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Abstract
Local and systemic low-grade inflammation, mainly involving the innate immune system, plays an important role in the development of OA. A re-
ceptor playing a key role in initiation of this inflammation is the pattern-recognition receptor Toll-like receptor 4 (TLR4). In the joint, various ligands
for TLR4, many of which are damage-associated molecular patterns (DAMPs), are present that can activate TLR4 signalling. This leads to the pro-
duction of pro-inflammatory and catabolic mediators that cause joint damage. In this narrative review, we will first discuss the involvement of
TLR4 ligands and signalling in OA. Furthermore, we will provide an overview of methods for inhibit, TLR4 signalling by RNA interference, neutral-
izing anti-TLR4 antibodies, small molecules and inhibitors targeting the TLR4 co-receptor MD2. Finally, we will focus on possible applications and
challenges of these strategies in the dampening of inflammation in OA.
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Introduction

OA is the most common degenerative joint disease. The >240
million patients worldwide suffer from pain, stiffness, and
impaired mobility, seriously affecting quality of life. OA is
considered a multifactorial complex disease of the joint as an
organ in which all articular and peri-articular tissues are in-
volved [1]. A relatively low-grade chronic inflammation of
both local and systemic origin, mainly involving cells of the
innate immune system, is observed in the majority of knee
OA patients and is considered an active player in disease de-
velopment (reviewed in [2]). However, inhibition of classical
cytokines such as IL-1b and TNFa has been largely disap-
pointing in clinical trials [3].

An extended group of mediators released upon tissue dam-
age and involved in the inflammatory process in OA are the
damage-associated molecular patterns (DAMPs). These mole-
cules activate cells by binding to pattern-recognition receptors
(PRRs), such as the receptor for advanced glycation end

products (RAGE) [4] and Toll-like receptors (TLRs) [5] that
are present on many cell types in the joint. TLR4 is of particu-
lar interest, as a plethora of TLR4-binding ligands are present
in the OA environment. This narrative review aims to provide
an overview of the involvement of TLR4 signalling in OA and
to summarize methods that can be deployed for inhibiting this
signalling pathway.

The TLR4 pathway

The TLR4/NF-jB signalling pathway is of central importance
for host defence and during many inflammatory diseases. As
the pathway has been extensively reviewed [6–9], we here
only provide a short overview of those factors that are needed
for the interpretation of this review.

TLR4 ligands, like pathogen-associated molecular patterns
(PAMPs) and DAMPs, are recognized by TLR4, which con-
sists of an ectodomain, a transmembrane domain, and a
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cytoplasmic Toll/IL-1R (TIR) domain. Ligand binding induces
TLR4 dimerization and cooperation with the co-receptors
CD14 and MD2 to induce signalling [10–15]. This induces
conformational changes and recruitment of downstream sig-
nalling mediators, which can lead to activation of two down-
stream pathways: the canonical (MyD88-dependent) pathway
resulting in activation of the transcription factors NF-jB and
AP-1, and the non-canonical (MyD88-independent) pathway,
resulting in activation of the transcription factor IFN regula-
tory factor 3 (IRF3) (Fig. 1) [16, 17].

The canonical TLR4 pathway shares many of its intracellular
signalling components with IL-1R and all other TLR signalling
routes. Upon TLR4 activation, TIR-domain–containing adaptor
proteins (TIRAPs) recruit MyD88, which subsequently interacts
with IL-1-receptor–associated kinases (IRAKs). These IRAKs
autophosphorylate and activate TNF-receptor–associated factor
6 (TRAF6), which ubiquitinates itself and TGF-b-activated ki-
nase 1 (TAK1), which leads to activation of two types of tran-
scription factors: NF-jB and AP-1. The NF-jB transcription
factor family consists of five subunits that can form homo- or
hetero-dimer complexes: RelA (p65), RelB, cRel, NF-jB1 (p50
or p105), and NF-jB2 (p52 or p100). In its inactive state, the
NF-jB dimers are restricted to the cytoplasm by inhibitor of nu-
clear factor kappa B (IjB). TAK1 activates IjB kinases (IKKs)
that phosphorylate, ubiquitinate and subsequently degrade IjB.
Released NF-jB dimers then translocate to the nucleus, where
they can bind DNA jB sites and trigger the expression of many
pro-inflammatory mediators (e.g. IL-1b, TNF-a, IL-6, COX-2),
cartilage-degrading enzymes like MMPs, and A disintegrin and
metalloproteinase with thrombospondin motifs (ADAMTSs),
angiogenic factors, and apoptosis-related molecules [6–9, 18–
22]. The AP-1 transcription factors are activated via the
mitogen-activated protein kinase (MAPK) activation cascade
starting from TAK. AP-1 consists of homo- and hetero-dimers
formed by proteins from the Jun, Fos, Maf and ATF families.
Like NF-jB, AP-1 binding to DNA induces the production of in-
flammatory and catabolic factors [8, 23, 24].

