Skip to main content
. 2024 Feb 2;10:e1813. doi: 10.7717/peerj-cs.1813

Table 8. The techniques and datasets used for RBC classification.

Author Database Segmentation Features Enhancement Classification
Du et al. (2019) 17,933 samples from the hospital ImageNet model Morphological feature Nil CNN model
Sampathila, Shet & Basu (2018) Leishman-stained thin blood smear slides RGB color based GLCM Color space GUI
Kihm et al. (2018) 4,000 Manually classified images Nil Shape, size By convolution of NN CNN
Imran & Ahmad (2017) ALL-IDB1 108 images Statistical based thresholding Morphological Rayleigh distribution SVM and ELM
Das, Maiti & Chakraborty (2018) 950 blood cells Marker-controlled watershed algorithm Mean intensity, standard deviation, skewness, kurtosis and entropy Special Fuzzy C-mean Random
forest
Yi, Moon & Javidi (2016) 117 images Manual collection Marker-controlled watershed transform Area, perimeter, circulatory etc. Watershed transform algorithm Gabor-filtered holographic
Abood, Karam & Hluot (2017) Nil Clustering Shape and color Fuzzy logic
Xu et al. (2017) 7,000 single RBCs Nil Shape Geometric transformations Deep CNN
Acharya & Kumar (2017) 1,000 images manually collected K-medoids algorithm Area, perimeter, diameter, shape, geometric Nil Modified
watershed transform