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Abstract
Objective: Accumulating evidence from microbial studies have highlighted the modulatory roles of intestinal microbes in numerous human dis-
eases, however, the shared microbial signatures across different diseases remain relatively unclear.

Methods: To consolidate existing knowledge across multiple studies, we performed meta-analyses of 17 disease types, covering 34 case–
control datasets of 16S rRNA sequencing data, to identify shared alterations among different diseases. Furthermore, the impact of a microbial
species, Lactobacillus salivarius, was established in a dextran sodium sulphate–induced colitis model and a collagen type II–induced arthritis
mouse model.

Results: Microbial alterations among autoimmune diseases were substantially more consistent compared with that of other diseases (cancer,
metabolic disease and nervous system disease), with microbial signatures exhibiting notable discriminative power for disease prediction.
Autoimmune diseases were characterized by the enrichment of Enterococcus, Veillonella, Streptococcus and Lactobacillus and the depletion of
Ruminococcus, Gemmiger, Oscillibacter, Faecalibacterium, Lachnospiracea incertae sedis, Anaerostipes, Coprococcus, Alistipes, Roseburia,
Bilophila, Barnesiella, Dorea, Ruminococcus2, Butyricicoccus, Phascolarctobacterium, Parabacteroides and Odoribacter, among others.
Functional investigation of L. salivarius, whose genus was commonly enriched in numerous autoimmune diseases, demonstrated protective
roles in two separate inflammatory mouse models.

Conclusion: Our study highlights a strong link between autoimmune diseases and the gut microbiota, with notably consistent microbial altera-
tions compared with that of other diseases, indicating that therapeutic strategies that target the gut microbiome may be transferable across dif-
ferent autoimmune diseases. Functional validation of L. salivarius highlighted that bacterial genera associated with disease may not always be
antagonistic, but may represent protective or adaptive responses to disease.
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Introduction

The pathogenesis of various human diseases cannot be fully
explained by underlying genetic susceptibilities of the host,
which highlights the necessity to explore the contributions by
environmental factors. Supported by our understanding of

the pathogenic roles of microbes [1, 2], increasing evidence
has highlighted the correlation between abnormal alterations
of gut microbiota and various disease types, including autoim-
mune diseases [such as IBD, primary APS (PAPS), RA, SS,
SLE and UCTD), metabolic diseases (such as obesity and
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• Microbial alterations across autoimmune diseases were more consistent than those of other diseases.

• The diagnostic power of the microbial signatures from autoimmune diseases was significantly higher than from other diseases.

• L. salivarius exhibited protective functions in two mouse inflammatory models, indicating significantly associated bacterial taxa may not

be antagonistic.
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polycystic ovary syndrome), cancer (such as breast, colorectal
and pancreatic) and even nervous system diseases (such as
multiple system atrophy and Parkinson’s disease) [3–7].
Disease-specific microbial signatures have been identified for
multiple diseases, yet the biological significance of changes in
microbial composition has not been thoroughly assessed [8].

Particularly for autoimmune diseases, the underlying genet-
ics of the host forms the basis for susceptibility to disease, yet
environmental factors such as microbial dysbiosis have been
noted to frequently trigger and drive disease progression, with
the severity and clinical heterogeneity of diseases invariably
modulated by gut microbiota [9]. A large proportion of
genetic risk factors are shared among autoimmune diseases
and possibly contribute towards unique alterations in the
human gut microbiota [10, 11], thereby potentially driving
disease [12].

However, it remains poorly understood whether diverse
disease types share common microbial signatures. Prior case–
control gut microbiome studies have yielded inconsistent
results, which makes comparisons between studies difficult
and contextualization of their findings across multiple dis-
eases difficult. Primary issues include insufficient sample size,
differences in underlying cohorts and demographics and a
lack of data standardization and normalization. In the current
study we address this by reprocessing 34 faecal 16S rRNA
datasets spanning 17 disease types with a standardized bioin-
formatics workflow. Meta-analyses of these data revealed
bacterial taxa commonly associated with a diverse array of
disease types. Moving beyond these correlations, we also ex-
amined the causative role of a microbe putatively associated
with multiple diseases using mouse models.