The non-canonical pathway, only employed by TLR3 and
TLR4 receptors [8], is activated by the TRIF-related adaptor
molecule (TRAM) that recruits the TIR-domain–containing
adaptor-inducing IFN-b (TRIF), which when combined stimu-
late signalling proteins, including TRAF6. This converges in
the induction of type I IFNs, but also late NF-jB activation
[8].

Based on its pro-inflammatory and catabolic downstream
effects, it is mainly the MyD88-dependent TLR4 signalling
pathway that is considered important during OA. This is
underlined by a study showing that the induction of catabolic
responses in chondrocytes upon stimulation with low-
molecular-weight HA and HMGB1 was reduced in MyD88-
deficient chondrocytes [25].

TLR4 signalling in OA

Increased TLR4 levels have been found in OA cartilage, syno-
vium, subchondral bone, and chondrocytes, and are positively
associated with disease severity [26–30]. In addition, in-
creased levels of soluble TLR4, shed from the cell membrane
during inflammation, are associated with disease progression
in OA patients in some, but not all studies [31–33].
Moreover, soluble CD14 is positively associated with OA
characteristics, including macrophage activation, joint-space
narrowing, osteophytes, and pain [33–35].

During OA, many DAMPs are released into the joint envi-
ronment: extracellular matrix fragments (tenascin-C, low-
molecular-weight hyaluronan, biglycan, decorin, lumican,
heparan sulphf, fibronectin), cellular proteins (S100 family
members, HMGB1, HSPs, advanced glycation end products)
and plasma proteins (fibrinogen, serum amyloid A, oxidized
low-density lipoprotein). Activation of TLR4 by DAMPs
leads to expression of pro-inflammatory mediators (including
cytokines, iNOS and COX-2) and matrix-degrading enzymes,
but can also lead to chondrocyte hypertrophy or apoptosis [4,
5, 21, 36, 37].

Interestingly, although the inflammation in OA is generally
considered to be sterile, increased systemic levels of the classi-
cal TLR4 ligand lipopolysaccharide (LPS) have recently been
associated with OA, likely being the result of the ‘leaky gut
syndrome’ [32, 38–43]. Together, these data point to a rela-
tionship between TLR4 signalling and OA disease, indicating
it might be worth investigating TLR4 as a therapeutic target
for OA.

S100A8/A9 in OA

A DAMP that might be of particular importance in OA is
S100A8/A9 (calprotectin). A first study showed an early in-
crease, but later decrease, of S100A8 and S100A9 after induc-
tion of the destabilization of the medial meniscus (DMM)
model. The authors therefore suggested that S100A8/A9 can
have an effect in early but probably not late cartilage degrada-
tion [44]. In agreement, our lab found that S100A8/A9 levels
were increased only for a short time after induction of DMM,
whereas prolonged increased expression was observed in the
more inflammatory collagenase-induced OA (CiOA) model
[45, 46]. Furthermore, a recent study showed that S100A8/
A9 levels were lower in more progressed OA stages [47].
Moreover, cartilage destruction [46] and osteophyte size [48]
were reduced in CiOA-induced S100a9–/–- mice, which also
do not express S100A8 protein, whereas no significant differ-
ences were measured in the DMM model [46].

Interestingly, Ruan et al. showed that serum S100A8/A9
levels are associated with total WOMAC, and WOMAC
weight-bearing pain and physical dysfunction scores, and
showed a positive association with cartilage degeneration
[49]. Furthermore, OA patients had increased S100A8 and
S100A9 mRNA levels in their synovium and serum S100A8/
A9 levels [47] compared with controls; in addition, among
OA patients, serum S100A8/A9 levels were higher in patients
who showed progression of cartilage damage and osteophyte
formation compared with non-progressors [46, 48]. Another
study, however, showed no association between S100A8/A9
serum level and pain, stiffness or function, and even a nega-
tive association with osteophytes, which might be explained
by the relatively advanced OA stage of the patients involved
[50].

