluster 3 exhibiting the worst prognosis, marked by tumor 
progression and frequent N-MYC gene amplification. 
Differential gene expression and GSVA between clusters 
revealed significant variations in biological processes such 
as the construction, transport, and connection of ACTIN 
cytoskeleton, intracellular glucose homeostasis, cellular 
responses to glucose deprivation, glucose catabolism, and 
metabolism. These processes constitute the core components 
of disulfidptosis, providing further confirmation of its 
crucial role in NB.

Later, WGCNA was employed to identify modules of 
genes most correlated with biological processes such as 
glucose metabolism, cytoskeleton dynamics, and disulfide 
isomerase activity. Combining LASSO with various 
machine learning techniques, our preferred algorithm 
emerged as LASSO coupled with RSF, and this culminated 
in the construction of a prognostic model comprising 44 
genes associated with disulfidptosis. In this prognostic 
model, higher scores correspond to poorer prognoses. In 
existing studies on NB prognostic model construction, 
most researchers use a single algorithm approach for model 
construction (Huang et al. 2023; Chen et al. 2023; Zhang 
et al. 2022), while in our study, we integrated multiple 
machine learning algorithms to select the most suitable 

one for our sample, enhancing the model's ability to 
identify complex biomarkers and disease characteristics. 
Compared to other commonly used machine learning 
methods, the model constructed by LASSO + RSF has a 
higher C-index, which indicates superior accuracy and 
reliability in the evaluation process. The AUC value of this 
model remains around 0.8 for different forecasting time 
horizons, including 1 year, 3 years, and 5 years, suggesting 
that our model has good identification capabilities and is 
effective in long-term forecasting. Furthermore, our model 
not only identifies different sample clusters but also assigns 
each sample to a specific cluster, providing personalized 
disease risk assessments and treatment recommendations. 
This personalized prediction enhances treatment accuracy, 
potentially reducing ineffective treatments, healthcare costs, 
and improving overall treatment outcomes. In conjunction 
with clinical characteristics such as age, gender, N-MYC 
gene amplification status, COG risk, and INSS stage, 
a corresponding nomogram was constructed, which 
was evaluated to have strong discriminatory ability and 
effective prediction, and can be used for clinical diagnosis 
and treatment of NB. Functional enrichment analysis of 
the modeling genes revealed their significant involvement 
in biological processes such as elastic fiber synthesis, 
formation of the cellular cytoskeleton, collagen synthesis, 
as well as in pathways related to sulfur metabolism, 
selenium metabolism, cytoskeleton regulation, and PI3K-
Akt signaling.

To further substantiate the role of disulfidptosis in NB, 
we selected the most distinctive hub genes, CYFIP1 and 
EMILIN1, for additional histological and cytological 
experiments. The results confirmed that both CYFIP1 
and EMILIN1 were upregulated in tumor tissues, and the 
knockdown of these two genes affected various tumor 
phenotypes in NB cells, including colony formation, 
migration, and invasion. The CYFIP1 gene encodes a 
protein that is an essential component of the WRC, which 
promotes actin polymerization, regulates the production of 
branched actin filaments (Derivery and Gautreau 2010), and 
also regulates protein translation of NMDAR and related 
complex components at neuronal synapses to maintain 
normal synaptic function, morphology, and plasticity (De 
Rubeis et al. 2013; Hsiao et al. 2016). CYFIP1 dysregulation 
has been associated with neuropsychiatric disorders, such 
as intellectual disability, schizophrenia (SCZ), and autism 
spectrum disorders (ASD) (Kim et al. 2022), and plays an 
important role in the invasion and metastasis of tumors, 
such as breast, prostate, and colon cancers (Teng et  al. 
2016). On the other hand, the EMILIN1 gene encodes an 
extracellular matrix glycoprotein that plays a role in elastin 
fiber biogenesis, acting as part of the anchoring filaments 
connecting the cells to the extracellular matrix (Adamo et al. 
2022), which contributes to the fusion of the elastin fibers 

