Skip to main content
. 2024 Feb 2;10:e1813. doi: 10.7717/peerj-cs.1813

Table 6. Overview of datasets and algorithms for WBC classification.

The dataset utilization, segmentation techniques, feature types, enhancements applied, and classification algorithms used in various research works on WBC classification.

Author Database Segmentation Features Enhancement Classification
Hegde et al. (2019) ALL-IDB1
108 images
TissueQuant algorithm Morphological feature Color component of RGB TissueQuant algorithm
Liang et al. (2018) BCCD 1238 images Nil Size and intensity of the nucleus Matrix Transformation CNN-RNN
Hegde et al. (2018) 117 images TissueQuant Area, perimeter, circulatory, convexity and solidity Color contrast technique Hybrid-classifier (SVM & NN)
Yadav, Zele & Patil (2018) Nil K-means Zack Algorithm Color feature, geometric feature Prewitt and Sobel SVM and ANN
Di Ruberto, Loddo & Putzu (2016) ALL-IDBII 260 images, IUMS-IDB 195 images Pixel-based Pixel-wise features RGB channel SVM
Liu & Long (2019) 76 images Inception ResNets, ImageNet Nil Otsu's method and erosion operation Augmented enhanced bagging ensemble
Vogado et al. (2018) ALL-IDB1 108 images AlexNet + Vgg-f Transfer learning Nil SVM
Othman, Mohammed & Ali (2017) Nil Threshold-based Shape, intensity and texture GLCM MLP-BP neural network
Zhao et al. (2017) ALL-IDB1 108 images Nil PRICoLBP and PRICoLBP Nil Granularity feature and SVM
Agaian, Madhukar & Chronopoulos (2018) ALL-IDB1 108 images K-means clustering algorithm Morphological features L * a * b * color space SVM