Skip to main content
. 2024 Jan 29;10:e1824. doi: 10.7717/peerj-cs.1824

Table 7. Comparative experimental results adopting ResNet34 as the backbone on CULane dataset.

Bold numbers are the best results.

Method Backbone F1 (%) FPS Normal (%) Crowd (%) Dazzle (%) Shadow (%) No line (%) Arrow (%) Curve (%) Cross Night (%)
SCNN (Pan et al., 2018) VGG16 71.60 7.5 90.60 69.70 58.50 66.90 43.40 84.10 64.40 1990 66.10
LaneAF (Abualsaud et al., 2021) ERFNet 75.63 24 91.10 73.32 69.71 75.81 50.62 86.86 65.02 1844 70.90
LaneAF (Abualsaud et al., 2021) DLA-34 77.41 20 91.80 75.61 71.78 79.12 51.38 86.88 72.70 1360 73.03
FOLOLane (Qu et al., 2021) ERFNet 78.80 40 92.70 77.80 75.20 79.30 52.10 89.00 69.40 1569 74.50
RESA (Zheng et al., 2021) Resnet34 74.50 45.5 91.90 72.40 66.50 72.00 46.30 88.10 68.60 1896 69.80
GANet-m (Morley et al., 2001) Resnet34 79.39 127 93.73 77.92 71.64 79.49 52.63 90.37 76.32 1368 73.67
LaneFormer (Han et al., 2022) Resnet34 74.70 90.74 72.31 69.12 71.57 47.37 85.07 65.90 26 67.77
LaneATT (Tabelini et al., 2021a) Resnet34 76.68 171 92.14 75.03 66.47 78.15 49.39 88.38 67.72 1330 70.72
CondLane (Liu et al., 2021a) Resnet34 78.74 128 93.38 77.14 71.17 79.93 51.85 89.89 73.88 1387 73.92
CLRNet (Zheng et al., 2022) Resnet34 79.73 103 93.49 78.06 74.57 79.92 54.01 90.59 72.77 1216 75.02
Our method Resnet34 79.94 126 93.70 78.24 74.81 81.21 54.21 90.74 73.92 1160 74.85