Methods
Data acquisition and selection

Data from 41 faecal 16S rRNA sequencing experiments were
acquired from the Sequence Read Archive (SRA) of the
National Center for Biotechnology Information (NCBI).
Studies without sufficient raw sequencing data, meta informa-
tion or of poor sequencing quality were excluded, resulting in
24 high-quality datasets. Additionally, we acquired 10 datasets
from the MicrobiomeHD database [13]. In total, 34 case–con-
trol datasets covering 17 disease types were classified into four
broad categories (autoimmune disease, metabolic disease, can-
cer and nervous system disease) according to the International
Classification of Diseases, 11th revision (ICD-11).

16S rRNA amplicon data processing

Raw sequencing data were processed through a standardized
16S processing pipeline (https://github.com/thomasgurry/
amplicon_sequencing_pipeline) and used to generate the oper-
ational taxonomic unit (OTU) tables from the
MicrobiomeHD database (Supplementary Table S1, available
at Rheumatology online) [13]. In brief, downloaded pre-
trimmed and de-multiplexed reads with quality scores <20
were removed. Reads with more than two expected errors
were also removed. Reads were trimmed in accordance with
the original sequencing length for each data set. OTU cluster-
ing was performed at 100% similarity using USEARCH [14]
and the RDP classifier was used to obtain taxonomic assign-
ments with a confidence cut-off of 0.5 [15]. OTUs with <10
reads or unannotated at the genus level were discarded. The

relative abundance of each OTU was calculated and collapsed
to the genus level.

Normalization of the variation between datasets for

meta-analyses

Since each dataset differs by the genetic background of the
participants, as well as technical differences in data acquisi-
tion, we normalized the data to remove batch effects prior to
analysis. In brief, we transformed discrete taxonomic count
data to approximately normally distributed log-count per mil-
lion (log-CPM) data to remove heteroscedasticity. We then
performed supervised normalization (SNM) on the data to re-
move significant batch effects while preserving biological
effects [16].

Divergence of metagenomic approaches and study design,
such as differences in population, sample collection, preserva-
tion, preparation, amplification and sequencing platform,
constitute heterogeneities across different datasets [17, 18].
As each study integrally would be considered as a confound-
ing factor, a confounder analysis was therefore performed by
analysis of variance (ANOVA) to quantify the effect of con-
founders combined relative to that of each one alone.
Variance calculations were performed to rank the microbiome
abundance following a non-Gaussian distribution.

Univariate analysis of disease-associated microbial

species

Since microbiome data are characterized by non-Gaussian distri-
butions with excessive dispersion, non-parametric significance
testing using Wilcoxon rank-sum testing was implemented in
the R coin package (R Foundation for Statistical Computing,
Vienna, Austria) [19]. Informed by the results of the preceding
confounder analysis, the ‘study’ was blocked for all disease cate-
gories in meta-analysis. The generalized fold change was calcu-
lated as the logarithmic mean fold change in a set of predefined
quantiles of the case and control distributions, which extended
the mean-based fold change to provide higher resolution in the
sparse microbiome data [20]. Quantiles ranging from 0.1 to 0.9
by an increment of 0.05 were used and false discovery rate
(FDR)-adjusted P-values were used to adjust for multiple hy-
pothesis testing [21].

a and b diversity

The a diversity measurements were calculated at the OTU
level using vegan in R [22]. To calculate the effect of a disease
on the composition of the gut microbiota, we assessed the
proportion of explained variance [R2 from permutational
ANOVA (PERMANOVA)] between samples based on the
Bray–Curtis distance by the adonis function from the R pack-
age vegan [22].

Correlation of bacterial signatures with diseases

The cor function in R was used to calculate the Spearman cor-
relation coefficients of fold change data for each pair of data-
sets. The genera were clustered using the Ward algorithm
implemented in the R function hclust. The cor and hclust
functions were part of the R STATS package.

