View full-text article in PMC PeerJ Comput Sci. 2024 Jan 31;10:e1713. doi: 10.7717/peerj-cs.1713 Search in PMC Search in PubMed View in NLM Catalog Add to search Copyright and License information © 2024 Jafaei et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. PMC Copyright notice Algorithm 1. MOG algorithm for LRMF. input: X=(x1,x2,…xn)∈Rd×n Randomly initialize Π,Σ,V repeat (EStep):Evaluateγijkfori=1,….,n,j=1,…,d,k=1,…,Maxkby Eq. (6) (MStepforΠ,Σ):Evaluateπk,σk2fork=1,…,Maxkby Eq. (10) (MStepforU,V):EvaluateU,VbysolvingminU,V∥W⊙(X−UVT)∥F2 through WALS where W=∑k=1Maxkγijk2πσk2fori=1,….,d,j=1,…,n (AutomaticMaxktuning):IfKL(N(μi,σi2),N(μj,σj2))<εforsome i,j,thencombineith,jthgaussiancomponentintoaunique gaussianbylettingπi=πi+πj,σi2=(πiσi2+πjσj2)/(πi+πj) μi=πiμi+πjμjπi+πj removingthejthgaussianfromΠ,Σ.letMaxk=Maxk−1 until meet the stop criteria return U, V