Skip to main content
. 2024 Feb 2;10:e1813. doi: 10.7717/peerj-cs.1813

Table 9. Performance evaluation parameters used for RBC classification.

Author Classification Performance accuracy % Evaluation parameter
Du et al. (2019) CNN model 90.7 Precision, recall and F1 score
Sampathila, Shet & Basu (2018) GUI 96.7 Accuracy
Kihm et al. (2018) CNN 85.6 & 91.8 Prediction accuracy
Imran & Ahmad (2017) SVM and ELM 96 Accuracy
Das, Maiti & Chakraborty (2018) Random forest 99.42 Accuracy
Yi, Moon & Javidi (2016) Gabor-filtered holographic 99 Accuracy
Abood, Karam & Hluot (2017) Fuzzy logic 98 Accuracy
Xu et al. (2017) Deep CNN 91.01, 89.28 Accuracy, mean evaluation accuracy
Acharya & Kumar (2017) Modified watershed transform 98 Accuracy