Random forest–based model for regression analysis

of bacterial signatures for disease diagnosis

Random forest–based models were established to discriminate
between cases and controls using Python’s scikit-learn [23].
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In a cross-validation, this model was trained and tested by 5-
fold cross-validation, which divided the relative abundance
values randomly into five sets (one set for testing and four sets
for training), for five times.

Animal and disease models

C57BL/6J littermates were used for dextran sodium sulphate
(DSS)-induced colitis model. Colitis was induced by exposure
to 2% DSS (MP Biomedicals, Irvine, CA, USA) in the drinking
water for 7 days. The clinical manifestations of the colitis
were monitored daily by the changes in body weight and stool
starting from day 1 of DSS treatment for 9 days. At the end of
the study, the serum and colon tissues were collected after the
mice had been sacrificed. DBA/1J littermates were used for a
collagen type II (CII)-induced arthritis model. Mice were im-
munized with 0.25 mg bovine type II collagen (Chondrex,
Woodinville, WA, USA) in 100mL complete Freund’s adju-
vant (Difco Laboratories, Franklin Lakes, NJ, USA) contain-
ing 5 mg/ml killed Mycobacterium tuberculosis by s.c.
injection at the base of the tail. Mice were challenged again
with the same product in incomplete Freund’s adjuvant
21 days after the initial immunization. The animal protocol
was approved by the Tsinghua University Institutional
Animal Care and Use Committee (no. 21-XHJ1).

Antibiotic preconditioning and bacterial inoculation

Mice were cohoused for 3–4 weeks before antibiotic treat-
ment to allow for equilibration of the microbiota. Broad-
spectrum antibiotic consisted of metronidazole (1 g/l), neomy-
cin (1 g/l), ampicillin (1 g/l), vancomycin (0.5 g/l) and strepto-
mycin (1 g/l) (all from Solarbio, Beijing, China) was
administered in the drinking water for 1 week and then was
replaced with regular water for the rest of the experiment.

Mice were orally inoculated 24 h later with 1� 109 CFUs
Lactobacillus salivarius. L. salivarius was grown at 37�C in
MRS broth (Solarbio) and were washed twice with PBS prior
to use.

Histology

Samples were obtained at autopsy and were fixed in 4% para-
formaldehyde. Histological sections were stained with haema-
toxylin and eosin (H&E) and scored in a blinded fashion.
Colonic epithelial damage was scored as follows: 0¼ normal;
1¼ hyperproliferation, irregular crypts and goblet cell loss;
2¼mild–moderate crypt loss (10–50%); 3¼ severe crypt loss
(50–90%); 4¼ complete crypt loss, surface epithelium intact;
5¼ small to medium-sized ulcer (<10 crypt widths); 6¼ large
ulcer (�10 crypt widths). Infiltration with inflammatory cells
was assigned scores as follows: 0¼ normal; 1¼mucosa;
2¼mucosa and submucosa; 3¼mucosa, submucosa and
transmural.

Statistical analysis for animal experiments

Statistical significance was determined by a Student’s t-test us-
ing Prism version 6.03 (GraphPad Software, San Diego, CA,
USA). Statistical significance was represented by P< 0.05,
P<0.01, P< 0.001 and P< 0.0001 in the figures. Data var-
iances were represented as mean (S.E.M.) as indicated in the
text.

Results
Collected datasets and normalization

The meta-analysis was performed on 34 case–control datasets
of faecal 16S rRNA sequencing data, with sample sizes rang-
ing from 23 to 644. These 34 datasets were grouped into four
disease categories according to the ICD-11:

• Autoimmune disease, comprised of 13 datasets covering
eight diseases, including Crohn’s disease (CD), PsA, PAPS,
RA, SS, SLE, ulcerative colitis (UC) and UCTD

• Cancers, comprised of 8 datasets from three cancers, in-
cluding breast (BC), colorectal (CRC) and pancreatic duc-
tal adenocarcinoma (PDAC)

• Metabolic disease, comprised of 8 datasets from three dis-
eases, including obesity (OB, BMI <25 as control and
>30 as case), polycystic ovary syndrome (POS) and type 1
diabetes (T1D)

• Nervous system disease, comprised of 6 datasets from
three diseases, including multiple sclerosis (MS), multiple
system atrophy (MSA) and Parkinson’s disease (PD).

