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1   |   INTRODUCTION

Intensity modulations of the acoustic envelope reflect the 
most prominent feature of the acoustic speech stream. 
Synchronization of neural activity with these modulations 
supports speech comprehension (Doelling et al.,  2014; 
Gross et al., 2013; Keitel et al., 2018; Peelle et al., 2013). As 
the acoustic modulation of speech and the production of 

syllables is correlated (Poeppel & Assaneo, 2020), investi-
gations of neural speech tracking commonly do not distin-
guish between acoustic (envelope modulation) and related 
linguistic (syllable rate) information. However, while 
the temporal scale of the acoustic modulation (~4–5 Hz) 
is remarkably similar across languages, speakers, and 
speaking conditions (for reviews see (Ding et al.,  2017; 
Poeppel & Assaneo, 2020)), the rate at which syllables are 
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Abstract
The most prominent acoustic features in speech are intensity modulations, rep-
resented by the amplitude envelope of speech. Synchronization of neural activity 
with these modulations supports speech comprehension. As the acoustic modu-
lation of speech is related to the production of syllables, investigations of neural 
speech tracking commonly do not distinguish between lower-level acoustic (enve-
lope modulation) and higher-level linguistic (syllable rate) information. Here we 
manipulated speech intelligibility using noise-vocoded speech and investigated 
the spectral dynamics of neural speech processing, across two studies at corti-
cal and subcortical levels of the auditory hierarchy, using magnetoencephalogra-
phy. Overall, cortical regions mostly track the syllable rate, whereas subcortical 
regions track the acoustic envelope. Furthermore, with less intelligible speech, 
tracking of the modulation rate becomes more dominant. Our study highlights 
the importance of distinguishing between envelope modulation and syllable rate 
and provides novel possibilities to better understand differences between audi-
tory processing and speech/language processing disorders.
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produced can vary significantly across (and within) lan-
guages (Coupé et al., 2019), dialects, and speaking condi-
tions (Jacewicz et al., 2009). Therefore, it remains unclear 
whether and how the brain differentially tracks low-level 
acoustic and linguistic information during natural con-
tinuous speech. Distinguishing these aspects more clearly 
may also be important in gaining a better understanding 
of the neural processes separating auditory processing dis-
orders (e.g., hearing loss) from language processing disor-
ders (e.g., developmental dyslexia).

The ability to process meaningful information from 
an acoustic sound stream becomes especially important 
in difficult listening situations. While some studies indi-
cate a positive relationship between speech intelligibility 
and the synchronization of brain activity with the speech 
envelope (neural speech tracking) in the low-frequency 
range (Doelling et al.,  2014; Gross et al.,  2013; Keitel 
et al., 2018; Peelle et al., 2013) others have reported inverse 
effects (Ding et al., 2014; Song & Iverson, 2018). A recent 
study even suggested an inverted u-shaped relationship, 
where synchronization increases when speech is mildly 
degraded and decreases as speech becomes unintelligible 
(Hauswald et al.,  2022). This wide range of (partly con-
tradicting) results is suggestive of a complex relationship 
between the intelligibility of speech and the related neural 
dynamics of speech tracking.

One source of these seeming inconsistencies may be re-
lated to the interpretation of band-limited differences, con-
flating periodic (center frequency, power, bandwidth) and 
aperiodic (offset, exponent) properties of the underlying 
signals (Donoghue et al., 2020). In fact, both the acoustic 
envelope of speech and electrophysiological measurements 
of neural activity possess an overall 1/f-like spectrum 
(Pritchard, 1992; Voss & Clarke, 1975). This 1/f-like pattern 
is also at times present in the low-frequency coherence/
correlation spectrum between both signals (e.g., see (Ding 
et al.,  2014; Gross et al.,  2013; Hauswald et al.,  2022)). 
Recently, several approaches were proposed to separate 
periodic from aperiodic components of electrophysiologi-
cal activity (IRASA (Wen & Liu, 2016); FOOOF (Donoghue 
et al., 2020)). We applied one of these approaches (FOOOF) 
to speech tracking, to parametrize the periodic components 
underlying low-frequency speech-brain coherence, such as 
the center frequency, the relative height of the coherence 
peak, and its bandwidth (~tuning). Commonly, when in-
vestigating neural speech tracking these parameters are 
not separated from the aperiodic components of the co-
herence spectra. Instead (band/averaged) contrasts over 
coherence spectra across several experimental conditions 
are computed, conflating the periodic and aperiodic com-
ponents underlying speech-brain coherence. We propose 
that the periodic components (center frequency, relative 
height of the coherence peak, bandwidth) of speech-brain 

coherence offer a better estimate of neural speech tracking 
than broadband speech-brain coherence in the conven-
tional frequency ranges. Therefore, it may be beneficial 
to investigate these parameters separately to better under-
stand how neural activity tracks acoustic and linguistic 
information in a continuous speech stream and how this 
tracking is influenced by speech intelligibility.

Here, we applied this approach to two separate stud-
ies in which speech intelligibility was parametrically 
controlled via vocoding (3-, 7-Channels or no vocoding). 
Vocoding (Shannon et al.,  1995) is a popular technique 
to manipulate the intelligibility of speech that allows for 
high parametric control, while only moderately influenc-
ing the acoustic envelope of the signal (Peelle et al., 2013). 
We captured the spectral dynamics of neural speech 
processing at cortical and subcortical levels (Schmidt 
et al., 2020) of the auditory hierarchy using magnetoen-
cephalography (MEG). We observed that low-frequency 
speech-brain coherence in accordance with previous 
results (Doelling et al.,  2014; Gross et al.,  2013; Keitel 
et al., 2018; Peelle et al., 2013) declines with a decrease in 
intelligibility. However, parametrization of the coherence 
spectra revealed that this effect was mainly driven by the 
aperiodic components. The periodic components that are 
presumably reflective of neural speech tracking (opposed 
to band-limited coherence differences) were characterized 
by a narrower frequency tuning of the low-frequency co-
herence peak of vocoded speech along with an increase 
in its center frequency. The latter effect points to a shift 
of cortical tracking away from the syllabic rate toward the 
general acoustic modulation rate of the speech envelope 
as vocoding increased. This effect is also seen for subcor-
tical regions, although tracking is here overall dominated 
by the acoustic modulation rate.

2   |   RESULTS

2.1  |  Task performance declines with 
speech intelligibility

Subjects (N = 55 across two experiments; Figure 1b,c) lis-
tened to an audiobook (“Das Märchen”; Goethe, 1795) 
narrated by a female speaker while seated in the MEG. 
Parts of the audiobook presented were noise-vocoded 
(Figure  1a; 7-Chan, 3-Chan). Vocoding levels were ei-
ther kept constant throughout the audio presentation 
(Study#1; Figure 1b) or changed intermittently (Study#2; 
Figure  1c) to test the influences of vocoded speech on 
neural speech tracking under two different conditions. 
At the end of each audio presentation, subjects were pre-
sented with two nouns from which they had to pick the 
one they perceived in the previous sentence. The audio 
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presentations were embedded in blocks that varied be-
tween 3.5 and 9 min (see Section 5 (Method) for a detailed 
account). Due to the overall low number of behavioral 
responses, we added an additional behavioral assessment 
(adjusted for each study) to investigate how vocoding in-
fluences speech comprehension. The task was similar to 
the one performed in the actual measurement but con-
sisted of a larger amount of shorter trials (n trials = 24; see 
Section 5 (Method) for a detailed account). Due to techni-
cal difficulties, only a subset (N = 39) of our subjects par-
ticipated in these assessments.

