Skip to main content
. 2024 Feb 21;10:e1877. doi: 10.7717/peerj-cs.1877

Table 5. Training results when models run.

1 vs 1 Models Accuracy Precision Recall Auc F1 score Validation accuracy
CN/AD EfficientNetB0 0.9990 0.9985 0.9985 0.9999 0.9984 0.9892
DenseNet121 0.9959 0.9939 0.9939 0.9996 0.9938 0.9850
AlexNet 0.9980 0.9970 0.9970 0.9999 0.9970 0.9896
MCI/AD EfficientNetB0 0.9987 0.9980 0.9980 1.0000 0.9980 0.9828
DenseNet121 0.9972 0.9958 0.9958 0.9999 0.9957 0.9406
AlexNet 0.9958 0.9937 0.9937 0.9989 0.9937 0.9841
CN/MCI EfficientNetB0 0.9975 0.9963 0.9963 0.9996 0.9963 0.9724
DenseNet121 0.9869 0.9869 0.9869 0.9987 0.9968 0.9767
AlexNet 0.9961 0.9942 0.9942 0.9986 0.9942 0.9702