To reduce batch effects in the data from different studies
(as described in the methods), we converted discrete taxo-
nomic counts into log-CPM per sample and then performed
SNM [24]. Although the batch effect was greatly reduced
(Supplementary Fig. S1, available at Rheumatology online),
the factor ‘study’ in all four disease categories still had a pre-
dominant impact on species composition (Supplementary Fig.
S2, available at Rheumatology online). Thus we assessed the
differential abundance in microbiome by Wilcoxon tests,
while accounting for ‘study’ as a confounding effect that was
treated as a blocking factor to avoid bias.

Microbial alterations in autoimmune disease were

more consistent than for other disease

For each disease category, we performed a meta-analysis to
identify microbial signatures shared across disease types. By
comparing the microbial composition between cases and
healthy controls, we revealed that autoimmune diseases had
more consistent alteration patterns than the other disease cate-
gories (Fig. 1A and B). For autoimmune diseases, significantly
enriched (FDR <0.01) genera included Enterococcus,
Veillonella, Streptococcus, Lactobacillus and
Erysipelotrichaceae incertae sedis, whereas Ruminococcus,
Gemmiger, Oscillibacter, Faecalibacterium, Lachnospiracea
incertae sedis, Anaerostipes, Coprococcus, Alistipes, Roseburia,
Bilophila, Barnesiella, Dorea, Ruminococcus2, Butyricicoccus,
Phascolarctobacterium, Parabacteroides and Odoribacter were
characteristically depleted. In contrast, only two genera were
found to be commonly enriched in cancers (BC, CRC and
PDAC) (Fig. 1A, Supplementary Fig. S3A, available at
Rheumatology online), and no genera were identified for meta-
bolic diseases (OB, POS, T1D and MS, PD) (Fig. 1A,
Supplementary Fig. S3A, available at Rheumatology online).

To further investigate the common microbial signatures
within each disease category, we analysed microbial correla-
tions across all pairs of these 34 datasets. On average, autoim-
mune disease typically demonstrated stronger correlations
between microbial signatures and disease subtypes than the
other three disease categories (Fig. 1C).
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Figure 1. Microbial alterations in autoimmune diseases were more consistent than in other diseases. (A) Meta-analysis identified a core set of gut

microbes associated with diseases in each of the four broad categorizations. Species are ordered by significance and direction of change (the left side for

enrichment in patients and the right side for depletion in patients). (B) Genera-level generalized fold change within individual studies. (C) Microbial

correlations between diseases. Matrix of pairwise microbial correlations are coloured by correlation coefficient. Cells with asterisks indicate pairwise

interactions that remained significant (P< 0.05)
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Autoimmune disease exhibits a stronger

association with gut microbiome than other

diseases

Analysis of b diversity via PERMANOVA and principal coor-
dinates analysis (PCoA) revealed that autoimmune disease
had the strongest association with variations in the gut micro-
biota (R2¼ 3.67%, P< 0.001, using Bray–Curtis distances)
compared with cancer, metabolic disease and nervous system
disease (Fig. 2A and B). Investigation of specific genera associ-
ated with autoimmune disease revealed 79 significant associa-
tions (FDR <0.05), with 30 microbes shared by at least two
subcategories of autoimmune disease (Fig. 2C). In particular,
Enterococcus, Veillonella, Propionibacterium and Rothia
were enriched in patients across all datasets;
Erysipelotrichaceae incertae sedis, Olsenella, Lactobacillus,
Escherichia/Shigella and Streptococcus were also enriched in
patients in an overwhelming majority of datasets. Many of
these microbes, such as Propionibacterium, Escherichia/
Shigella and Streptococcus are well-known pathogenic bacte-
ria [25]. For cancer (BC, CRC, PDAC), metabolic disease
(OB, POS, T1D) and nervous system disease (MS, PD), the
disease-associated markers appeared to be inconsistent, with
only two commonly shared markers identified for cancer

(Supplementary Fig. S4, available at Rheumatology online)
and no shared marker for the other two disease categories. In
addition, we did not observe consistently significant changes
in a diversity for either of the disease categories
(Supplementary Fig. S5, available at Rheumatology online).

