Skip to main content
. 2024 Jan 29;10:e1824. doi: 10.7717/peerj-cs.1824

Table 5. The comparative experimental results on the Tusimple dataset.

Bold numbers are the best results.

Method Backbone F1 (%) Accuracy (%) Proportion of FP (%) Proportion of FN (%)
SCNN (Pan et al., 2018) VGG16 95.57 96.53 6.17 1.8
RESA (Zheng et al., 2021) Resnet18 96.93 96.84 3.63 2.48
LaneATT (Tabelini et al., 2021a) Resnet18 96.71 95.57 3.56 3.01
LaneATT (Tabelini et al., 2021a) Resnet34 96.77 95.63 3.53 2.92
LaneATT (Tabelini et al., 2021a) Resnet122 96.06 96.10 5.64 2.17
PolyLaneNet (Tabelini et al., 2021b) EfficientNetB0 90.02 93.36 9.42 9.33
LSTR (Liu et al., 2021b) Resnet18 96.18 2.91 3.38
CondLane (Liu et al., 2021a) Resnet18 97.01 95.48 2.18 3.80
CondLane (Liu et al., 2021a) Resnet34 96.98 95.37 2.20 3.82
CondLane (Liu et al., 2021a) Resnet101 97.24 96.54 2.01 3.50
CLRNet (Zheng et al., 2022) Resnet18 97.89 96.84 2.28 1.92
CLRNet (Zheng et al., 2022) Resnet34 97.82 96.87 2.27 2.08
CLRNet (Zheng et al., 2022) Resnet101 97.62 96.83 2.37 2.38
Our method Resnet18 98.01 96.91 2.31 2.12
Our method Resnet34 97.89 96.93 2.52 2.41
Our method Resnet101 97.68 96.89 2.97 3.09