Table 8. Comparative experimental results adopting ResNet101 as the backbone on the CULane dataset.
Bold numbers are the best results.
| Method | Backbone | F1 (%) | FPS | Normal (%) | Crowd (%) | Dazzle (%) | Shadow (%) | No line (%) | Arrow (%) | Curve (%) | Cross | Night (%) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| SCNN (Pan et al., 2018) | VGG16 | 71.60 | 7.5 | 90.60 | 69.70 | 58.50 | 66.90 | 43.40 | 84.10 | 64.40 | 1990 | 66.10 |
| LaneAF (Abualsaud et al., 2021) | ERFNet | 75.63 | 24 | 91.10 | 73.32 | 69.71 | 75.81 | 50.62 | 86.86 | 65.02 | 1844 | 70.90 |
| LaneAF (Abualsaud et al., 2021) | DLA-34 | 77.41 | 20 | 91.80 | 75.61 | 71.78 | 79.12 | 51.38 | 86.88 | 72.70 | 1360 | 73.03 |
| FOLOLane (Qu et al., 2021) | ERFNet | 78.80 | 40 | 92.70 | 77.80 | 75.20 | 79.30 | 52.10 | 89.00 | 69.40 | 1569 | 74.50 |
| LaneATT (Tabelini et al., 2021a) | Resnet122 | 77.02 | 26 | 91.74 | 76.16 | 69.47 | 76.31 | 50.46 | 86.29 | 64.05 | 1264 | 70.81 |
| GANet-L (Morley et al., 2001) | Resnet101 | 79.63 | 63 | 93.67 | 78.66 | 71.82 | 78.32 | 53.38 | 89.86 | 77.37 | 1352 | 73.85 |
| CondLane (Liu et al., 2021a) | Resnet101 | 79.48 | 47 | 93.47 | 77.44 | 70.93 | 80.91 | 54.13 | 90.16 | 75.21 | 1201 | 74.80 |
| CLRNet (Zheng et al., 2022) | Resnet101 | 80.13 | 46 | 93.85 | 78.78 | 72.49 | 82.33 | 54.50 | 89.79 | 75.57 | 1262 | 75.51 |
| Our method | Resnet101 | 80.31 | 67 | 94.04 | 78.91 | 74.64 | 82.56 | 54.69 | 89.84 | 75.83 | 1179 | 75.43 |