Skip to main content
. 2024 Feb 28;12:e17021. doi: 10.7717/peerj.17021

Table 3. The classification performance of CNN models used in this study.

Models Accuracy Error Recall Specificity Precision F1-score MCC
RestNet18 0.9568 0.0432 0.9675 0.9951 0.9382 0.9511 0.9471
GoogLeNet 0.9216 0.0784 0.9348 0.9912 0.8929 0.9061 0.9016
VGG19 0.8676 0.1324 0.9014 0.9851 0.8160 0.8361 0.8331
Inceptionv3 0.9572 0.0428 0.9672 0.9952 0.9234 0.9420 0.9389
MobileNetv2 0.9514 0.0486 0.9630 0.9945 0.9160 0.9356 0.9321
DenseNet201 0.9698 0.0302 0.9770 0.9966 0.9483 0.9607 0.9583
InceptionResNetv2 0.9734 0.0266 0.9734 0.9970 0.9606 0.9667 0.9638
EfficientNetb0 0.9644 0.0356 0.9720 0.9960 0.9261 0.9456 0.9433
ShuffleNet 0.9356 0.0644 0.9481 0.9927 0.8944 0.9161 0.9114
Modified ShuffleNet 0.9604 0.0308 0.9701 0.9906 0.9413 0.9527 0.9503