Underlining these data, in vitro studies showed increased
expression of pro-inflammatory and catabolic factors upon
stimulation of human OA cartilage explants and chondro-
cytes [29] and OA synovium and macrophages [51] with
S100A8 and/or S100A9.

Inhibition of TLR4 signalling

Because of its involvement in a multitude of diseases, the de-
velopment of inhibitors of the TLR4/NF-jB axis has been of
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Figure 1. Schematic overview of TLR4 signalling in OA. Various TLR4 ligands present in the OA environment can induce TLR4 signalling. Receptor

activation can lead to canonical and non-canonical signalling, ultimately leading to activation of the transcription factors NF-jB, and AP-1 and IRF3,

respectively. This results in the transcription of various relevant pro-inflammatory cytokines, matrix-degrading enzymes, and type I IFNs. Figures were

created with BioRender.com
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great interest. Here, we will provide an overview of various
strategies for targeting TLR4 signalling (Fig. 2). First, we de-
scribe two well-studied miRNAs in OA, which both inhibit
multiple proteins in the canonical TLR4/NF-jB signalling
pathway. Next, we discuss inhibition of TLR4 itself using
neutralizing antibodies and the small molecule TAK-242.
Finally, we give an overview of molecules inhibiting the co-
receptor MD2, including lipid A mimetics and small mole-
cules. Whereas neutralizing antibodies against the co-receptor
CD14 and inhibitors of downstream kinases definitely belong
to the armamentarium for inhibiting TLR4 signalling, these
have been extensively reviewed recently [52–55].

Inhibition of the TLR4 receptor

miRNAs inhibiting TLR4 signalling in OA

miRNAs are small non-coding RNAs that bind to 30-untrans-
lated regions of target mRNAs, resulting in target gene silencing.
Synthetic miRNAs (miRNA mimics or agomirs) mimic the func-
tion of endogenous miRNAs, leading to target mRNA degrada-
tion. In contrast, antagomirs or anti-miRs inhibit the action of
endogenous miRNAs [56]. Various miRNAs have been impli-
cated in OA pathophysiology, and this has recently been
reviewed elsewhere [57, 58]. Here, we will discuss the two most
well-studied miRNAs in OA: miRNA-140 and miRNA-146a.

miRNA-140

The first miRNA that has been extensively described in OA is
miRNA-140, which is specifically expressed in cartilage and
has been implicated in cartilage homeostasis [59, 60].

Reporter cell experiments showed that miRNA-140 targets in-
clude TLR4 [61–64], HMGB1 [65] and ADAMTS5 [66].

miRNA-140 levels were lower in OA cartilage and SF com-
pared with controls [65–67] and negatively associated with
OA disease [64, 67] and HMGB1 levels [65]. Furthermore,
miRNA-140 knock-out mice developed more severe age-
related and experimentally induced OA pathologies [66]. In
agreement, IA injection of a miRNA-140 mimic after induc-
tion of a preclinical OA model in rats reduced OA characteris-
tics [67].

As expected, transfection with miRNA-140 reduced TLR4
[61–63], but also NF-jB and MyD88 expression [63].
Furthermore, LPS-induced IjBa and p65 phosphorylation
was reduced by miRNA-140 overexpression [64], and
miRNA-140 mimics reduced pro-inflammatory cytokines and
cartilage-degrading enzymes [65, 66]. Interestingly, the effects
of miRNA-140 treatment were higher in chondrocytes de-
rived from early- and middle-stage OA patients, the most
promising groups for treatment, rather than patients with
late-stage disease [67].

