Table 9. Performance evaluation parameters used for RBC classification.
Author | Classification | Performance accuracy % | Evaluation parameter |
---|---|---|---|
Du et al. (2019) | CNN model | 90.7 | Precision, recall and F1 score |
Sampathila, Shet & Basu (2018) | GUI | 96.7 | Accuracy |
Kihm et al. (2018) | CNN | 85.6 & 91.8 | Prediction accuracy |
Imran & Ahmad (2017) | SVM and ELM | 96 | Accuracy |
Das, Maiti & Chakraborty (2018) | Random forest | 99.42 | Accuracy |
Yi, Moon & Javidi (2016) | Gabor-filtered holographic | 99 | Accuracy |
Abood, Karam & Hluot (2017) | Fuzzy logic | 98 | Accuracy |
Xu et al. (2017) | Deep CNN | 91.01, 89.28 | Accuracy, mean evaluation accuracy |
Acharya & Kumar (2017) | Modified watershed transform | 98 | Accuracy |