Task performance declined in both experiments with 
speech intelligibility, recognizable by a decrease in the 
mean hit rate. A one-way repeated measures ANOVA 
across the three conditions revealed a main effect for 
Study#1 (F(2, 48) = 44.583, pggeisser = 7.35e−09, ηp

2 = 0.65) 
and Study#2 (F(2, 26) = 24.536, p = 1e−06, ηp

2 = 0.654). 
Comparing the different vocoding levels with each other 
showed higher hit rates for unvocoded stimuli than for 
stimuli vocoded with 7-Channels (Study#1, z(24) = 2.916, 
pfdr = .0035, d = 0.853; Study#2, z(13) = 2.566, pfdr = .0102, 
d = 1.39) or 3-Channels (Study#1, z(24) = 3.955, 
pfdr = 7.7e−05, d = 2.151; Study#2, z(13) = 2.720, pfdr = .0065, 
d = 2.280). Whereas stimuli vocoded with 7-Channels 
showed higher hit rates than stimuli vocoded with 

3-Channels (Study#1, z(24) = 3.955, pfdr = .0002, d = 1.491; 
Study#2, z(13) = 2.572, pfdr = .0101, d = 1.265). Across all 
conditions hit rates differed significantly from chance 
(Study#1, Figure 1b; Study#2, Figure 1c): for unvocoded 
speech (Study#1, z(24) = 4.838, pfdr = 3.932e−06; Study#2, 
z(13) = 3.742, pfdr = .0005), for seven vocoding chan-
nels (Study#1, z(24) = 4.483, pfdr = 1.103e−05; Study#2, 
z(13) = 3.355, pfdr = .0011) and for three vocoding channels 
(Study#1, z(24) = 3.625, pfdr = .0003; Study#2, z(13) = 3.105, 
pfdr = .0019). This shows that while speech comprehension 
gradually decreases with increases in vocoding, speech 
was still intelligible even when only 3-Channels were used 
to vocode the presented audio files.

2.2  |  Speech-brain coherence declines 
with speech intelligibility

To investigate how a loss of speech intelligibility via 
noise-vocoding influences the neural dynamics of speech 
tracking we measured the coherence between the speech 
envelope and the related cortical activity (see coherence 
spectra in Figure 2a).

Comparisons of the coherence spectra across the three 
conditions (Original, 7-Channels, and 3-Channels) using 

F I G U R E  1   Task performance declines with speech intelligibility (a) An excerpt from the audiobook presented with the corresponding 
speech envelope (Original) and with the envelopes of the vocoded audio stimuli (7-Channels and 3-Channels) and the averaged modulation 
spectra of the audio streams. (b) In Study#1 subjects listened either to a continuous segment of clear or vocoded speech. (c) In Study#2 short 
segments of vocoded speech ~6–18 s were embedded in an otherwise clear speech stream (~1–3 min duration). In both studies, subjects were 
presented with two nouns at the end of each stimulus. They were further instructed to pick the one they perceived in the previous sentence. 
Hit rates declined in both experiments with a decrease in speech intelligibility. Chan, Channels. p < 0.05*, p < 0.01**, p < 0.001***.
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a cluster-corrected repeated measures ANOVA, revealed 
a significant difference in the low-frequency range (aver-
aged between 2 and 7 Hz) for both Study#1 (p = .0004) and 
Study#2 (p = 9e−05). This difference was strongest in right 
superior temporal gyrus for both Study#1 and #2. Both in 
Study#1 and #2 listening to the unaltered audio resulted 
in the strongest speech-brain coherence, while the stimuli 
with the lowest intelligibility (3-Channels; see Figure 1b,c) 
elicited the weakest coherence (Figure 2c,f). Listening to the 
unaltered (“Original”) audio files elicited stronger speech-
brain coherence than listening to speech vocoded with 
7-Channels in Study#1 (t(27) = 2.519, pfdr = .018, d = 0.467) 
but not in Study#2 (t(26) = 1.425, pfdr = .166, d = 0.307). 
However, listening to the unaltered (“Original”) audio files 
elicited a stronger coherence than listening to speech in the 
3-Channel condition (Study#1, t(27) = 6.083, pfdr = 3e−06, 
d = 1.623; Study#2, t(26) = 7.451, pfdr = 1.959e−07, d = 1.787). 
Listening to the 7-Channels condition elicited higher levels 
of speech-brain coherence than listening to the 3-Channels 
condition (Study#1, t(27) = 6.238, pfdr = 3e−06, d = 1.446; 
Study#2, t(26) = 7.021, pfdr = 2.802e−07, d = 1.599).

In sum, these results show that both intermittent and 
continuous degradation similarly affect low-frequency 

speech-brain coherence. In both experimental designs, 
speech-brain coherence decreased as speech became 
less intelligible. Comparing the decrease in coherence 
through vocoding across studies revealed that coherence 
decreased similarly across both studies (U = 297, p = .175, 
r = .214). At first glance, these results are in conflict with 
a previous analysis of Study#1 (Hauswald et al.,  2022). 
The main difference between the previous and the cur-
rent analysis of Study#1 can primarily be attributed to 
different filter settings (lower cut-off for the high-pass 
filter in the current analysis) during preprocessing that 
affected the offset and exponent of the speech-brain co-
herence spectrum differently (see Section 3: Discussion). 
In the present study, these changes were applied to allow 
for better modeling of the periodic and the aperiodic com-
ponents of the coherence spectrum. A specific separation 
of periodic and aperiodic components of the coherence 
spectrum is important as differences in aperiodic other 
than periodic components are likely generated by differ-
ences in signal-to-noise ratio between speech and brain 
activity (see Supplementary Material  S1; for an analysis 
using simulated signals). Crucially, further analysis of 
these components showed that the aperiodic components 

F I G U R E  2   Speech-brain coherence declines with speech intelligibility. (a,d) Speech-brain coherence spectra for the three conditions 
averaged across all virtual channels. (b,e) Source localizations of degradation effects on speech-brain coherence (2–7 Hz) during acoustic 
stimulation across three conditions (Original, 7-Channels, and 3-Channels) in bilateral temporal and medial frontal regions. (c,f) Individual 
coherence estimates (averaged) of the three vocoding conditions extracted at virtual channels showing a significant difference using a 
cluster-corrected permutation test. Chan, Channels. Bars represent 95% confidence intervals, pfdr < .05*, pfdr < .001***.



      |  5 of 18SCHMIDT et al.

explain most of the variance (Offset/Exponent; Study#1, 
r2 = .83/.67; Study#2, r2 = .36/.32) of the averaged (2–7 Hz) 
low-frequency speech-brain coherence in both studies 
(see Figure S3). This illustrates that analyzing coherence 
differences in a band-limited range may be strongly in-
fluenced by aperiodic differences that do not necessarily 
reflect neural tracking of sound or linguistic information 
in the relevant frequency range. Depending on the filter 
settings, these aperiodic components may heavily impact 
the results. This observation is especially important for in-
vestigations that focus on slow and infraslow modulations 
and highlights the necessity to separate periodic from ape-
riodic contributions.

2.3  |  Declining speech 
intelligibility increases the center 
frequency of neural speech tracking along 
with a sharper tuning

Both the speech envelope and electrophysiological sig-
nals (recorded using EEG/MEG) are characterized by 

an overall 1/f-like spectrum (Pritchard,  1992; Voss & 
Clarke, 1975). This appears to also be evident in the coher-
ence estimation between both signals (independent of the 
speech-relevant peak at low frequencies; see Figure 2a,d). 
To quantify relevant aspects of the periodic components of 
speech tracking we extracted the most prominent peaks of 
the coherence spectra in the low-frequency range across all 
virtual channels in which we observed a significant coher-
ence difference across vocoding levels (see Figure  2b,e). 
This was operationalized by using FOOOF (Donoghue 
et al.,  2020) to first flatten the coherence spectrum and 
then compute Gaussian model fits to extract peaks (see 
Figure S5 for a depiction of the parametrized grand aver-
age spectra). For each subject, the average relative magni-
tude of the coherence peak, the bandwidth (~tuning), and 
center frequency of the extracted peaks (Figure  3) were 
computed and compared within subjects and across the 
three conditions (Original, 7-Channels, and 3-Channels) 
using a repeated measure ANOVA.