Fig. 7   Further analysis of the modeling genes. a GO enrichment 
analysis of 44 disulfidptosis-related modeling genes. b KEGG 
enrichment analysis of 44 disulfidptosis-related modeling genes. c–e 
Univariate Cox analysis of 7 core modeling genes in the TRAIN, 
TEST, and ALL datasets. f Box plot of the expression levels of the 
7 core modeling genes in the high and low prognostic score groups. 
g Correlation network of core modeling genes with disulfidptosis 
genes. h Protein–protein interaction networks of core modeling genes 
and disulfidptosis genes
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Fig. 8   Tissue and cellular experiments to explore the mechanism 
of CYFIP1 and EMILIN1 genes. a Tissue immunohistochemistry 
revealed elevated expression of CYFIP1 and EMILIN1 in tumor 
tissue compared to adjacent normal tissue. b mRNA expression 
levels in SKNAS and SH-SY5Y cells in the knockdown and negative 
control group. c–d Protein-level verification of expression differences 
between negative control and knockdown groups—Western blot 
bands. e Scratch assay confirmed the inhibition of cell migration 
ability after the knockdown of CYFIP1 and EMILIN1. f Clone 

formation assay confirmed the inhibition of cell colony-forming 
ability after the knockdown of CYFIP1 and EMILIN1. g Transwell 
assay confirmed the decreased invasive ability of NB cells after the 
knockdown of CYFIP1 and EMILIN1. h Fluorescent staining showed 
synaptic shortening and disappearance, cytoskeleton distortion, and 
deformation in NB cells after knockdown of CYFIP1 and EMILIN1. 
(*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 indicate 
significant differences between the groups shown)
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and makes them more ordered. It has also been shown to 
play a role in the maintenance of vascular cell morphology, 
adhesion of smooth muscle cells to elastin fibers, and 
transforming growth factor (TGFβ) regulation (Randell and 
Daneshtalab 2017), and has been implicated in diseases 
such as neuronal, vascular, and valvular lesions (Louzao-
Martinez et al. 2019; Munjal et al. 2017). In this study, 
we also utilized phalloidin staining to visualize the actin 
cytoskeleton morphology and confirmed that alterations 
of these two genes can lead to morphological changes in 
NB cells, including the shortening and disappearance 
of synapses, as well as deformation and distortion of the 
cytoskeleton. Functional cell experiments confirmed that 
downregulation of gene expression could impact cell 
proliferation, migration, and colony formation. This provides 
additional evidence that abnormal expression of genes 
associated with disulfidptosis can influence the functional 
aspects of NB cells, contributing to the development and 
progression of NB.

This study has certain limitations that should be 
acknowledged. Firstly, the number of samples and 
information used for analysis was limited, and the clinical 
information sourced from databases may have errors. 
Secondly, due to experimental conditions and time 
constraints, the experimental design of this study was not 
in depth enough, lacking the exploration of the mechanism 
of disulfidptosis, animal experiments, and large-scale tissue 
specimen validation. Additionally, our understanding of the 
interactions between disulfidptosis and immune response 
and tumor metabolism remains limited, and these findings 
need to be validated by more intensive and systematic 
experimental studies. In future research, we will focus on 
these key questions with the aiming of conducting more 
comprehensive experiments to further explore the specific 
mechanisms of disulfidptosis in NB.

Conclusion

This study revealed elucidates distinct expression patterns 
and clustering of disulfidptosis in NB, unveiling pathway 
and prognostic variances among subtypes. A disulfidptosis 
risk score was successfully constructed, with the ability 
to accurately predict the prognosis of NB patients. 
Additionally, key genes (CYFIP1, EMILIN1) associated 
with disulfidptosis in NB were identified, exhibiting 
functional roles in cell proliferation, migration, and invasion, 
leading to notable alterations in the cellular cytoskeleton. 
Novel therapeutic targets and a refined scoring methods 
for precision treatment strategies in NB prognosis and 
management are offered by these findings.
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