Diagnostic microbial signatures across disease

types

To determine the fitness of our diagnostic model, we per-
formed a 5-fold cross-validation on all 34 datasets
(Supplementary Fig. S6, available at Rheumatology online).
The areas under the curve (AUCs) for most of the datasets
(27/34) were >0.7, indicating the model had fair diagnostic
power. Next, we evaluated the accuracy of the diagnostic
model to differentiate diseases of the same category via a
study-to-study transfer validation method (Fig. 3A,
Supplementary Fig. S7, available at Rheumatology online).
Fitting of datasets of the same type of autoimmune disease
(Fig. 3A) demonstrated consistent AUCs compared with other
disease categories (Supplementary Fig. S7, available at
Rheumatology online), indicating autoimmune diseases may
share more similarities in bacterial composition than the other
diseases. Taken together, these results imply that autoimmune

Figure 2. Interdisease comparisons of microbial composition associated with broad disease category. (A) Case–control PCoA, based on Bray–Curtis

dissimilarity. (B) The microbial variation explained by disease category, represented by the PERMANOVA R2 value, was significant across four cross-

sectional PERMANOVA tests. (C) Commonly shared microbial markers for autoimmune disease. Each row includes genera that were significant in at

least two datasets within each disease category (two-sided Wilcoxon test, FDR-corrected P-value <0.05); columns represent datasets. Generalized fold

change is coloured by direction of the effect, where red indicates enriched abundance in cases and blue indicates depletion. White indicates that the

genus was not present in that data set. þ: P< 0.05
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diseases have higher marker homogeneity than cancers, meta-
bolic diseases and nervous system diseases.

The function of L. salivarius in the DSS-induced IBD

model

Abnormalities of the gut microbiome are thought to cause in-
flammation in response to innate and adaptive immune
responses, particularly for diseases such as IBD [26, 27]. RA
is an autoimmune disease with unknown aetiology, and al-
though joint inflammation is a typical feature of RA, inflam-
mation may develop in other parts of body, such as the gut,
years prior [28]. In the current study, we chose IBD and RA
as representative autoimmune diseases. To date, very few co-
hort studies have implicated specific bacterial species in RA
[29, 30]. In one such study, L. salivarius was found to be
more abundant in very active cases of RA [28-joint DAS
(DAS28) >5.1] compared with mild to moderately active
(DAS28 �5.1) cases [29]. In the current meta-analysis,
Lactobacillus was also noted as the third-ranked bacterial
genera that was enriched in patients with autoimmune dis-
ease. Thus L. salivarius was selected as a candidate bacterial
species for further functional interrogation.

To delineate the role of L. salivarius in intestinal inflamma-
tion, we gavaged the antibiotic-pretreated mice with PBS or

L. salivarius and then treated the mice with 2% DSS for
7 days. Mice with PBS developed severe clinical symptoms of
IBD, including rapid weight loss, severe diarrhoea and bloody
stools, compared with mice with L. salivarius (Fig. 4A). Mice
with PBS also had a shorter colon than mice with L. salivarius
(Fig. 4B). Histological analysis of the colon showed increased
severity of disease, including massive inflammatory infiltrates,
crypt loss and disruption of mucosal structures in mice with
PBS compared with mice with L. salivarius (Fig. 4C). Thus L.
salivarius colonization in the gut appeared to relieve colonic
inflammation in DSS-treated mice.

