Table 6. Overview of datasets and algorithms for WBC classification.
Author | Database | Segmentation | Features | Enhancement | Classification |
---|---|---|---|---|---|
Hegde et al. (2019) | ALL-IDB1 108 images |
TissueQuant algorithm | Morphological feature | Color component of RGB | TissueQuant algorithm |
Liang et al. (2018) | BCCD 1238 images | Nil | Size and intensity of the nucleus | Matrix Transformation | CNN-RNN |
Hegde et al. (2018) | 117 images | TissueQuant | Area, perimeter, circulatory, convexity and solidity | Color contrast technique | Hybrid-classifier (SVM & NN) |
Yadav, Zele & Patil (2018) | Nil | K-means Zack Algorithm | Color feature, geometric feature | Prewitt and Sobel | SVM and ANN |
Di Ruberto, Loddo & Putzu (2016) | ALL-IDBII 260 images, IUMS-IDB 195 images | Pixel-based | Pixel-wise features | RGB channel | SVM |
Liu & Long (2019) | 76 images | Inception ResNets, ImageNet | Nil | Otsu's method and erosion operation | Augmented enhanced bagging ensemble |
Vogado et al. (2018) | ALL-IDB1 108 images | AlexNet + Vgg-f | Transfer learning | Nil | SVM |
Othman, Mohammed & Ali (2017) | Nil | Threshold-based | Shape, intensity and texture | GLCM | MLP-BP neural network |
Zhao et al. (2017) | ALL-IDB1 108 images | Nil | PRICoLBP and PRICoLBP | Nil | Granularity feature and SVM |
Agaian, Madhukar & Chronopoulos (2018) | ALL-IDB1 108 images | K-means clustering algorithm | Morphological features | L * a * b * color space | SVM |