Table 4. Results on average classification accuracy of RCSA vs exiting algorithms.
Dataset | WBCO | Glass | Wine | Zoo | Vehicle | Protein | Segment | Wdbc | Soybean | Lung cancer | Sonar |
---|---|---|---|---|---|---|---|---|---|---|---|
DFS | 0.9337 | 0.7157 | 0.9514 | 0.9687 | 0.7336 | 0.788 | 0.9674 | 0.9342 | 1 | 0.9269 | 0.9265 |
MBOICO | 0.934 | 0.7186 | 0.9563 | 0.9775 | 0.727 | 0.8173 | 0.9665 | 0.9418 | 1 | 0.9846 | 0.9668 |
MBOLF | 0.8741 | 0.7104 | 0.95 | 0.965 | 0.7302 | 0.8348 | 0.9693 | 0.9432 | 1 | 0.9846 | 0.9674 |
FS-BGSK | 0.939 | 0.786 | 0.9563 | 0.9775 | 0.7303 | 0.8195 | 0.966 | 0.9381 | 1 | 0.95 | 0.951 |
BGSA | 0.9387 | 0.7535 | 0.9537 | 0.961 | 0.7337 | 0.7826 | 0.9751 | 0.9342 | 1 | 0.9538 | 0.9324 |
FS-pBGSK | 0.941 | 0.7462 | 0.9605 | 0.9787 | 0.7363 | 0.8304 | 0.9706 | 0.9394 | 1 | 0.98 | 0.946 |
HGSA | 0.9306 | 0.6973 | 0.9114 | 0.9725 | 0.7225 | 0.7923 | 0.9301 | 0.9399 | 1 | 0.95 | 0.9502 |
DGUFS | 0.9282 | 0.6773 | 0.9394 | 0.9662 | 0.7312 | 0.8141 | 0.9662 | 0.9373 | 1 | 0.9961 | 0.9583 |
WOASAT | 0.9247 | 0.6359 | 0.9239 | 0.965 | 0.7219 | 0.8087 | 0.9507 | 0.9298 | 1 | 0.9692 | 0.9181 |
BSSA | 0.9311 | 0.6767 | 0.938 | 0.97 | 0.697 | 0.8174 | 0.969 | 0.9281 | 1 | 0.9385 | 0.9398 |
BRCSA | 0.942 | 0.819 | 0.96 | 0.985 | 0.731 | 0.843 | 0.966 | 0.951 | 1 | 0.9962 | 0.97 |
Without FS | 0.96 | 0.671 | 0.732 | 0.932 | 0.69 | 0.691 | 0.96 | 0.916 | 0.984 | 0.461 | 0.816 |