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1. Introduction
Stochastic processes impact upon many areas of biology and investigating
them requires diverse approaches. In April 2023, a Hooke Discussion Meeting
(Royal Society, London, UK) brought together scientists with backgrounds in
genetics, developmental biology and cancer together with experts from more
traditionally quantitative disciplines to combine viewpoints into moulding a
sense of where the field is and where it might go. Sessions were organized
around cell state and single-cell transcriptomics, mathematical modelling,
genetic and epigenetic disease, and cellular signalling and canalization.

Much of the emphasis on stochastic processes in biology has been on gene
expression, perhaps because the techniques to measure gene expression are
accessible and widely used, rather than effects on gene expression being
especially dominant compared to other aspects of cell physiology. Early work
reporting seemingly random gene expression goes back at least to the 1950s
[1], although the ‘field’ of stochastic gene expression had to wait until the
early 2000s for a substantial surge in popularity [2]. A workshop on stochastic
processes in development [3] was held in 2010, marrying then-new single-cell
technology together with some new developmental phenomena that might
have been explainable by stochastic gene expression as an underlying cause.
The available technology included imaging methods to study gene expression
dynamics in single cells and initial attempts to bring these approaches into
both in vitro differentiation models and tissues. However, the subsequent devel-
opment and extensive use of genome-wide single-cell approaches—primarily to
measure single-cell transcriptomes, but more recently other features, such as
chromatin state, RNA turnover and the spatial organization of transcript con-
tent in complex cell populations—suggested it would be timely to organize
another meeting to discuss recent progress and current challenges in this area.

One persistent challenge that needed to be absorbed by the discussion was
the fuzziness of nomenclature to describe different sources of stochasticity. The
heterogeneity of gene expression in genetically identical cells exposed to the
same conditions is often referred to as gene expression noise. A popular oper-
ational sub-division of noise into ‘intrinsic’ and ‘extrinsic’ noise [4] is still
commonly used. Intrinsic noise describes the variation in the expression between
two identical reporter genes within single cells, which is ascribed to the low
numbers of molecules (e.g. transcription factors) with control functions on
gene expression. By contrast, extrinsic noise reflects the variation in reporter
expression between cells in otherwise identical conditions, which would
represent, for example, different cell-cycle states, mitochondrial content or sig-
nalling histories. While extrinsic noise is generally perceived to have an
underlying cause, the sheer complexity of distinguishing mechanisms involved
means that extrinsic noise tends to be bundled into intrinsic noise, at least in
modelling approaches. While the early experiments comparing reporters in
microbes found clear separation of sources of variation, in more complex devel-
opmental and disease models, with many hidden variables, these definitions
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cannot be cleanly applied. The need for consistent use of
definitions in different systems was debated and use of oper-
ational definitions without sufficient care can be misleading:
intrinsic noise is often bundled together with transcriptional
bursting—this may be convenient in modelling, but it ignores
the reality that transcription is regulated by signalling. Along
similar lines, it seems important to be clear whether a disease
phenotype becomes penetrant because of molecular noise or
some (albeit unknown) chemical or mechanical stress.

To generalize these examples, considering noise within
biological systems—whether this be ‘real’ noise or a convenient
approach tomodelling complex deterministic processes—raises
questions about where we are to find the clear causal
objects. There is a tendency to look at the gene because there is
so much data available at that level and discoveries
of mutants for many genes that cause striking developmen-
tal and disease phenotypes anchored the gene-as-instructive
view. However, variability among genetically identical individ-
uals, ranging from cellular diversity within a multicellular
organism to incomplete penetrance for complex morphological
traits, forces us to acknowledge that genetic instructions interact
with mechanisms and information within the wider system,
such that for the most part, there is no privileged scale at
which biological functions are determined [5].
2. Variable biological properties can influence
biological function positively or negatively

A key challenge in studying probabilistic biological systems
remains the identification of intrinsic noisewhen themeasured
output is often an emergent property assessed at different
length scales and/or later timepoints with multiple potential
causal objects. Robert Johnston and co-workers [6] illustrate
this through elegant cell fate specification models, including
rhodopsin choice by photoreceptors in the Drosophila eye.
The proportion of cells which adopt rhodopsin 4 expression is
largely consistent between individuals, but their position is
variable. However, the stochastic distribution of rhodopsin 4
expression is deterministically controlled by prior expression
of a transcription factor, spineless. Stochastic initiation of spine-
less expression acts as a binary switch, deterministically
instructing differentiation. Thus, the stochastic positioning
of rhodopsin 4-expressing cells is deterministically controlled
by the binary expression of spineless, itself stochastically
distributed by the action of as yet unknown earlier events.