This analysis showed that the actual magnitude of the 
extracted peaks did not differ across the three vocoding con-
ditions in both studies (Study#1, F(2, 54) = 0.522, p = .596, 

F I G U R E  3   Declining speech intelligibility increases the center frequency of neural speech tracking along with a sharper tuning (a) 
Peak parameters influencing a significant coherence difference across experimental conditions. (b) The averaged relative magnitude, center 
frequencies, and bandwidth of peaks extracted from the coherence spectra for each subject were compared across three conditions (Original, 
7-Channels, and 3-Channels). Chan, Channels. Bars represent 95% confidence intervals, pfdr < .05*, pfdr < .01**, pfdr < .001***.
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ηp
2 = 0.019; Study#2, F(2, 50) = 2.18, p = .124, ηp

2 = 0.08). 
However, we noticed a significant difference across the 
center frequencies of the detected peaks over the three 
conditions in both studies (Study#1, F(2, 54) = 48.628, 
p = 8.365e−13, ηp

2 = 0.643; Study#2, F(2, 50) = 5.28, p = .008, 
ηp

2 = 0.175). Comparing the different vocoding levels with 
each other showed lower center frequencies for unvocoded 
stimuli than for stimuli vocoded with 7-Channels (Study#1, 
t(27) = −7.122, pfdr = 1.753e−07, d = −1.271; Study#2, 
t(25) = −2.756, pfdr = .016, d = −0.613) and with 3-Channels 
(Study#1, t(27) = −8.797, pfdr = 6.18e−09, d = −1.918; 
Study#2, t(25) = −2.946, pfdr = .0161, d = −0.7). The two vo-
coding conditions did differ significantly from each other in 
Study#1 (t(27) = −3.227, pfdr = 3.273e−03, d = −0.544) but not 
in Study#2 (t(25) = −0.114, pfdr = .91, d = −0.023) with lower 
center frequencies for speech vocoded with 7-Channels 
compared to speech vocoded with 3-Channels.

For the bandwidth of the detected peaks, differences 
across the three conditions were also observed both in 
Study#1 (F(2, 54) = 18.808, p = 6.329e−07, ηp

2 = 0.411) and 
Study#2 (F(2, 50) = 5.444, p = .007, ηp

2 = 0.179). In the con-
tinuous design, (Study#1) the tuning bandwidth for unvo-
coded stimuli was broader than for stimuli vocoded with 
7-Channels (t(27) = 3.219, pfdr = .003, d = 0.666) and with 
3-Channels (t(27) = 5.196, pfdr = 5.4e−05, d = 1.422). In the 
intermittent design (Study#2), the direction of the effect 
was similar, yet only significant for the difference between 
unvocoded speech and speech vocoded with 3-Channels 
(t(25) = 3.398, pfdr = .007, d = 0.983) and not for the dif-
ference between unvocoded speech and speech vocoded 
with 7-Channels (t(25) = 0.699, pfdr = .491, d = 0.201). 
Speech vocoded with 7-Channels had a broader tuning 
bandwidth than speech vocoded with 3-Channels across 
both studies (Study#1, t(27) = 3.592, pfdr = .002, d = 0.758; 
Study#2, t(25) = 2.668, pfdr = .02, d = 0.774).

In sum, these results show that intermittent and con-
tinuous degradation similarly affect the periodic com-
ponents of speech-brain coherence that are putatively 
reflective of neural speech tracking. Interestingly, the dif-
ference between speech tracking across different levels of 
intelligibility was not driven by the relative height of the 
peak in the coherence spectrum, but rather by a sharper 
tuning (Figure 4; bandwidth) combined with an increase 
in center frequencies of the coherence spectra (Figure 4; 
center frequency).

2.4  |  The center frequency of neural 
speech tracking explains the most unique 
variance in task performance

In order to better understand how the different parame-
ters extracted from the coherence spectra are related to the 
task performance of our participants a repeated measures 
correlation for all extracted parameters was performed 
(Bakdash & Marusich, 2017). Behavioral data were only 
available for a subset of the participants we measured in 
the MEG (NStudy#1 = 24; NStudy#2 = 9). The analysis relating 
task performance to recorded brain activity was there-
fore only performed for a subset of subjects in Study#1. 
The results show that all parameters are to some degree 
significantly related (p < .05) and are all (apart from the 
relative magnitude of the coherence; p = .122) also signifi-
cantly correlated with the observed task performance (see 
Figure 4a). Due to the partly very strong relationships be-
tween the parameters it is difficult to disentangle the inde-
pendent contributions of a parameter on the observed task 
performance. To determine the relative importance of the 
predictors on the task performance we used dominance 
analysis (Azen & Budescu, 2003). Dominance analysis can 

F I G U R E  4   The center frequency of 
neural speech tracking explains the most 
unique variance in task performance (a) 
Correlation matrix of all features extracted 
from the speech-brain coherence spectra 
obtained using repeated measures 
correlations across experimental 
conditions. (b) Dominance analysis 
reveals that center frequency explains the 
most unique variance in task performance 
of all parameters extracted from the 
speech-brain coherence spectra.



      |  7 of 18SCHMIDT et al.

be used to determine the incremental predictive validity of 
each predictor through directly comparing each predictor 
with all other predictors (Braun et al., 2019). We applied 
this analysis directly on the correlation matrix found in 
Figure 4a as suggested in (Laguerre, 2021) to determine 
the incremental R2 of the parameters on the observed task 
performance. This analysis showed that center frequency 
explains the most unique variance in task performance of 
all parameters extracted from the speech-brain coherence 
spectra (R2 = .354).

2.5  |  Neural speech tracking shifts from 
syllabic to modulation rate as speech 
intelligibility decreases

As speech intelligibility decreases we noted an in-
crease in the center frequencies of speech-brain coher-
ence. Furthermore, we found that center frequency 
uniquely explains most of the variance related to task 
performance. We also extracted the center frequencies 
of the modulation spectra from the acoustic envelopes 
of the audiobook for the three conditions (Original, 
7-Channels, and 3-Channels using the same method as 
in (Ding et al.,  2014); see Figure  5a) and computed the 
realized syllable rate of the presented audiobook (de 
Jong & Wempe,  2009). Although, there was generally a 
strong overlap over the modulation spectra of the speaker 
across vocoding levels (see Figure 1a), a one-way repeated 
measures ANOVA across the extracted center frequen-
cies and the syllable rate of the audio signal revealed a 
significant main effect (F(3, 1098) = 454.104, p = 2.68e−175, 

ηp
2 = 0.554). The center frequencies and the syllabic rate 

across all conditions differed significantly (see Figure  5 
& Tables S1 and S2 for a related post-hoc analysis). The 
rate at which the syllables were produced (Median = 4 Hz) 
was lower than the center frequencies of the modulation 
spectra of the audio signal 3-Channels (Median = 5.16 Hz), 
7-Channels (Median = 5.5 Hz), and clear speech condition 
(Median = 6.16 Hz). The increase in center frequencies 
of speech-brain coherence along with the differences in 
modulation and syllable rates suggests that the brain may 
be driven more by the acoustic or linguistic information 
encoded in the speech envelope depending on the signal 
quality. This is intuitive, as with increased vocoding it also 
becomes more difficult to extract linguistically meaning-
ful information such as phrase boundaries, words, or syl-
lables. This mainly leaves the modulation intensities of 
the acoustic speech envelope as an information source to 
the listener (that could be generated by syllables, phones, 
words, or other sounds unrelated to any linguistic infor-
mation). The following analysis (in combination with 
Figure S4) aims at addressing this point more directly.