In agreement, downregulation of miRNA-140 increased
TLR4 levels [61, 62]. Together, these studies prove that
miRNA-140 can dampen TLR4-mediated inflammatory
responses; thus, miRNA-140 might be a promising treatment
for OA patients, and it might simultaneously inhibit TLR4
[61–64], its ligand HMGB1 [65] and its downstream aggreca-
nase ADAMTS5 [66].

miRNA-146a

A second miRNA associated with OA development is
miRNA-146a, which has often been reported as targeting

Figure 2. Overview of various strategies for inhibiting TLR4. (A) miRNA-140 has been reported to directly target the mRNA of the TLR4 gene, thereby

leading to mRNA degradation. In addition, both miRNA-140 and miRNA-146a target the mRNA of various genes involved in TLR4 signal transduction,

thereby collectively reducing TLR4 signalling. (B) Neutralizing anti-TLR4 antibodies (HTA125, 15C1, HT52, HT4) prevent ligand-induced TLR4 signalling. (C)
TAK-242 binds to Cys747 in the intracellular TIR domain of TLR4, thereby inhibiting ligand-induced signalling. Figures were created with BioRender.com
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TRAF6 and IRAK1 as intracellular mediators of canonical
NF-jB signalling. Luciferase reporter assays have demon-
strated direct binding to TRAF6 and IRAK1 [68–70], as well
as to Notch1 [71] and SMAD4 [72]. Furthermore, previous
studies have shown that miRNA-146a expression is lower in le-
sioned as compared with preserved cartilage [71], and that its
expression is reversely associated with disease grade [73, 74],
indicating the pro-homeostatic function of miRNA-146a.
Moreover, several animal studies have indicated a beneficial
role for miRNA-146a. Lower miRNA-146a levels were found
in the dorsal root ganglia of rats with OA knee joint pain [75].
Furthermore, mice deficient in miRNA-146a had normal carti-
lage at birth, but showed more OA characteristics upon ageing
[71]. Also, they showed higher OA scores after induction of ex-
perimental OA. In agreement, miRNA-146a transgenic mice
presented with decreased age-induced OA development [71].

In contrast, other studies showed sex-dependent regulation
of miRNA-146a in human OA patients, with increased ex-
pression in females and decreased expression in males; how-
ever, the entire OA group was not significantly different from
controls [76]. Moreover, this same study found a positive cor-
relation between miRNA-146a expression and OA severity.
Other studies showed increased miRNA-146a expression in
cartilage [68, 77], peripheral blood mononuclear cells
(PBMCs) [73] and fibroblast-like synoviocytes [70] from OA
patients as compared with controls. Lastly, two studies
showed that induction of experimental OA resulted in upre-
gulated miRNA-146a expression [72, 78].

On a functional level, miRNA-146a transfection decreased the
expression of pro-inflammatory factors and matrix-degrading
enzymes, whereas anabolic factors were induced by miRNA-
146a [71, 75]. Furthermore, miRNA-146 reduced pain-related
target genes, including NOS2, PTGS2 and TRPV1, which might
also be beneficial for patients [75]. In agreement, miRNA-146a–
deficient chondrocytes had increased MMP13 and collagen X,
whereas aggrecan was decreased [71]. Interestingly, the promotor
region of miRNA-146a contains NF-jB binding sites, which
leads to negative feedback upon TLR4 stimulation [69]. Indeed,
LPS and IL-1b induced miRNA-146a in THP-1 cells, chondro-
cytes, and fibroblast-like synoviocytes [68–70, 72, 74].

Interestingly, miRNA-146a and miRNA-146b have a high
sequence similarity, although it remains unclear whether both
have the same function [79]. Like miRNA-146a, miRNA-
146b targets not only IRAK1 and TRAF6, but also MyD88
and TLR4 [79]. Although it has not been investigated whether
miRNA-146a directly targets TLR4 or MyD88, its transfec-
tion functionally mimics the reduction of TLR4, MyD88,
IRAK1 and NF-jB [71, 79, 80].

Although the association between OA severity and
miRNA-146a levels remains inconclusive and might be depen-
dent on disease stage and sex, based on the anti-inflammatory
and anti-catabolic effects, it is tempting to speculate that treat-
ment with miRNA-146a mimics might be a good strategy for
ameliorating OA.

