Skip to main content
. 2024 Feb 28;12:e17017. doi: 10.7717/peerj.17017

Table 2. Classification report of the machine learning algorithms for classifying neurological damage.

Algorithm Accuracy Kappa Variables
Random forest 0.83 0.41 MCHC, RDW-SD, Types of lead exposure, RDW-CV, Globulin, Indirect bilirubin, Total protein
Support vector machine 0.82 0.37 MCHC, RDW-SD, Globulin, RDW-CV, Types of lead exposure, Total bilirubin, WBC
Generalized linear model 0.84 0.43 MCHC, RDW-SD, RDW-CV, Globulin, Types of lead exposure, Indirect bilirubin, Total bilirubin

Notes.

Abbreviations

WBC
white blood cell count
MCHC
mean corpuscular hemoglobin
RDW
red blood cell distribution width
CV
Coefficient of variation
SD
standard deviation