We calculated the absolute difference between the av-
erage modulation/syllable rate per vocoding condition 
and the individual center frequencies of speech-brain  
coherence (see Figure 5b,c). We then compared the  
“absolute difference” between both conditions using a 
two-way repeated measures ANOVA. This analysis re-
vealed that there was a significant main effect for the 
factors tracking (modulation/syllable rate) in both stud-
ies (Study#1 F(1, 27) = 79.406, pggeisser = 1.58e−9, ηp

2 = 0.66; 
Study#2 F(1, 26) = 62.357, pggeisser = 2.26e−8, ηp

2 = 0.58). 
The absolute difference between neural speech tracking 

F I G U R E  5   Neural speech tracking shifts from syllabic to modulation rate as speech intelligibility decreases (a) Center frequencies 
extracted from the acoustic envelopes of clear and vocoded speech (pink) and the syllabic rate (yellow). Although, we generally noted a 
strong overlap across the modulation spectra (see Figure 1a) the extracted modulation rates of the acoustic envelopes differed not only 
significantly from the syllabic rate, but also across vocoding levels. (b) The center frequency of speech-brain coherence increases as 
intelligibility decreases, approaching the modulation rate of speech (pink; syllable rate displayed in yellow). (c) The absolute difference 
between center frequency speech-brain and modulation and syllable rate shows a shift from syllabic to modulation rate as speech 
Intelligibility decreases. Chan, Channels. Bars represent 95% confidence intervals, pfdr < .001***.
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and the syllable rate (linguistic component) was overall 
lower compared to the modulation rate (acoustic compo-
nent). There was also a significant main effect of Vocoding 
(Original, 7-Channels, and 3-Channels; Study#1 F(2, 54) =  
2872.121, p = 5.85e−29, ηp

2 = 0.32; Study#2 F(2, 52) =  
150,642.274, p = 3.86e−58, ηp

2 = 0.25). The absolute dif-
ference between neural speech tracking and the mod-
ulation/syllable rate decreased across vocoding levels. 
However, there was a significant interaction effect for the 
factors tracking (modulation/syllable rate) and vocod-
ing (Original, 7-Channels, and 3-Channels) across both 
Studies (Study#1 F(2, 54) = 164.529, pggeisser = 3.66e−23, 
ηp

2 = 0.671; Study#2 F(2, 52) = 39.536, pggeisser = 6.62e−11, 
ηp

2 = 0.39). This suggests that while speech intelligibility 
decreases and less linguistically meaningful information 
is present, neural speech tracking starts to drift away from 
the syllabic rate toward the modulation rate of speech.

2.6  |  Modeling of subcortical activity 
reveals a predominant tracking of the 
modulation rate of speech

Recent studies using noninvasive electrophysiology 
have shown that auditory activity at putative subcortical 
processing stages can be measured for continuous com-
plex natural sounds (such as speech; (Etard et al., 2019; 
Forte et al.,  2017; Maddox & Lee,  2018; Polonenko & 
Maddox, 2021)). Furthermore, some studies suggest that 
this subcortical auditory activity can even be modulated by 
attention (Etard et al., 2019; Forte et al., 2017; Gehmacher 
et al., 2022). Interestingly, top-down attentional modula-
tions of auditory activity can already be detected at the 
hair cells in the inner ear measured as otoacoustic activity 
(faint sounds emitted by the outer hair cells; see (Köhler 
et al.,  2021)). Other studies have shown that subcorti-
cal nuclei on the auditory pathway carry a behaviorally 
relevant role for speech recognition (medial geniculate 
bodies; (von Kriegstein et al., 2008)). Using a recently de-
veloped modeling procedure (Schmidt et al.,  2020), we 
further aimed to investigate whether speech intelligibility 
already influences auditory processing at subcortical areas 
along the auditory pathway.

We used a localizer measurement (Schmidt et al., 2020) 
to compute individualized weights (per subject; note 
that the localizer was only available for Study#2). These 
weights reflect activity along the auditory hierarchy, re-
sulting in 100 virtual channels ranging from the auditory 
nerve (channels 0–20) to early thalamo(−cortical) pro-
cessing stages (channels 90–100). We then applied these 
weights (see Section  5.10: Method: Modeling of subcor-
tical auditory activity) to the epoched data from Study#2 
to infer activity along the auditory hierarchy (see spectral 

distribution in Figure  6a). A cluster-corrected repeated 
measures ANOVA across the three conditions (Original, 
7-Channels, and 3-Channels) and within subjects revealed 
a significant difference in the low-frequency range (2–7 Hz) 
between virtual channels that are reflective of subcortical 
activity at early stages of auditory processing (putatively 
auditory nerve/cochlear nucleus, p = .0045). Listening 
to the unaltered (“Original”) audio files elicited higher 
speech-brain coherence than listening to the 7-Channels 
(t(24) = 3.2, pfdr = .005, d = 0.798) and the 3-Channels con-
dition (t(24) = 4.282, pfdr = .0008, d = 1.212). However, the 
two vocoding conditions did not differ significantly from 
each other (t(24) = 1.547, pfdr = .135, d = 0.488).

We further investigated the periodic components that 
are reflective of speech tracking by extracting peaks from 
the coherence spectra to analyze the corresponding mag-
nitude of the coherence peak, the bandwidth, and center 
frequencies. A repeated measures ANOVA across condi-
tions (Original, 7-Channels, and 3-Channels) and within 
subjects revealed no significant differences for the rela-
tive magnitude of the coherence peak (F(2, 48) = 0.335, 
p = .717, ηp

2 = 0.014) and the bandwidth of the extracted 
peaks (F(2, 48) = 0.192, p = .826, ηp

2 = 0.008). However, sig-
nificant differences were found across conditions for the 
center frequencies of the peaks (F(2, 48) = 3.213, p = .049, 
ηp

2 = 0.118). Listening to the unaltered (“Original”) 
audio files was associated with significantly lower cen-
ter frequencies than listening to the 3-Channel condition 
(t(24) = −3.062, pfdr = .016, d = −0.664) but not than listen-
ing to the 7-Channel condition (t(24) = −0.767, pfdr = .450, 
d = −0.204) at subcortical processing stages. The two vo-
coding conditions did not differ significantly from each 
other (t(24) = −1.528, pfdr = .21, d = −0.425).

We further calculated the absolute difference between 
the average modulation/syllable rate per vocoding condi-
tion and the individual center frequencies of speech-brain 
coherence (see Figure 5) to detect whether the tracking of 
speech at early auditory processing stages could be closer 
related to the modulation rate of speech or the syllabic rate. 
We found that modeling of the related subcortical activity 
reveals predominantly a tracking of the acoustic modula-
tion rate of speech (F(1, 24) = 16.14, p = .0005, ηp

2 = 0.19), 
contrary to the previous analysis mainly reflecting corti-
cal effects (see Figure  5). However, similar to the previ-
ous analysis reflecting mainly cortical activity there was 
an interaction effect between tracking and vocoding, with 
decreasing intelligibility the center frequency of neural 
speech tracking approaches the modulation away from 
the syllabic rate (F(2, 48) = 10.696, p = .0004, ηp

2 = 0.16).
In sum, these results suggest that differences in speech 

tracking between clear and vocoded stimuli already arise 
at subcortical processing stages. This difference in neu-
ral speech tracking occurs at virtual channels that can be 
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putatively associated with subcortical activity in the audi-
tory nerve and cochlear nucleus. The extracted peaks at 
this level of processing did not differ significantly from 
each other regarding the relative peak height of the coher-
ence (similar to cortical observations; see Figure  5) and 
their tuning width (different to cortical observations; see 
Figure  5). Yet, the center frequency shift of these peaks 
showed a similar effect when compared to cortical pro-
cessing stages. As intelligibility decreased the absolute 
difference between the center frequencies and the modu-
lation rate decreased, while the difference to the syllable 
rate increased steadily. However, contrary to the cortical 
recordings, tracking across different levels of intelligibility 
at subcortical processing stages was overall predominantly 
related to the modulation rate of speech instead of the syl-
labic rate (different to cortical observations; see Figure 5). 
This shows that although tracking at a subcortical level is 

dominated by lower-level acoustic envelope modulations, 
intelligibility also influences these hierarchically early 
responses.

