Table 8. Testing results when models run.
| 1 vs all | Models | Accuracy | Precision | Recall | Auc | F1 score | MCC |
|---|---|---|---|---|---|---|---|
| MCI/CNAD | EfficientNetB0 | 0.9705 | 0.9649 | 0.9677 | 0.9680 | 0.9663 | 0.9326 |
| DenseNet121 | 0.9840 | 0.9838 | 0.9796 | 0.9800 | 0.9816 | 0.9633 | |
| AlexNet | 0.8827 | 0.9203 | 0.8193 | 0.8190 | 0.8492 | 0.7362 | |
| AD/CNMCI | EfficientNetB0 | 0.9880 | 0.9865 | 0.9870 | 0.9870 | 0.9867 | 0.9734 |
| DenseNet121 | 0.9948 | 0.9934 | 0.9951 | 0.9950 | 0.9943 | 0.9885 | |
| AlexNet | 0.9958 | 0.9954 | 0.9953 | 0.9950 | 0.9954 | 0.9874 | |
| CN/MCIAD | EfficientNetB0 | 0.9757 | 0.9733 | 0.9725 | 0.9730 | 0.9729 | 0.9458 |
| DenseNet121 | 0.9783 | 0.9836 | 0.9685 | 0.9680 | 0.9754 | 0.9665 | |
| AlexNet | 0.9654 | 0.9738 | 0.9500 | 0.9500 | 0.9605 | 0.9234 |