Skip to main content
. 2024 Jan 29;10:e1824. doi: 10.7717/peerj-cs.1824

Table 8. Comparative experimental results adopting ResNet101 as the backbone on the CULane dataset.

Bold numbers are the best results.

Method Backbone F1 (%) FPS Normal (%) Crowd (%) Dazzle (%) Shadow (%) No line (%) Arrow (%) Curve (%) Cross Night (%)
SCNN (Pan et al., 2018) VGG16 71.60 7.5 90.60 69.70 58.50 66.90 43.40 84.10 64.40 1990 66.10
LaneAF (Abualsaud et al., 2021) ERFNet 75.63 24 91.10 73.32 69.71 75.81 50.62 86.86 65.02 1844 70.90
LaneAF (Abualsaud et al., 2021) DLA-34 77.41 20 91.80 75.61 71.78 79.12 51.38 86.88 72.70 1360 73.03
FOLOLane (Qu et al., 2021) ERFNet 78.80 40 92.70 77.80 75.20 79.30 52.10 89.00 69.40 1569 74.50
LaneATT (Tabelini et al., 2021a) Resnet122 77.02 26 91.74 76.16 69.47 76.31 50.46 86.29 64.05 1264 70.81
GANet-L (Morley et al., 2001) Resnet101 79.63 63 93.67 78.66 71.82 78.32 53.38 89.86 77.37 1352 73.85
CondLane (Liu et al., 2021a) Resnet101 79.48 47 93.47 77.44 70.93 80.91 54.13 90.16 75.21 1201 74.80
CLRNet (Zheng et al., 2022) Resnet101 80.13 46 93.85 78.78 72.49 82.33 54.50 89.79 75.57 1262 75.51
Our method Resnet101 80.31 67 94.04 78.91 74.64 82.56 54.69 89.84 75.83 1179 75.43