Table 7. Training results when models run.
| 1 vs All | Models | Accuracy | Precision | Recall | Auc | F1 score | Validation accuracy |
|---|---|---|---|---|---|---|---|
| MCI/CNAD | EfficientNetB0 | 0.9984 | 0.9976 | 0.9976 | 0.9998 | 0.9976 | 0.9790 |
| DenseNet121 | 0.9970 | 0.9970 | 0.9970 | 0.9999 | 0.9969 | 0.9796 | |
| AlexNet | 0.9969 | 0.9953 | 0.9953 | 0.9993 | 0.9953 | 0.9233 | |
| AD/CNMCI | EfficientNetB0 | 0.9929 | 0.9894 | 0.9894 | 0.9991 | 0.9893 | 0.9915 |
| DenseNet121 | 0.9983 | 0.9983 | 0.9983 | 0.9999 | 0.9982 | 0.9915 | |
| AlexNet | 0.9990 | 0.9985 | 0.9985 | 0.9999 | 0.9985 | 0.9972 | |
| CN/MCIAD | EfficientNetB0 | 0.9973 | 0.9959 | 0.9959 | 0.9998 | 0.9959 | 0.9807 |
| DenseNet121 | 0.9853 | 0.9853 | 0.9853 | 0.9980 | 0.9852 | 0.9702 | |
| AlexNet | 0.9988 | 0.9982 | 0.9982 | 0.9999 | 0.9982 | 0.9776 |