Table 3. The classification performance of CNN models used in this study.
| Models | Accuracy | Error | Recall | Specificity | Precision | F1-score | MCC |
|---|---|---|---|---|---|---|---|
| RestNet18 | 0.9568 | 0.0432 | 0.9675 | 0.9951 | 0.9382 | 0.9511 | 0.9471 |
| GoogLeNet | 0.9216 | 0.0784 | 0.9348 | 0.9912 | 0.8929 | 0.9061 | 0.9016 |
| VGG19 | 0.8676 | 0.1324 | 0.9014 | 0.9851 | 0.8160 | 0.8361 | 0.8331 |
| Inceptionv3 | 0.9572 | 0.0428 | 0.9672 | 0.9952 | 0.9234 | 0.9420 | 0.9389 |
| MobileNetv2 | 0.9514 | 0.0486 | 0.9630 | 0.9945 | 0.9160 | 0.9356 | 0.9321 |
| DenseNet201 | 0.9698 | 0.0302 | 0.9770 | 0.9966 | 0.9483 | 0.9607 | 0.9583 |
| InceptionResNetv2 | 0.9734 | 0.0266 | 0.9734 | 0.9970 | 0.9606 | 0.9667 | 0.9638 |
| EfficientNetb0 | 0.9644 | 0.0356 | 0.9720 | 0.9960 | 0.9261 | 0.9456 | 0.9433 |
| ShuffleNet | 0.9356 | 0.0644 | 0.9481 | 0.9927 | 0.8944 | 0.9161 | 0.9114 |
| Modified ShuffleNet | 0.9604 | 0.0308 | 0.9701 | 0.9906 | 0.9413 | 0.9527 | 0.9503 |