Skip to main content
. 2024 Jan 31;10:e1842. doi: 10.7717/peerj-cs.1842

Table 2. Pseudocode of multi label English translation text classification algorithm.

Input: Training parameter set T = {(wk, ykj)Lj = 1}k = 1, model parameter θ.
1: W = {wk = 1/N | k = 1, 2, …N}
2: repeat
3:   for all w = {(Wk, ykj )Nj = 1}k = 1∈D do
4:     for l in range(N)
5:       wk = {w1, w2, …, wn}
6:       Tk = Att-BILSTM(wk)
7:       for o in rang (O)
8:         Xok = transformer(Tk)
9:       end for
10:       for p in range (p)
11:         ht1 = TLCM(Xok)
12:         ht2 = BERT(Xok)
13:         ht3 = [ht1,ht2]
14:       end for
15:       for q in range(Q)
16:       vq = Conv(ht1)
17:       Fq = Maxpooling(vq)
18:       end for
19:     M = Concat(Fq , hpt)
20:     A = Attention(M)
21:     W2 = Fully Connected (A, Dropout)
22:     yjk = δ (w2)
23:   end for
24: Calculate the gradient of each parameter