3   |   DISCUSSION

Speech tracking is modulated by the intelligibility of the 
sensory input. However, the pattern of that modulation—
frequently operationalized by band-limited coherence 
effects—is not consistent across studies (see e.g., (Ding 
et al., 2014; Hauswald et al., 2022; Luo & Poeppel, 2007)). 
This complicates a mechanistic understanding of how 
speech tracking actually supports speech comprehension. 
Applying a method to separate periodic from aperiodic 
components in the coherence spectrum, our results yield a 
differentiated picture, indicating that intelligibility affects 

F I G U R E  6   Modeling of subcortical 
activity reveals a predominant tracking 
of the modulation spectrum of speech 
(ai) Speech-brain coherence spectra for 
the three conditions averaged across 
all virtual channels. (aii) The three 
conditions (Original, 7-Channels, and 
3-Channels) differed significantly at 
virtual channels reflecting activity 
putatively related to the auditory nerve/
cochlear nucleus (channels 16–20). 
(aiii) Individual coherence (2–7 Hz) 
extracted at channels 16–20 was highest 
for clear speech. (b,c) Peak height, center 
frequencies and bandwidth of peaks 
extracted from virtual channels (16–20) 
(d) Absolute Differences between the 
center frequencies of the coherence 
spectra and the syllable/modulation rate 
of speech. Chan, Channels. Bars represent 
95% confidence intervals, pfdr < .05*, 
pfdr < .01**.
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tuning-width and center frequency of the periodic compo-
nents in the low-frequency range.

3.1  |  Band-limited speech-brain 
coherence declines with speech 
intelligibility

Here, we investigated the effects degraded speech has on 
the neural dynamics of speech tracking using data from 
two slightly different experimental paradigms. In Study#1 
speech was displayed continuously at one of three dif-
ferent levels of intelligibility (Original, 7-Channels, and 
3-Channels; ~15 s–3 min). In Study#2 segments of de-
graded speech (7-Channels and 3-Channels; ~6–18 s) were 
embedded in a clear audio stream (Original; ~1–3 min) 
as both studies produced comparable results, they will 
be discussed together. We observed in accordance with 
previous results (Doelling et al., 2014; Gross et al., 2013; 
Keitel et al., 2018; Peelle et al., 2013) that low-frequency 
speech-brain coherence declines with a decrease in intel-
ligibility. However, other studies have reported a variety 
of partly contradicting results (Ding et al., 2014; Hauswald 
et al.,  2022; Song & Iverson,  2018). Our present results 
show that the reported band-limited coherence spectra 
are very strongly related to the underlying aperiodic com-
ponents in the spectrum (see Supplementary Material). 
Since the field is mostly interested in neural tracking of 
(relatively) periodic speech features around the syllable 
rate, it is questionable whether band-limited coherences 
without consideration of the aperiodic components are a 
viable measure for neural speech tracking.

3.2  |  Neural speech tracking shifts from 
syllabic to modulation rate as speech 
intelligibility decreases

Interestingly, in the investigation of spectral power differ-
ences in electrophysiological signals, a variety of contra-
dicting results is also commonly reported for band-limited 
effects. The present study suggests that this may be caused 
by the conflation of periodic (center frequency, power, 
bandwidth) and aperiodic (offset, exponent) properties 
of the underlying signal (Donoghue et al.,  2020). This is 
deemed problematic as periodic and aperiodic compo-
nents of the signal can be linked to a variety of different 
effects (Donoghue et al., 2020). Both the acoustic envelope 
of speech and electrophysiological measurements of neu-
ral activity possess an overall (aperiodic) 1/f-like spectrum 
(Pritchard, 1992; Voss & Clarke, 1975). This 1/f-like pat-
tern is at times also found in the low-frequency coherence/
correlation spectrum between both signals (e.g. see (Ding 

et al., 2014; Gross et al., 2013; Hauswald et al., 2022)). We 
therefore decomposed the speech-brain coherence spectra 
in their periodic and aperiodic components using FOOOF 
(Donoghue et al., 2020), to better understand the relation-
ship between the intelligibility of speech and the related 
neural dynamics of speech tracking. Interestingly, these in-
vestigations revealed that the aperiodic components (offset 
and exponent) explained most of the variance observed in 
the coherence difference (at 2–7 Hz; see Figure  2) across 
vocoding levels (see Figure S2). This highlights the impor-
tance of separating periodic from aperiodic components 
in the speech-brain coherence spectra, as we were pri-
marily interested in investigating peaks in the coherence 
spectra (periodic components) that can be related to neu-
ral speech tracking. Further investigations of the periodic 
components of the low-frequency coherence peak (center 
frequency, relative magnitude, bandwidth) revealed that 
there was no difference across vocoding levels in the rela-
tive magnitude of the coherence peak. Instead, the periodic 
differences in neural speech tracking were rather caused 
by a sharpening in the frequency tuning of the coherence 
peak of vocoded speech along with an increase in the 
center frequencies of the observed peaks (see Figure 3). We 
were able to link the increase in the center frequencies to a 
shift in tracking from higher-level linguistic to lower-level 
acoustic information of the speech stream.

Our analysis showed that neural tracking shifts from 
the syllabic (linguistic) to the modulation (acoustic) rate as 
intelligibility decreases. This shift between rates also intu-
itively makes sense, as with decreased intelligibility it also 
becomes more difficult to extract linguistically meaningful 
information such as phrase boundaries or syllables. This 
mainly leaves the modulation intensities of the acoustic 
speech envelope as an information source to the listener. 
As the acoustic modulation of speech is closely related to 
the production of syllables (Poeppel & Assaneo,  2020), 
investigations of neural speech tracking are typically 
not making a distinction between lower-level acoustic 
and higher-level linguistic information on the level of 
syllable processing. However, while the modulation rate 
(acoustic property) of speech appears to be exceptionally 
stable across languages and speaking conditions (Ding 
et al.,  2017; Poeppel & Assaneo,  2020), the syllable rate 
(linguistic property) of speech differs depending on the 
language and the speaking conditions (Coupé et al., 2019; 
Jacewicz et al., 2009). This suggests that modulation rate 
and syllable rate are not terms that can be necessarily used 
interchangeably. Therefore, distinguishing these proper-
ties more clearly may also be important to gain a better 
understanding of the neural processes separating auditory 
processing disorders (e.g., hearing loss) from language 
processing disorders (e.g., developmental dyslexia), which 
has been difficult based solely on neural speech tracking. 
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This difficulty may be linked to the variety of (partly con-
tradicting) results within and across auditory/linguistic 
processing disorders that relate to the neural dynamics 
of speech tracking. While a recent study was able to link 
hearing loss to a relative increase in speech envelope track-
ing (compared to (age matched) normal hearing listeners 
(Decruy et al.,  2020)), previous studies could not report 
enhanced envelope tracking in individuals with a hearing 
impairment (Mirkovic et al., 2019; Presacco et al., 2019). 
Related to language proficiency, similar inconsistencies 
are reported as non-native speakers appear to show an 
increased envelope tracking compared to native speakers 
(Reetzke et al., 2021; Song & Iverson, 2018). On the other 
hand, individuals suffering from developmental dyslexia 
are reported to have lower synchronization with the 
speech envelope compared with neurotypical individuals 
(Molinaro et al., 2016). Using the approach proposed here 
of decomposing coherence spectra in their periodic and 
aperiodic components, it should be possible to gain a more 
fine-grained view on the specific characteristics underly-
ing the neural dynamics of speech tracking. This may help 
in the future to better differentiate the neural signatures 
of individuals suffering from auditory processing or lan-
guage processing disorders.