TLR4-blocking antibodies

Another method for inhibiting the TLR4 receptor is by using
antibodies. The mAb HTA125, which is one of the first and
most-studied anti-TLR4 antibodies, inhibited LPS-induced NF-
jB activation [13, 81–83]. The subsequently developed 15C1
clone inhibited LPS-induced IL-8 production in TLR4/MD2-
expressing HEK cells and IL-6 (MyD88-dependent) and IP-10
(MyD88-independent) production in whole blood of healthy

donors [84] and proved more potent than HTA125. These
effects were conserved in the humanized antibody variant,
called NI-0101 or Hu15C1 [84, 85]. In a first clinical trial us-
ing anti-TLR4 antibodies, NI-0101 proved safe and protected
against LPS-induced pro-inflammatory cytokine production
[86]. Two other TLR4 antibodies, HT52 and HT4, showed
higher potency than HTA125 for inhibiting LPS-mediated NF-
jB activation and production of pro-inflammatory cytokines.
However, little is known about these antibodies to date [87].

Unfortunately, no studies with TLR4-neutralizing antibod-
ies in OA models have been published, but the favourable
safety profiles and pharmacokinetic characteristics suggest
great potential.

TAK-242

Identified in a library screened to inhibit LPS-stimulation of
macrophages, TAK-242 (also called resatorvid or CLI-095) is
a very potent and the most studied small molecule TLR4 in-
hibitor to date. Structure–activity optimization of a lead that
inhibited LPS-induced NO, TNFa and IL-6 resulted in the
small-molecule TAK-242, which inhibits both human and
mouse TLR4 signalling [88, 89]. TAK-242 is selective for
TLR4 over other TLRs [89, 90] and inhibits signalling [89] by
binding Cys747 of the intracellular TLR4 domain [91],
thereby disrupting the interaction of TLR4 with its MyD88-
dependent (TIRAP) and MyD88-independent (TRAM) adap-
tor molecules [90], independent of the TLR4 ligand used [91].
TAK-242 had IC50 values in the low nanomolar range for
NO, TNF-a and Il-6 production in vitro, and protected mice
from a lethal LPS challenge by suppressing the cytokine storm
[92]. A phase III clinical trial of patients with severe sepsis-
induced shock or respiratory failure was terminated because
the compound failed to suppress IL-6, IL-8 or TNF-a levels. It
is speculated that the lack of cytokine reduction was due to re-
dundancies in the inflammatory signalling system. Overall the
treatment was without harm and well tolerated [93].

Multiple studies have investigated the potential of TAK-
242 to dampen the inflammation in OA. TAK-242 inhibited
NF-jB activation and subsequent production of pro-
inflammatory and matrix-degrading molecules induced by
several TLR4 ligands in cells obtained from OA patients [94–
97]. Furthermore, TAK-242 prevented biglycan-induced
TLR4 expression in OA cartilage explants [95]. TAK-242
treatment in various preclinical OA models reduced inflam-
mation and resulted in decreased bone and cartilage damage
[28, 98–100]. Moreover, TAK-242 treatment decreased signs
of low back pain and disc degeneration in a pre-clinical model
[101]. Altogether, these studies indicate that TAK-242 could
be a potential treatment option for inhibiting TLR4-mediated
induction of inflammation and joint destruction in OA.

Inhibition of the MD2 co-receptor

Other than by targeting TLR4 itself, a potential way to inhibit
TLR4 signalling is to inhibit the MD2 co-receptor. Inhibition
of MD2 has been shown to inhibit TLR4 signalling, and some
MD2 inhibitors have already progressed into clinical trials.
Here we discuss various strategies employed for inhibiting
MD2 (Fig. 3).

Non-signalling lipid A mimetics

Upon binding of LPS to MD2, five out of six lipid chains of
the LPS lipid A component are buried inside the hydrophobic
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pocket in MD2, whereas the sixth interacts with TLR4. This
binding of LPS causes the dimerization of two TLR4/MD2
complexes and subsequent activation of downstream signal-
ling [17]. Based on the LPS lipid A structure, several inhibitors
have been developed that competitively bind MD2 but do not
induce downstream signalling (Fig. 3A). Eritoran (E5564, eri-
toran tetrasodium) is a structural analogue of the lipid A part

of Rhodobacter sphaeroides. The four acyl chains of eritoran
bind to the hydrophobic pocket in MD2, but eritoran does
not directly interact with TLR4 and cannot induce formation
of active TLR4/MD2 complex dimers [102]. Whereas eritoran
reduced LPS-induced cytokine expression in multiple phase I
trials, this could not be confirmed in phase II trials [103,
104]. Furthermore, a phase III study in sepsis patients showed