In order to explore how the colonization of L. salivarius
protected mice from DSS-induced colon inflammation, we ad-
ministered PBS or L. salivarius to mice at homeostasis and
collected the serum of mice on day 7 for metabolomics analy-
sis. Overall, there were six metabolites significantly depleted
and five metabolites significantly enriched in the serum of
mice with L. salivarius, suggesting that the colonization of L.
salivarius influenced the composition of the serum metabo-
lites. Through metabolite screening, we found that indolepro-
pionic acid (IPA) can alleviate DSS-induced intestinal
inflammation (Fig. 4D). Compared with normal water supply
mice, IPA supplementation significantly protected mice
against weight loss (Fig. 4E), increased colon length (Fig. 4F)

Figure 3. Disease diagnostic models. Classification accuracy via cross-validation within each study (grey boxes along the diagonal) and study-to-study

model transfer (external validations off the diagonal) as measured by the AUC. The blank box indicates the two datasets share the same healthy controls

and was excluded in the cross-study validation. Datasets with cross-validation <0.65 are not shown here
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Figure 4. Protection from DSS-induced colon inflammation via the colonization of L. salivarius. To induce colitis, mice with PBS or L. salivarius were

administered 2% DSS in drinking water for 7 days. (A) Weight loss of mice with PBS or L. salivarius. (B) Colon length of mice with PBS or L. salivarius. (C)
Representative H&E staining of distal colon sections and histological score of mice with PBS or L. salivarius. (D) Differential analysis for serum

metabonomics of mice with PBS or L. salivarius at homeostasis. (E) Weight loss of mice with water or IPA. (F) Representative H&E staining of distal

colon sections and histological score of mice with water or IPA. Data are represented as mean (S.E.M.). *P< 0.05, **P< 0.01, ***P< 0.001 and

****P< 0.0001 by unpaired Student’s t-test. Scale bar¼ 40 lm
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and decreased intestinal histological score (Fig. 4G), suggest-
ing that IPA can alleviate the colitis phenotype in mice.

The function of L. salivarius in CII-induced RA model

To investigate the role of L. salivarius in RA, we orally ad-
ministrated the antibiotic-pretreated mice with PBS or L. sali-
varius and treated the mice with bovine type II collagen
immunization at day 0 and day 21. Mice with PBS developed
more severe clinical symptoms and a high incidence of RA
(Fig. 5A and B). The infiltration of immune cells in the colon
of the mice colonized with L. salivarius was reduced
(Fig. 5C). Previous studies have shown that intestinal inflam-
mation accompanied by arthritis occurs before the onset of ar-
thritic symptoms [31]. In the current study, the colon
histology revealed the onset of arthritis on day 14, and it was

found that the colonization of L. salivarius weakened the in-
filtration of colon immune cells (Fig. 5D). Therefore we hy-
pothesized that the colonization of L. salivarius improved the
colon microenvironment in the initial stage of arthritis and al-
leviated the severity of arthritis in the later stage.

Discussion

This study presents the first meta-analysis of gut microbiota
across a broad array of diseases, revealing distinct interdisease
association patterns. Overall, 34 publicly available case–con-
trol 16S rRNA sequencing studies were collected. These stud-
ies encompassed 17 diseases that were broadly grouped into
four main categories: autoimmune disease, cancer, metabolic
disease and nervous system disease. By reprocessing these

Figure 5. Colonization of L. salivarius alleviated joint inflammation. To induce arthritis, mice were immunized with CII on day 0 and day 21. (A) Articular
scores of mice with PBS or L. salivarius. The paws were evaluated for joint swelling and grip strength three times per week. Each paw was individually

scored using a 4-point scale: 0¼ normal paw, 1¼minimal swelling or redness, 2¼ redness and swelling involving the entire forepaw, 3¼ redness and

swelling involving the entire limp and 4¼ joint deformity or ankylosis or both. (B) The incidence of arthritis of mice with PBS or L. salivarius.