3.3  |  Declining speech intelligibility goes 
along with a sharper frequency tuning

Apart from the intelligibility-dependent changes in the 
center frequencies of the coherence peaks, we also noted a 
wider frequency tuning of speech tracking in clear as op-
posed to vocoded speech. The width of this frequency tun-
ing decreased with a loss in intelligibility. As the syllabic 
rate of our speaker (~4 Hz) differed from the modulation 
rate of her speech stream (~5–6 Hz; see Figure 4), the nar-
rowing in tuning may also be related to a loss in linguisti-
cally meaningful information. This might suggest that in 
situations where speech is clear, both linguistic (syllable 
rate) and acoustic information (modulation rate) were 
tracked resulting in an increased bandwidth covering all 
relevant frequencies. As speech becomes less intelligible 
and it becomes harder to extract linguistically meaningful 
information, the bandwidth of the coherence peak nar-
rows around the higher frequencies of the residual acous-
tic modulation of speech. Furthermore, previous studies 
have shown that auditory selective attention effects may 
arise from an enhanced tuning of receptive fields of task-
relevant neural populations (Ahveninen et al.,  2006; 
Atiani et al.,  2009). Therefore, the observed narrower 
frequency tuning could also be related to enhanced top-
down auditory attention processes (Atiani et al., 2014) in 
situations where listening becomes more challenging.

3.4  |  Influences of aperiodic components 
on the neural dynamics of speech tracking

Investigating the parameters related to low-frequency 
peaks in measurements of speech-brain coherence is offer-
ing a new and unique perspective to better understand the 
neural dynamics underlying speech tracking. However, we 
also noticed that band-limited differences in the speech-
brain coherence spectra are strongly related to the underly-
ing aperiodic components. This highlights the importance 
to separate periodic from aperiodic components, as peri-
odic and aperiodic components can be linked to a variety 
of different effects (Donoghue et al.,  2020). Commonly, 
aperiodic components of most signals have been consid-
ered as noise and as such are often just removed from the 
overall signal. Especially for low-frequency activity this can 
be easily achieved by spectrally normalizing (whitening) 
the signal via filtering (e.g., see (Demanuele et al., 2007)). 
Different choices in filter settings, however, can also gen-
erally accentuate different properties of a signal. For in-
stance, in this study we reanalyzed data from a recent study 
(Study#1; (Hauswald et al., 2022)) using a larger time win-
dow for the coherence estimation (4 s instead of 2 s; to ob-
tain a better frequency resolution for low-frequency speech 
tracking) and a lower cut-off for the high-pass filter (0.1 Hz 
instead of 1 Hz). These changes were intended to improve 
the model fit of FOOOF for the low-frequency coherence 
spectra, but also resulted in a different pattern for low-
frequency speech-brain coherence (compare Figure  2a-c 
with figure 2a,b in Hauswald et al.,  2022). The previous 
analysis of Study#1 (Hauswald et al.,  2022) showed that 
neural speech tracking increases for mild decreases in  
intelligibility (putatively driven by an increased listening 
effort) and then decreases as speech becomes increasingly 
unintelligible. We now show that low-frequency speech 
tracking gradually decreases with intelligibility. This dif-
ference was mainly driven by changes in filter settings ac-
centuating different properties of the signal by putatively 
differently influencing the 1/f-like pattern of low-frequency 
speech-brain coherence. Similar to the analysis of power 
spectral densities, 1/f-like patterns in the coherence spectra 
also appear to play a striking role when computing statis-
tics across experimental conditions (see S2 for a compari-
son of slope and offset for the data analyzed in the present 
study). Furthermore, aperiodic parameters were correlated 
with behavioral performance (see Figure 4; across a sub-
set of subjects) and explained most of the variance of the 
speech-brain coherence spectrum (see Figure  S3; across 
all subjects). However, the extent to which aperiodic ac-
tivity explained variance in the speech-brain coherence 
spectrum varied depending on running the analysis on the 
whole sample (see Figure S3) or on a subset (see Figure 4). 
Therefore, additional studies using a larger sample might 
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be needed to better understand the role of aperiodic com-
ponents of the speech-brain coherence spectrum. However, 
whether or not 1/f-like patterns carry (in general) mean-
ingful information is heavily debated. Nevertheless, recent 
studies have shown that 1/f-like patterns in electrophysi-
ological power spectra can change both dependent on trait-
like factors (age (Voytek et al.,  2015), ADHD (Robertson 
et al., 2019), and schizophrenia (Molina et al., 2020)) and 
state-like factors (e.g. differences over cognitive and per-
ceptual states (He et al., 2010; Podvalny et al., 2015)). This 
suggests a physiologically meaningful underpinning of 
1/f-like neural activity. However, interpretations related 
to the aperiodic patterns found in low-frequency speech-
brain coherence go beyond the scope of the present study, 
as we were mainly focused on the distinction between the 
processing of the syllabic rate and the modulation rate of 
speech related to peaks in the speech-brain coherence spec-
tra (periodic components). Perhaps aperiodic components 
of speech-brain coherence could be modulated by slower 
components in the speech stream reflecting higher-level in-
formation (e.g., sentence or phrasal information), that be-
come increasingly lost with less intelligibility. Addressing 
this question should be the topic of future investigations 
using paradigms in which these features are parametrically 
controlled (Ding et al., 2016). However, the present study il-
lustrates that analyzing coherence in a band-limited range, 
even though more or less explicitly assumed, may not re-
flect neural tracking of sound or linguistic information in 
the relevant frequency range. Instead, depending on the fil-
ter settings, the aperiodic components may heavily impact 
the results. This is especially important for investigations 
that focus on slow and infraslow modulations.

3.5  |  Modeling of subcortical activity 
reveals a predominant tracking of the 
modulation spectrum of speech

Previous research has shown that not only cortical, but 
also subcortical regions play an important role in lan-
guage processing (Diaz et al., 2012). These subcortical re-
gions appear to be even behaviorally relevant for speech 
recognition (medial geniculate bodies; (von Kriegstein 
et al.,  2008)). Here, we generated individualized spatial 
filters reflective of subcortical auditory processing using 
a localizer measurement (Schmidt et al., 2020). In princi-
ple, these filters can be applied to a separate measurement 
to infer subcortical auditory activity. Using this modeling 
procedure, we aimed to investigate whether differences 
in speech intelligibility can already be observed at puta-
tive subcortical processing stages. Similarly to the activity 
from cortical processing stages, we noticed a shift of the 
center frequency of the extracted peaks. As intelligibility 

decreased, the center frequencies of the detected peaks 
increased steadily. However, contrary to the cortical re-
cordings, our results showed that the center frequencies 
of the speech-brain coherence peaks (reflecting neural 
speech tracking) across different levels of intelligibility at 
subcortical processing stages were predominantly related 
to the modulation rate of speech opposed to the syllabic 
rate. This shows that although tracking at a subcortical 
level is overall higher for the low-level acoustic envelope 
modulation, intelligibility also influences these hierarchi-
cally early responses (see Figure 5d). This highlights the 
potentially important yet often overlooked role of subcor-
tical nuclei in speech and language processing.

4   |   CONCLUSION

In this study, we introduce a novel way to investigate neu-
ral speech tracking by utilizing an approach recently intro-
duced to parametrize electrophysiological power spectra 
(Donoghue et al.,  2020). Our results show that cortical 
regions mostly track the syllable rate, whereas subcorti-
cal regions are driven by the acoustic modulation rate. 
Furthermore, the less intelligible speech becomes, the more 
dominant the tracking of the modulation rate becomes. 
Our study underlines the importance of making a distinc-
tion between the acoustic modulation and syllable rate of 
speech and provides novel possibilities to better under-
stand differences between auditory processing and speech/
language processing disorders. In general, parametrization 
of coherence spectra may offer a new and unique perspec-
tive to investigate the parameters that drive neural speech 
tracking across a variety of listening situations.