Figure 3. Schematic overview of strategies for inhibiting the TLR4 co-receptor MD2. (A) The lipid A part of lipopolysaccharide (LPS) binds to MD2 and

TLR4, thereby inducing downstream signalling. Non-signalling lipid A derivatives with modified lipid tails (eritoran, CRX-526) can bind MD2, preventing

activation by TLR4 ligands. (B) The chalcones xanthohumol, L6H21 and JSH bind to Arg90 and Tyr102 in MD2, thereby inhibiting ligand-induced TLR4

signalling. (C) Caffeic acid phenethyl ester (CAPE), dalcetrapib and auranofin inhibit TLR4 signalling by binding to Cys133 in MD2. (D) C34, C35 and

curcumin bind to the hydrophobic pocket of MD2, thereby preventing TLR4 signalling. Figures were created with BioRender.com

Inhibition of TLR4 signalling in osteoarthritis 613



no significantly different effect between patients treated with
placebo or eritoran [105]. Since the inflammation observed in
OA is different from the septic response, eritoran might still
be beneficial for OA patients. A reported downside is that eri-
toran rapidly becomes inactive in whole blood and serum
[103], but this might be circumvented by IA administration.

In silico similarity searches based on eritoran led to the
identification of C34 and C35 (Fig. 3D), which share their
backbone structure with eritoran, but lack the lipid chains,
thereby overcoming the inactivation in blood. They bind to
the hydrophobic pocket in MD2 and inhibit LPS-induced
NF-jB-signalling [106, 107].

The length of the lipid chains of lipid A mimetics appeared
crucial for TLR4 activation, leading to the discovery of
CRX-526: a lipid A mimetic that is itself unable to induce
inflammatory signalling in vitro and in vivo [108]. CRX-526
reduced pro-inflammatory effects in in vitro and in vivo
studies in disease models of IBD [109], diabetic nephropathy
[110], and gram-negative sepsis [111], but has not progressed
into clinical trials.

Chalcones and curcumin

Chalcones (Fig. 3B) are compounds with a wide range of biologi-
cal activities, including anti-oxidation and anti-inflammation, pre-
sent in natural products. Their function depends on their
characteristic ab-unsaturated bond that can react with free cys-
teines that are abundantly present in cells [112]. Among their
effects is the modulation of NF-jB signalling via binding MD2.
Xanthohumol and L6H21 are chalcones reported to decrease
LPS-induced production of pro-inflammatory factors. Although
MD2 contains a free cysteine in its hydrophobic pocket (Cys133),
which can be expected to bind to the ab-unsaturated bond of the
described chalcones, the action of xanthohumol is dependent on
its binding in the hydrophobic pocket and interaction with
Tyr102 and Arg90 of MD2 [113–117] (Fig. 3B). Interestingly,
L6H21 exerted beneficial effects in in vitro and in vivo models of
a plethora of inflammatory diseases [118–122].

Another compound described in this context is curcumin,
which binds a variety of targets [123], including the hydro-
phobic pocket in MD2. Although curcumin possesses an ab-
unsaturated bond, it does not bind Cys133 of MD2 [124].
However, caution is warranted, since curcumin has many tar-
gets, and non-specific effects on lipid bilayer properties and
membrane protein function have been described.

MD2 Cys133-binding inhibitors

Caffeic acid phenethyl ester (CAPE) is not a chalcone but
does possess an ab-unsaturated bond and inhibited LPS-
induced production of inflammatory factors, which was
shown to be partially mediated via Cys133 binding in the hy-
drophobic pocket of MD2 (Fig. 3C). However, it also inhib-
ited NF-jB activity in cells overexpressing the MD2
Cys133Ser mutation [125]. In an anterior cruciate ligament
transection (ACLT) rabbit model, IA administration of CAPE
reduced cartilage destruction and proteoglycan loss, but syno-
vial inflammation did not differ from that of control animals
[126]. Other Cys133-binding molecules are dalcetrapib and
auranofin [127], although they do not have an ab-unsatu-
rated bond. Dalcetrapib (also called JTT-705, R1658 and
RO4607381), first identified as cholesteryl ester transfer pro-
tein (CETP) inhibitor [128], additionally inhibits NF-jB
[127]. Clinical trials in dyslipidemic patients showed a favour-
able safety profile [129]. Auranofin is a gold salt used as

therapy for inflammatory arthritis. Interestingly, auranofin is
reported to target IKKb [130], and NF-jB itself, in addition
to MD2 [131] and was found to attenuate the progression of
DMM-induced OAs [132].