(C) Representative H&E staining of distal colon sections and histological score of mice with PBS or L. salivarius in late stage of disease (day 40þ).
(D) Representative H&E staining of distal colon sections and histological score of mice with PBS or L. salivarius in initiation of disease (day 14). Scale

bar¼ 40 lm
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data through a standardized bioinformatics pipeline, numerous
shared microbial signatures were noted across specific disease
subtypes within the same broader disease categorization. In par-
ticular, our analysis revealed that compared with other disease
categories, signals associated with autoimmune diseases were sur-
prisingly strong and consistent, typically characterized by the en-
richment of Enterococcus, Veillonella, Streptococcus,
Lactobacillus and Erysipelotrichaceae incertae sedis and the de-
pletion of Ruminococcus, Gemmiger, Oscillibacter,
Faecalibacterium, Lachnospiracea incertae sedis, Anaerostipes,
Coprococcus, Alistipes, Roseburia, Bilophila, Barnesiella, Dorea,
Ruminococcus2, Butyricicoccus, Phascolarctobacterium,
Parabacteroides and Odoribacter, among others (Fig. 1). We fur-
ther validated the function of a bacterial species, L. salivarius,
that has been previously reported to be enriched in RA and is
also a member of one of the genera noted to be commonly
enriched in autoimmune diseases in our study. The functional
validation of L. salivarius showed that the colonization of L. sali-
varius alleviated the intestinal inflammation and arthritic symp-
toms. For the other broad disease types (cancer, metabolic
disease and nervous system disease), the lack of consistent micro-
bial alterations and the lower degree of significant associations
overall may be because the microbiomes associated with these
broad diseases are more heterogeneous in nature, but also may
be due to the heterogeneity of the diseases themselves.

Consistent with previous studies, the strongest microbial
link to autoimmune disease was an enrichment of
Enterococcus (Fig. 1). Enterococcus gallinarum has been
reported to translocate from the small intestine to the liver,
driving organ-specific and systemic autoimmunity both in
mice and humans [4]. Our results were also consistent with
another recent study that revealed an enrichment of
Lactobacillus potentially contributes to susceptibility to auto-
immune disease. Specifically, this study demonstrated that
Lactobacillus reuteri was a commensal species that was unex-
pectedly linked to exacerbation of CNS autoimmunity [32].
Although the roles of Enterococcus and Lactobacillus in auto-
immune disease require further elucidation, and different spe-
cies within these genera can have either a protective or
antagonistic effect, these observations in combination with
our meta-analysis support a role for these genera across multi-
ple disease aetiologies (Figs 1 and 2B). Further fine-grained
investigations utilizing whole-genome metagenomics are
therefore essential for this research to progress. It follows that
the broad causal implications of intestinal microbiota such as
Enterococcus and Lactobacillus, but also Veillonella and
Streptococcus, may be missed in single-disease studies. By
combining multiple small cohorts of potentially low generaliz-
ability, it is possible to obtain better representation of the
spectrum of cases and controls, therefore our meta-analysis
highlights numerous bacterial taxa that may previously have
been overlooked. Moreover, the general pattern identified in
our study should be indicative of a shared response to autoim-
mune disease, which should be interpreted carefully for future
microbial research.

Human diseases are increasingly noted as exhibiting associ-
ations with a dysbiotic gut microbiome. However, whether
such alterations are causal, consequential or coincidental to
disease is unresolved for the most part, and the majority of
case–control studies also typically do not attempt to identify
the causal microbes. As previously discussed, the current
study demonstrated the functional potential of L. salivarius,
as the colonization of L. salivarius may alleviate intestinal

inflammation by enriching the amount of IPA in the gut.
Previous studies have shown that IPA was significantly de-
pleted in the metabolic profile of an IBD cohort, indicating
that IPA may also play an important role in human enteritis
[33]. Interestingly, L. salivarius was noted to be enriched in
patients with arthritic disease and also alleviates joint inflam-
mation in mice. These results indicate that the microbiota as-
sociated with disease may not always be pathogenic bacteria,
but may be protective, thus highlighting the importance of
functional validation in case–control microbiome studies.

In summary, we identified numerous common microbial
signatures associated with autoimmune disease, implying a
potential common microbial function. The function of L. sali-
varius contributes key evidence that microbiota associated
with autoimmune disease may not always be antagonistic
microbes, but may be microbes eliciting a protective or adap-
tive response to disease.
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