5   |   METHOD

5.1  |  Subjects

Twenty-eight individuals participated in Study#1 (fe-
male = 17, male = 11). Mean age was 23.82 years (standard 
deviation, SD = 3.71) with a range between 19 and 37 years. 
In Study#2 27 individuals participated (female = 11, 
male = 16). Due to technical difficulties one subject 
was removed from Study#2. Mean age was 23.38 years 
(SD = 4.15) with a range between 19 and 38 years. Across 
both studies we recruited only German native speakers 
and people who were suitable for MEG recordings, that 
is, without nonremovable ferromagnetic metals in or 
close to the body. Participants provided informed consent 
and were compensated monetarily or via course credit. 
Participation was voluntary and in line with the decla-
ration of Helsinki and the statutes of the University of 
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Salzburg. The study was approved by the ethical commit-
tee of the University of Salzburg.

5.2  |  Stimuli

For the MEG recording, audio files were extracted from 
audio–visual recordings of a female speaker reading Goethe's 
“Das Märchen” (“The Tale”; 1795). In Study#1, lengths of 12 
stimuli varied between approximately 15 s and 3 min, with 
two stimuli of 15, 30, 60, 90, 120, and 150 s, and six of 180 s. 
Stimuli were presented in three blocks with four stimuli in 
each block. In Study#2, two or three segments of degraded 
speech (7-Channels and 3-Channels; 4.8–21.6 s) were embed-
ded in 15 clear audio streams. The lengths of the 15 stimuli 
varied between 60 s and 3 min with two stimuli of 60, 90, 120, 
and 9 of 180 s. Stimuli were presented in five blocks with three 
stimuli in each block. In both studies, each stimulus ended 
with a two-syllable noun within the last four words. In order 
to keep participants' attention on the stimulation, we asked 
participants after each stimulus to choose from two presented 
two-syllable nouns, the one that had occurred within the last 
four words of a sentence. The sequence of all the audio stim-
uli was randomized across participants, not following the 
original storyline of the audiobook. The syllable rate of the 
stimuli varied between 3.1 and 4.3 Hz with a median of 4 Hz 
(estimated using Praat (de Jong & Wempe, 2009)).

5.3  |  Vocoding

Noise-vocoding of all audio stimuli was done using the voco-
der toolbox for MATLAB (Gaudrain, 2016), and we created 
conditions with 7- and 3-Channels (Figure  1a). Vocoding 
for both studies was performed as described in (Hauswald 
et al., 2022). For the vocoding, the waveform of each audio 
stimulus was passed through two Butterworth analysis fil-
ters (for 7- and 3-Channels) with a range of 200–7000 Hz 
representing equal distances along the basilar membrane. 
Amplitude envelope extraction was done with half-wave 
rectification and low-pass filtering at 250 Hz. The envelopes 
were then normalized in each channel and multiplied with 
the carrier. Then, they were filtered in the band and the 
RMS of the resulting signal was adjusted to that of the origi-
nal signal filtered in that same band. Auditory stimuli were 
presented binaurally using MEG-compatible pneumatic in-
ear headphones (SOUNDPixx, VPixx technologies).

5.4  |  Behavioral assessment

Due to the low number of behavioral responses from the 
MEG part, we added an additional behavioral assessment. 

For Study#1 and Study#2, 24 audio files were created from 
recordings of another female native German speaker read-
ing Antoiné St. Exupery's “The little prince” (1943). Each 
stimulus contained one sentence (length between 2 and 
15 s) and was either presented unvocoded with 7-Channel 
vocoding or 3-Channel vocoding. For Study #1, the stim-
uli in the vocoding condition were vocoded from start to 
the end; for Study #2, the stimuli were vocoded only in 
the last 0.6–5 s. Comparable to both MEG experiments, 
the stimuli also ended with a two-syllable noun within the 
last four words, and participants were asked to choose the 
last noun they heard between two nouns on the screen. 
The sequence of all audio stimuli was random across the 
participants, not following the storyline. In each study, 
the hit rates across the three vocoding conditions were 
compared using one-way repeated measures ANOVAs. 
Post-hoc analysis was performed using FDR (Benjamini & 
Hochberg, 1995) corrected Wilcoxon signed-rank tests (as 
the assumptions for paired samples t-tests were violated).

5.5  |  Data acquisition

Data acquisition and parts of the data analysis for Study#1 
and #2 closely resemble, with minor exceptions, the one 
described in two previous studies (Hauswald et al., 2018, 
2020). Magnetic brain activity was recorded using a 
306-channel whole head MEG system (TRIUX, Elekta Oy) 
with a sampling rate of 1 kHz for the main experiments 
(Study#1 and Study#2) and with a sampling rate of 10 kHz 
for the brainstem localizer in Study#2 (see Backward 
Modeling for further information). The system consists 
of 204 planar gradiometers and 102 magnetometers. 
Before entering the magnetically shielded room (AK3B, 
Vakuumschmelze), the head shape of each participant was 
acquired with >300 digitized points on the scalp, including 
fiducials (nasion, left and right preauricular points) with 
a Polhemus FASTRAK system (Polhemus). The auditory 
brainstem response was measured with a single electrode 
located on FpZ based on the electrode placement of the 
international 10–20-System (Klem et al., 1999). A ground 
electrode was placed on the forehead at midline and a ref-
erence on the clavicle bone of the participants.

5.6  |  Data analysis

5.6.1  |  Preprocessing

All data analysis steps for Study #1 and #2 were per-
formed similarly and are therefore reported together. 
The acquired data were Maxwell filtered using a Signal 
Space Separation (SSS) algorithm (Taulu & Simola, 2006) 
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implemented in the Maxfilter program (version 2.2.15) 
provided by the MEG manufacturer to remove external 
magnetic interference from the MEG signal and realign 
data to a common standard head position (−trans default 
Maxfilter parameter). The Maxwell-filtered and continu-
ous data were then further analyzed using the FieldTrip 
toolbox (Oostenveld et al., 2011) and custom-built Matlab 
routines. First, the data were high-pass filtered at 0.1 Hz 
using a finite impulse response (FIR) filter (Kaiser win-
dow). For extracting physiological artifacts from the data, 
50 independent components were calculated from the 
filtered data, using the runica method implemented in 
the FieldtripTrip toolbox (Oostenveld et al.,  2011). Via 
visual inspection, the components showing eye move-
ments and heartbeats were removed from the data. On 
average across studies, three components were removed 
per subject (SD = 1). Then, trials related to each of the 
three conditions (Original, 7-Channels, and 3-Channels) 
were defined. The acoustic speech envelope was extracted 
and aligned with the measured MEG data (Hauswald 
et al., 2022). Afterwards data were cut into segments of 4 s 
to increase signal-to-noise ratio.

5.7  |  Source analysis

Anatomical template images were warped to the indi-
vidual head shape and brought into a common space 
by co-registering them based on the three anatomical 
landmarks (nasion, left and right preauricular points) 
with a standard brain from the Montreal Neurological 
Institute (MNI, Montreal, Canada) (Mattout et al., 2007). 
Afterwards a single-shell head model (Nolte,  2003) was 
computed for each participant. As a source model, a grid 
with 1 cm resolution and 2982 virtual channels based on 
an MNI template brain was morphed into the brain vol-
ume of each participant. This allows group-level averag-
ing and statistical analysis as all the grid points in the 
warped grid belong to the same brain region across sub-
jects. Common linearly constrained minimum variance 
(LCMV) beamformer spatial filters (Van Veen et al., 1997) 
were then computed on the preprocessed MEG data and 
applied to project the single-trial time series into source 
space. The number of epochs across conditions was equal-
ized (by the lowest number of epochs across conditions 
within each study). We applied a frequency analysis to the 
4-s segments of all three conditions (Original, -Channels, 
and 3-Channels) calculating multi-taper frequency trans-
formation (dpss taper: 0–25 Hz in 0.25 Hz steps, 4 Hz 
smoothing, no baseline correction). For the coherence 
calculation between each virtual sensor and the acous-
tic speech envelope, 0.25-Hz frequency steps were cho-
sen. Then, the coherence between activity at each virtual 

