Skip to main content
. 2024 Feb 21;10:e1877. doi: 10.7717/peerj-cs.1877

Table 7. Training results when models run.

1 vs All Models Accuracy Precision Recall Auc F1 score Validation accuracy
MCI/CNAD EfficientNetB0 0.9984 0.9976 0.9976 0.9998 0.9976 0.9790
DenseNet121 0.9970 0.9970 0.9970 0.9999 0.9969 0.9796
AlexNet 0.9969 0.9953 0.9953 0.9993 0.9953 0.9233
AD/CNMCI EfficientNetB0 0.9929 0.9894 0.9894 0.9991 0.9893 0.9915
DenseNet121 0.9983 0.9983 0.9983 0.9999 0.9982 0.9915
AlexNet 0.9990 0.9985 0.9985 0.9999 0.9985 0.9972
CN/MCIAD EfficientNetB0 0.9973 0.9959 0.9959 0.9998 0.9959 0.9807
DenseNet121 0.9853 0.9853 0.9853 0.9980 0.9852 0.9702
AlexNet 0.9988 0.9982 0.9982 0.9999 0.9982 0.9776