Skip to main content
. 2024 Jan 29;10:e1816. doi: 10.7717/peerj-cs.1816

Table 4. Results on average classification accuracy of RCSA vs exiting algorithms.

Dataset WBCO Glass Wine Zoo Vehicle Protein Segment Wdbc Soybean Lung cancer Sonar
DFS 0.9337 0.7157 0.9514 0.9687 0.7336 0.788 0.9674 0.9342 1 0.9269 0.9265
MBOICO 0.934 0.7186 0.9563 0.9775 0.727 0.8173 0.9665 0.9418 1 0.9846 0.9668
MBOLF 0.8741 0.7104 0.95 0.965 0.7302 0.8348 0.9693 0.9432 1 0.9846 0.9674
FS-BGSK 0.939 0.786 0.9563 0.9775 0.7303 0.8195 0.966 0.9381 1 0.95 0.951
BGSA 0.9387 0.7535 0.9537 0.961 0.7337 0.7826 0.9751 0.9342 1 0.9538 0.9324
FS-pBGSK 0.941 0.7462 0.9605 0.9787 0.7363 0.8304 0.9706 0.9394 1 0.98 0.946
HGSA 0.9306 0.6973 0.9114 0.9725 0.7225 0.7923 0.9301 0.9399 1 0.95 0.9502
DGUFS 0.9282 0.6773 0.9394 0.9662 0.7312 0.8141 0.9662 0.9373 1 0.9961 0.9583
WOASAT 0.9247 0.6359 0.9239 0.965 0.7219 0.8087 0.9507 0.9298 1 0.9692 0.9181
BSSA 0.9311 0.6767 0.938 0.97 0.697 0.8174 0.969 0.9281 1 0.9385 0.9398
BRCSA 0.942 0.819 0.96 0.985 0.731 0.843 0.966 0.951 1 0.9962 0.97
Without FS 0.96 0.671 0.732 0.932 0.69 0.691 0.96 0.916 0.984 0.461 0.816