sensor and the acoustic speech envelope during acoustic 
stimulation in the frequency spectrum was calculated and 
averaged across trials. We refer to the coherence between 
acoustic speech envelope and brain activity as neural 
speech tracking. Most studies on neural speech tracking 
report findings of frequencies below 7 Hz; we, therefore, 
analyzed frequencies between 2 and 7 Hz. We applied re-
peated measures ANOVAs for each frequency within the 
range (ft_statfun_depsamplesFunivariate in FieldTrip) to 
test modulations of neural measures across the different 
intelligibility levels. To control for multiple comparisons, 
a nonparametric cluster-based permutation test was un-
dertaken (Maris & Oostenveld,  2007). The test statistic 
was repeated 10,000 times on data shuffled across condi-
tions and the largest statistical value of a cluster coher-
ent in source space was kept in memory. The observed 
clusters were compared against the distribution obtained 
from the randomization procedure and were considered 
significant when their probability was below 5%. Effects 
were identified in source space. All virtual channels 
within the cluster and the corresponding individual co-
herence and power values were extracted and averaged. 
Post-hoc paired samples t-tests between conditions were 
corrected for multiple comparisons by using the FDR 
method (Benjamini & Hochberg,  1995) implemented in 
Pingouin (Vallat, 2018). Slopes of the change in coherence 
along with changes in intelligibility were compared across 
studies using a Mann–Whitney U test. For visualization, 
source localizations were averaged across the 2–7 Hz fre-
quency bands and mapped onto inflated surfaces as im-
plemented in FieldTrip.

5.8  |  Peak analysis

For further analysis of the coherence spectra in source 
space, we extracted the most prominent peaks in the low-
frequency range (2–7 Hz) across all virtual channels in 
which we observed a significant difference across vocoding 
levels (579 channels for Study#1 and 417 for Study#2; see 
Figure 2b,e). This was operationalized by using FOOOF 
(Donoghue et al., 2020) to flatten the coherence spectrum 
at each virtual channel and compute Gaussian model fits 
to extract peaks. For each subject, the average peak height, 
bandwidth, and center frequency of the extracted peaks 
(see Figure 3) were computed. Peaks were only considered 
if they exceeded a threshold relative to the aperiodic slope 
of 1.5 standard deviations (peak_threshold = 1.5). Bad 
model fits were dropped (one bad model fit in Study#2). If 
the residual model fits differed from the rest based on the 
R2 (between the input spectrum and the full model fit), or 
error of the full model fit by more than 2.5 SDs, they were 
dropped. The most prominent peak in the range between 
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2 and 7 Hz was extracted per virtual channel. Peak and 
aperiodic parameters were then averaged across all virtual 
channels and further analyzed using repeated measures 
ANOVAs and dependent-samples t-tests (as implemented 
in Pingouin (Vallat,  2018)) for post-hoc analysis (cor-
rected for multiple comparisons using the FDR method 
(Benjamini & Hochberg, 1995)).

5.9  |  Analysis of modulation and 
syllable rate

We estimated the modulation and syllabic rate of all 12 
audio files for each condition (Original, 7-Channels, and 
3-Channels). Audio files were transformed to 6-s dura-
tion segments (as in (Ding et al., 2017)) resulting in 386 
audio segments per condition (Original, 7-Channels, and 
3-Channels). The modulation rates for the three differ-
ent levels of intelligibility were then extracted using cus-
tom matlab scripts taken from (Ding et al.,  2017). The 
center frequency of each spectrum was further extracted 
by taking the global maximum value of each modula-
tion spectrum. The realized syllable rate of the speaker 
was computed using Praat (de Jong & Wempe,  2009). 
The center frequencies of the three conditions and syl-
lable rate were then compared using repeated measures 
ANOVAs and dependent-samples t-tests (as implemented 
in Pingouin (Vallat,  2018)) for post-hoc analysis (cor-
rected for multiple comparisons using the FDR method 
(Benjamini & Hochberg, 1995)). We further calculated the 
absolute difference between the different modulation/syl-
lable rates and the center frequency of the low-frequency 
coherence peaks. The corresponding absolute differences 
between syllable and modulation rates were then com-
pared using a two-way repeated measures ANOVA with 
the factors tracking (modulation/syllable rate) and voco-
ding (Original, 7-Channels, and 3-Channels). We further 
validated the resulting findings using a different analysis 
approach based on decoding. Here, we trained an ensem-
ble (50 classifiers) of k-nearest neighbor classifiers in a 
nested fivefold cross-validation (Hosseini et al., 2020) to 
decode whether a given frequency in the presented stim-
ulus material can be associated with either the modula-
tion or the syllabic rate. We decided to use the k-nearest 
neighbor classifiers as data had only a low number of 
features (i.e., one center frequency per audio segment); a 
classification problem usually solved well by a k-nearest 
neighbor approach (Eisa et al., 2018). The repeated nested 
cross-validation procedure was chosen to avoid overfit-
ting of hyperparameters. Each external cross-validation 
loop was embedded in a repeated stratified k-folding 
procedure (RepeatedStratifiedKFold; 25 repetitions) the 
best number of neighbors was determined by searching 

the hyper-parameter space for the best cross-validation 
(CV) score of a kNN model using the implemented 
GridSearchCV function and by computing the area under 
the receiver operating characteristic curve (roc-auc) as 
loss function. Confusion matrices were then computed on 
a separated test set (10% of all data) that was not part of the 
initial inner cross-validation to avoid overfitting of hyper-
parameters. Confusion matrices of each inner loop were 
kept in memory and averaged across all repetitions (150 
repetitions). The procedure was implemented using sci-kit 
learn (Pedregosa et al., 2011) and custom written python 
scripts. The code used for the analysis can be found in the 
corresponding authors gitlab repository (see data & code 
availability). The trained classifiers were subsequently ap-
plied to the center frequencies from speech-brain coher-
ence (see Section 5.8: Peak analysis) to determine whether 
a frequency was rather related to the modulation or the 
syllabic rate. The corresponding probabilities were then 
compared using a two-way repeated measures ANOVA 
with the factors tracking (modulation/syllable rate) and 
vocoding (Original, 7-Channels, and 3-Channels).

5.10  |  Modeling of subcortical 
auditory activity

In order to reconstruct auditory brainstem activity from 
the MEG data we applied a recently developed backward 
modeling approach (Schmidt et al.,  2020) to the data 
obtained in Study#2. As planar gradiometers are less 
sensitive to sources below the cortical surface than mag-
netometers (Vrba & Robinson, 2002) only magnetometer 
data were included in this analysis. The backward mod-
els were trained independently for each subject using 
data obtained from a localizer run dedicated to elicit au-
ditory brainstem activity (see (Schmidt et al., 2020) for a 
detailed account). In brief, we used the signal captured 
by the MEG sensors (during the first 10 ms) as regressors 
for a concurrent EEG recording of an auditory brainstem 
response (similar to the estimation of regression-based 
ERPs (Smith & Kutas, 2015)). The corresponding weights 
(a time-generalized representation of auditory brainstem 
activity) were then applied to the upsampled (10,000 Hz) 
single-trial time series data from Study#2. Afterwards, the 
data were downsampled (100 Hz) and a frequency analy-
sis was applied to the 4-s segments of all three conditions 
(Original, 7-Channels, and 3-Channels) calculating multi-
taper frequency transformation (dpss taper: 0–25 Hz in 
0.25 Hz steps, 4 Hz smoothing, no baseline correction) 
for the analyses of the coherence calculation between 
each virtual sensor and the acoustic speech envelope. 
Afterwards analysis steps that were performed for the pre-
vious analysis were repeated for the modeled activity (see 
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statistics reported in source analysis and steps undertaken 
for peak and decoding analysis).
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