A similar trans-scale problem is discussed in the patho-
logical context of congenital malformations. Some congenital
malformations correspond to a binary event earlier in develop-
ment. For example, incomplete closure of the neural tube
causes a portion of the central nervous system to remain
exposed on the back of the embryo, causing neural tube
defects. Even between isogenic individuals, these malfor-
mations are often ‘partially penetrant’—affecting some
individuals but not others—and can be phenotypically vari-
able, for example in the length of exposed neural tissue.
Dagan Jenkins [7] discusses partial penetrance and phenotypic
variability in the context of congenital limb malformations,
proposing a genetic threshold model to explain their variable
emergence. Limb malformations are a particularly tractable
system to identify variable outcomes by comparing the left
and right sides, which develop largely independently and
often show different levels of pathology. Manuscripts in this
special issue also discuss pathological contributions of stochas-
tic processes related to cancer. Andrew Teschendorff [8]
describes ‘quasi-stochastic’ DNA methylation changes which
cells accrue during division and accumulate with age. He pro-
poses an epigenetic ‘clock’ wherein accumulation of gene
dysregulation, particularly suppression of tissue-specific tran-
scription factors, increases cell plasticity and the probability
of becoming cancerous. A review by Cristina Pina [9] considers
stochastic gene expression as a promoter of cancer progression.
She discusses a type of leukaemia inwhich loss of an epigenetic
regulator increases transcriptional variability in leukaemic
compared with pre-leukaemic cells. This variability can then
allow exploration of different phenotypes making the cancer
more robust and/or pernicious, for example, by allowing the
persistence of rare cells when subject to drug treatment.

This epigenetic repression of gene expression noise
suggests evolution of noise-buffering mechanisms. Carla
Mulas [10] provides another example of transcriptional noise
buffering: post-transcriptional modification of proteins to
achieve rapid and coherent transitions in cell state during
differentiation of stem cells, providing greater synchronicity
than would be expected from the variable levels of their
transcripts. Various presentations during the meeting also dis-
cussed buffering through redundancy; at the molecular level
through feedback loops or complementary branches of gene
regulatory networks, at the organelle level by sequestration
of ‘excess’ proteins in phase separated compartments [11]
and at the cellular level as exemplified by the dispensability
of practically any individual cell during vertebrate morpho-
genesis. Effects at the level of the cell are considered by Pilar
Guerrero&Ruben Perez-Carasco [12], who exploremechanical
causes and consequences of biological variability, namely
the effect of friction on cellular deformations, for example
during mitosis.

Active buffering—or adaptation to functionally consequen-
tial biological noise—suggests that the sources of variability are
either uncontrollable (e.g. ion diffusion rates) or potentially
beneficial. James Locke and co-workers [13] review examples
of beneficial stochastic variability in germination of isogenic
seedlings as ‘bet-hedging’ against catastrophic environmental
changes. Veronica van Heyningen [14] discusses further
benefits of variability, such as stochastic DNA recombination
which generates immunological diversity and the inherent
need for genetic diversity to permit evolutionary adaptation.
Also discussed in depth was the potential for noise to enable
cellular plasticity—although likely a bad thing in a tumour,
the potential for some random fluctuations may enhance
the impetus for reversal of differentiation for a cell that finds
itself in the wrong niche [15]. These and other examples
emphasize the importance of quantifying variability in
biological parameters as potentially beneficial or pathogenic.
3. Technology
One of the motivations for the meeting was the explosion in
single-cell technologies in the past 10 years. Single-cell
RNAseq is perhaps, in isolation, not especially good atmeasur-
ing stochastic gene expression—the data are too noisy, and
highly top-sliced, capturing accurate estimates of transcript
abundance for only the most strongly expressed genes,
although simulations indicate scRNAseq can certainly reflect
the outputs of noisy transcription [16]. Rory Maizels [17]
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writes a thoughtful piece on how these technologies have been
further developed and exploited to superimpose temporal
information onto the data. Although data on specific genes in
single cells may suffer from technical noise, aggregated infor-
mation on similar cells is providing the potential to predict
how differences (random or otherwise) between cells at one
time point can map onto phenotypic differences later on in
development (or cancer, infection, etc.). The inferred cell trajec-
tories are only predictions, it would of course be useful to test
these predictions, by following the individual cells in real time,
while imaging their gene expression. In addition, with single-
cell proteomics appearing on the horizon, we should also be
concerned that much of the variability we observe at the tran-
script level may not be particularly strong at the protein level,
at least in an initial survey [18]. Maizels finishes by implying
that it is perhaps not the technology that is limiting us, but
our own conceptual frameworks for defining causality.
.Soc.B
379:2023004
4. Future outlook
An important outcome of the Hooke meeting and this special
issue resulting from it is the raising of new questions.
Stochastic effects have been invoked to explain processes
ranging from the activity of individual ion channels to the
emergence of cancer, yet the field is rarely brought together
to compare notes. We hope that conversations started
during this meeting will lead to rich interdisciplinary collab-
orations providing new insights into the causes and
consequences of stochastic processes in biology.
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