Skip to main content
. 2024 Feb 21;10:e1877. doi: 10.7717/peerj-cs.1877

Table 1. The summary of the studies.

Reference Year Dataset Models Classes Accuracy %
Shanmugam et al. (2022) 2022 ADNI AlexNet CN 97.34%
EMCI 97.51%
LMCI 95.19%
MCI 96.82%
AD 94.08%
ResNet-18 CN 98.88%
EMCI 99.14%
LMCI 98.88%
MCI 98.71%
AD 97.51%
GoogleNet CN 97.17%
EMCI 98.28%
LMCI 97.60%
MCI 98.37
AD 96.39%
Mehmood et al. (2021) 2021 ADNI CNN CN vs AD (Group A) 95.38%
CN vs AD (Group B) 98.73%
Mohammadjafari et al. (2021) 2021 ADNI-1 VGG-16 AD, CN 88.50%
ResNet50 83.88%
DenseNet121 94.75%
Sethi et al. (2022) 2022 ADNI CNN CN vs AD 82.32%
CNN+SVM 89.40%
Naz, Ashraf & Zaib (2021) 2021 ADNI VGG-19 MCI vs AD 99.27%
VGG-16 CN vs AD 98.89%
AlexNet CN vs AD 91.38%
VGG-16 MCI vs CN 97.06%
Farooq et al. (2017) 2017 ADNI AlexNet AD, LMCI, MCI, CN 98.88%
ResNet-18 98.01%
ResNet-152 98.14%
Savaş (2022) 2022 ADNI EfficientNetB0 CN, MCI, AD 92.98%
EfficientNetB1 91.91%
Li, Cheng & Liu (2017) 2017 ADNI CNN_S3 CN, AD 84.12%
CAE_S2 82.24%
CAE_S3 81.19%
CAE_S4 76.17%
Hybrid 88.31%
Khan et al. (2022) 2022 ADNI XGB + DT + SVM CN, MCI, AD 95.75%
Mohi ud din dar et al. (2023) 2023 ADNI CNN CN, LMCI, EMCI, MCI, AD 96.22%
Mora-Rubio et al. (2023) 2023 ADNI, OASIS DenseNet CN vs MCI 66.41%
EfficientNet
CN vs AD 89.02%
VIT CN vs LMCI 80.56%
Siamese CN vs EMCI 67.19%