Table 7. Comparative experimental results adopting ResNet34 as the backbone on CULane dataset.
Bold numbers are the best results.
| Method | Backbone | F1 (%) | FPS | Normal (%) | Crowd (%) | Dazzle (%) | Shadow (%) | No line (%) | Arrow (%) | Curve (%) | Cross | Night (%) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| SCNN (Pan et al., 2018) | VGG16 | 71.60 | 7.5 | 90.60 | 69.70 | 58.50 | 66.90 | 43.40 | 84.10 | 64.40 | 1990 | 66.10 |
| LaneAF (Abualsaud et al., 2021) | ERFNet | 75.63 | 24 | 91.10 | 73.32 | 69.71 | 75.81 | 50.62 | 86.86 | 65.02 | 1844 | 70.90 |
| LaneAF (Abualsaud et al., 2021) | DLA-34 | 77.41 | 20 | 91.80 | 75.61 | 71.78 | 79.12 | 51.38 | 86.88 | 72.70 | 1360 | 73.03 |
| FOLOLane (Qu et al., 2021) | ERFNet | 78.80 | 40 | 92.70 | 77.80 | 75.20 | 79.30 | 52.10 | 89.00 | 69.40 | 1569 | 74.50 |
| RESA (Zheng et al., 2021) | Resnet34 | 74.50 | 45.5 | 91.90 | 72.40 | 66.50 | 72.00 | 46.30 | 88.10 | 68.60 | 1896 | 69.80 |
| GANet-m (Morley et al., 2001) | Resnet34 | 79.39 | 127 | 93.73 | 77.92 | 71.64 | 79.49 | 52.63 | 90.37 | 76.32 | 1368 | 73.67 |
| LaneFormer (Han et al., 2022) | Resnet34 | 74.70 | – | 90.74 | 72.31 | 69.12 | 71.57 | 47.37 | 85.07 | 65.90 | 26 | 67.77 |
| LaneATT (Tabelini et al., 2021a) | Resnet34 | 76.68 | 171 | 92.14 | 75.03 | 66.47 | 78.15 | 49.39 | 88.38 | 67.72 | 1330 | 70.72 |
| CondLane (Liu et al., 2021a) | Resnet34 | 78.74 | 128 | 93.38 | 77.14 | 71.17 | 79.93 | 51.85 | 89.89 | 73.88 | 1387 | 73.92 |
| CLRNet (Zheng et al., 2022) | Resnet34 | 79.73 | 103 | 93.49 | 78.06 | 74.57 | 79.92 | 54.01 | 90.59 | 72.77 | 1216 | 75.02 |
| Our method | Resnet34 | 79.94 | 126 | 93.70 | 78.24 | 74.81 | 81.21 | 54.21 | 90.74 | 73.92 | 1160 | 74.85 |