Table 5. Training results when models run.
| 1 vs 1 | Models | Accuracy | Precision | Recall | Auc | F1 score | Validation accuracy |
|---|---|---|---|---|---|---|---|
| CN/AD | EfficientNetB0 | 0.9990 | 0.9985 | 0.9985 | 0.9999 | 0.9984 | 0.9892 |
| DenseNet121 | 0.9959 | 0.9939 | 0.9939 | 0.9996 | 0.9938 | 0.9850 | |
| AlexNet | 0.9980 | 0.9970 | 0.9970 | 0.9999 | 0.9970 | 0.9896 | |
| MCI/AD | EfficientNetB0 | 0.9987 | 0.9980 | 0.9980 | 1.0000 | 0.9980 | 0.9828 |
| DenseNet121 | 0.9972 | 0.9958 | 0.9958 | 0.9999 | 0.9957 | 0.9406 | |
| AlexNet | 0.9958 | 0.9937 | 0.9937 | 0.9989 | 0.9937 | 0.9841 | |
| CN/MCI | EfficientNetB0 | 0.9975 | 0.9963 | 0.9963 | 0.9996 | 0.9963 | 0.9724 |
| DenseNet121 | 0.9869 | 0.9869 | 0.9869 | 0.9987 | 0.9968 | 0.9767 | |
| AlexNet | 0.9961 | 0.9942 | 0.9942 | 0.9986 | 0.9942 | 0.9702 |