Table 5. The comparative experimental results on the Tusimple dataset.
Bold numbers are the best results.
| Method | Backbone | F1 (%) | Accuracy (%) | Proportion of FP (%) | Proportion of FN (%) |
|---|---|---|---|---|---|
| SCNN (Pan et al., 2018) | VGG16 | 95.57 | 96.53 | 6.17 | 1.8 |
| RESA (Zheng et al., 2021) | Resnet18 | 96.93 | 96.84 | 3.63 | 2.48 |
| LaneATT (Tabelini et al., 2021a) | Resnet18 | 96.71 | 95.57 | 3.56 | 3.01 |
| LaneATT (Tabelini et al., 2021a) | Resnet34 | 96.77 | 95.63 | 3.53 | 2.92 |
| LaneATT (Tabelini et al., 2021a) | Resnet122 | 96.06 | 96.10 | 5.64 | 2.17 |
| PolyLaneNet (Tabelini et al., 2021b) | EfficientNetB0 | 90.02 | 93.36 | 9.42 | 9.33 |
| LSTR (Liu et al., 2021b) | Resnet18 | − | 96.18 | 2.91 | 3.38 |
| CondLane (Liu et al., 2021a) | Resnet18 | 97.01 | 95.48 | 2.18 | 3.80 |
| CondLane (Liu et al., 2021a) | Resnet34 | 96.98 | 95.37 | 2.20 | 3.82 |
| CondLane (Liu et al., 2021a) | Resnet101 | 97.24 | 96.54 | 2.01 | 3.50 |
| CLRNet (Zheng et al., 2022) | Resnet18 | 97.89 | 96.84 | 2.28 | 1.92 |
| CLRNet (Zheng et al., 2022) | Resnet34 | 97.82 | 96.87 | 2.27 | 2.08 |
| CLRNet (Zheng et al., 2022) | Resnet101 | 97.62 | 96.83 | 2.37 | 2.38 |
| Our method | Resnet18 | 98.01 | 96.91 | 2.31 | 2.12 |
| Our method | Resnet34 | 97.89 | 96.93 | 2.52 | 2.41 |
| Our method | Resnet101 | 97.68 | 96.89 | 2.97 | 3.09 |