Skip to main content
. 2024 Mar 1;24:280. doi: 10.1186/s12885-024-11962-y

Table 2.

Predictive performance of CNN in both training and validation cohort

CNN_layer3 CNN_layer9 CNN_layer15
Training cohort(297) 0 (154) 1 (84) 2 (59) 0 (154) 1 (84) 2 (59) 0 (154) 1 (84) 2 (59)
Predicted number 148 34 8 146 50 35 137 56 34
AUC 0.90 0.79 0.91 0.91 0.82 0.91 0.91 0.82 0.91
Sensitivity 0.961 0.4047 0.5253 0.948 0.5952 0.5953 0.8896 0.6667 0.5762
Specificity 0.6293 0.9014 0.9579 0.7552 0.9061 0.9537 0.8041 0.8450 0.9015
True positive 0.9610 0.4047 0.5254 0.9480 0.5952 0.5953 0.8896 0.6667 0.5762
False negative 0.0390 0.6953 0.4746 0.0520 0.4048 0.4047 0.1104 0.3333 0.4238
Validation cohort(128) 0 (67) 1 (35) 2 (26) 0 (67) 1 (35) 2 (26) 0 (67) 1 (35) 2 (26)
Predicted number 66 24 11 63 25 13 61 28 12
AUC 0.89 0.82 0.86 0.90 0.83 0.86 0.90 0.83 0.85
Sensitivity 0.985 0.6857 0.423 0.9402 0.7142 0.50 0.9104 0.8 0.4615
Specificity 0.6885 0.9139 1.0 0.7704 0.8817 0.9803 0.8360 0.8279 0.99
True positive 0.9850 0.6857 0.4230 0.9402 0.7142 0.5000 0.9104 0.800 0.4615
False negative 0.0150 0.3143 0.5770 0.0598 0.2858 0.5000 0.0896 0.2000 0.5385

Note.—Except where indicated, data in parentheses are numbers of tumors