Challenges and possibilities for targeting TLR4
signalling in OA

Possible side effects of TLR4 inhibition

TLR4 is a central player in host defence by recognizing
PAMPs. Therefore, its inhibition may result in increased sus-
ceptibility for infections. Indeed, mutations in TLR4 increased
the chance of gram-negative infection [133, 134] and showed
a trend towards increased mortality in systemic inflammatory
response syndrome (SIRS) patients [135]. Nevertheless, trials
with the anti-TLR4 antibody NI-0101 showed no increased
susceptibility to gram-negative infections [86, 136].
Furthermore, a mouse sepsis model treated with TAK-242 did
not increase bacterial blood counts, suggesting that the sus-
ceptibility to infection is not problematically increased upon
TLR4 inhibition [91]. However, it remains to be investigated
whether long-term treatment, which is likely needed in the
case of OA, in contrast with more acute treatment regimens
for sepsis, increases the chance of infections or other adverse
events.

Targeting MD2 instead of TLR4 itself could offer a level of
selectivity for the ligands for which signalling is inhibited.
However, most TLR4 ligands, including HMGB1 and LPS,
require MD2 to induce TLR4 signalling [12, 13, 15].
Concerning S100A8/A9, one study showed that S100A9 does
not interact with MD2 [137], whereas a more recent study us-
ing molecular docking indicated interactions of S100A9 with
both TLR4 and MD2 [138]. This is supported by the finding
that the TLR4/MD2 binding sites of S100A8 and LPS might
be close together, since the effect on both could be inhibited
by the HTA123 anti-TLR4 antibody [139].

Delivery methods

Since OA is often a local disease, adverse effects could poten-
tially be reduced by treating locally. Furthermore, IA injection
can improve drug delivery to the avascular cartilage, which
has been reviewed previously [140–142]. Unfortunately, drug
retention in the joint is low, especially for small molecules, in
which the range can be as little as hours; this suggests a chal-
lenge, since IA injections cannot be used too frequently. In ad-
dition, IA treatment of multiple-joint and small-joint OA (e.g.
hand OA) is not feasible. To improve joint residence time, de-
livery systems are being developed. Liposomes can be used to
deliver hydrophobic small molecules, such as the lipid A mim-
etics, with slow solubilization and sustained release. More po-
lar compounds like miRNAs can be delivered using
hydrogels, or micro- or nano-particles [140]. HA and syn-
thetic hydrogels have been employed as drug carriers for IA
delivery, but the hydrogels themselves are also rapidly cleared
and are not yet able to control long-term small-molecule drug
release [141, 143]. Micro- or nano-particles might, therefore,
be more effective. Indeed, a microparticle-based formulation
of triamcinolone alleviated knee OA pain for a longer period
than conventional triamcinolone [144]. Nanoparticles have a
phagocytosable size, and can be taken up by macrophages,
leading to higher clearance [145]. This downside, however,
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might be beneficial in OA, in which macrophages play a key
role in the inflammation.

Patient phenotyping

Another difficulty with developing OA therapies, is the dis-
ease heterogeneity. Deep phenotyping using multi-omics
approaches will allow for much more detailed endotyping
and information on druggable pathways at the population
level. Moreover, it could additionally allow selection of
patients who likely would benefit from a specific therapy, e.g.
patients with clear involvement of inflammation, which might
benefit from inhibition of TLR4 signalling [146]. In this light,
it is interesting that higher NF-jB expression was observed in
patients with early compared with more advanced OA [147],
and expression of the TLR4 ligands HMGB1 and S100A8/A9
was higher in knee OA compared with hip OA [148].

Conclusions

TLR4 signalling plays a pivotal role in the chronic low-grade
inflammation that is present during OA. Inhibition of this in-
flammatory pathway can be achieved by directly targeting the
TLR4 receptor itself, its co-receptor MD2, or more down-
stream mediators of TLR4 signalling, using multiple
approaches. However, it remains to be investigated whether
long-term inhibition of TLR4 signalling leads to adverse
effects. Moreover, deep phenotyping approaches are neces-
sary to identify patients who are likely to benefit from TLR4
inhibition.
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