
The impact of paternal age on new
mutations and disease in the
next generation

Katherine A. Wood, Ph.D.a,b and Anne Goriely, Ph.D.a,b

a Radcliffe Department ofMedicine,MRCWeatherall Institute ofMolecularMedicine, University of Oxford, Oxford, United
Kingdom; b National Institute for Health and Care Research (NIHR) Oxford Biomedical Research Centre, Oxford, United
Kingdom
Advanced paternal age is associated with an increased risk of fathering children with genetic disorders and other adverse reproductive
consequences. However, the mechanisms underlying this phenomenon remain largely unexplored. In this review, we focus on the
impact of paternal age on de novo mutations that are an important contributor to genetic disease and can be studied both indirectly
through large-scale sequencing studies and directly in the tissue in which they predominantly arise—the aging testis. We discuss the
recent data that have helped establish the origins and frequency of de novo mutations, and highlight experimental evidence about
the close link between new mutations, parental age, and genetic disease. We then focus on a small group of rare genetic conditions,
the so-called ‘‘paternal age effect’’ disorders that show a strong association between paternal age and disease prevalence, and discuss
the underlying mechanism (‘‘selfish selection’’) and implications of this process in more detail. More broadly, understanding the causes
and consequences of paternal age on genetic risk has important implications both for individual couples and for public health advice
given that the average age of fatherhood is steadily increasing in many developed nations. (Fertil Steril� 2022;118:1001–12.�2022 by
American Society for Reproductive Medicine.)
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I t has long been known that older
parents have a high risk of having
children with genetic disorders.

The link between advanced maternal
age and congenital abnormalities,
particularly those associated with
chromosomal aneuploidies, in
offspring has received considerable
attention, e.g., the strong association
between maternal age effect and
Down syndrome (trisomy 21) preva-
lence (1). However, there is a growing
body of evidence indicating that inde-
pendent of the maternal age, elevated
paternal age is associated with diffi-
culties conceiving, complications in
pregnancy, an increased susceptibility
of offspring to a wide range of condi-
tions including spontaneous dominant
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disorders, congenital abnormalities,
neurodevelopmental conditions, and
various malignancies (2–12). The
American Society for Reproductive
Medicine, the British Andrology
Society, and the Canadian Fertility
and Andrology Society have advised
that the upper limit for sperm donors
for assisted conception should be 40
years old as a precautionary measure
‘‘so that the potential hazards related
to aging are diminished’’ on the
basis of increased risk of genetic
abnormalities in children (13–15).

In many developed countries, the
average age of fatherhood has been
steadily increasing, despite consider-
able demographic variations. In the
United Kingdom, e.g., the standardized
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mean age of fathers in 2020 was 33.7
years, the highest since data collection
began and an increase from 29.7 years
in 1970, whereas over the same period
mean maternal age rose from 26.7 to
30.7 years (16). A similar picture is
apparent in the United States, with
one study indicating that mean
paternal age has risen from 27.4 years
in 1972 to 30.9 years in 2015 (with
variation attributed to ethnicity or
race, geographic location, and educa-
tion level), with 8.9% and 0.9% of fa-
thers over the age of 40 and 50,
respectively (17). Given this trend prev-
alent across the developed world, there
is an ever-increasing need to evaluate
the impact, and understand the causes
and consequences, of advanced
paternal age on genetic risk for both in-
dividual couples and public health
advice. Moreover, this information is
also crucial given the popularity of as-
sisted reproductive technologies that
offer couples the option to reproduce
later in life, to provide accurate risks
regarding delayed parenthood (18).
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VIEWS AND REVIEWS
Although epidemiological studies have shown a
convincing correlation between paternal age and disease
risk, in many cases, this association is not well defined and
(in some cases) not always reproducible (8, 19–21). Often,
the exact threshold of what consists of an ‘‘advanced’’
paternal age is also poorly defined and varies from study to
study (9). Additional factors can further cloud our
interpretation of population-based studies, including the
fact that maternal and paternal ages are often highly corre-
lated with little variability between the age of the mother
and the father, so unpicking the impact of one from the other
in terms of disease association can be challenging. Impor-
tantly, correlations do not provide direct evidence for causal-
ity, and the mechanisms underlying the effect of advanced
paternal age on disease remain uncertain and are likely to
be moderated by a complex interaction of factors (12).

Over the last decade, thanks to the advances and falling
costs of next generation sequencing technology, it has
become possible to interrogate and further dissect the compo-
nents mediating the effect of paternal age on disease risk.
Here, we focus largely on de novo point mutations (DNMs),
DNA sequence variations that are ‘‘new’’ in offspring and
are not apparently present in either parent. In this review,
we examine how, why, where, and how often new mutations
are introduced in our genomes, and the link between DNMs,
disease, and other negative reproductive outcomes. We then
discuss the unusual properties of a small group of specific ge-
netic disorders (‘‘paternal age effect’’ (PAE) disorders) that
have provided a paradigm to study DNMs directly in their tis-
sue of origin and led to the discovery of the process of ‘‘selfish
selection.’’ These DNMs are important contributors to human
disease, and understanding their origins and the factors that
influence their occurrence, such as advanced paternal age,
have important implications for public health, assisted repro-
ductive technology treatments, complex disease, and the evo-
lution of our genome.
ORIGINS AND FREQUENCY OF NEW
MUTATIONS IN HUMANS
The rate at which new mutations arise is crucial to our under-
standing of both genetic disease and genome biology. Much
insight into the biology of DNMs has been gained from
large-scale implementation of whole-genome sequencing
(WGS) or whole-exome sequencing (WES) of mother-father-
child family trios—sequencing of coding portions (WES) or
the whole genomes (WGS) of a child and both biologic parents
(Fig. 1A). Such studies have convincingly shown that the
number of new point mutations present in a new born is on
an average 60 (approximately 30–90, depending on parental
age at conception), placing the average human germline mu-
tation rate at approximately 1.2 � 10-8 per nucleotide per
generation (22–27). Overall, the number of DNMs increases
steadily and relatively monotonically with parental age. It is
also possible to determine the parental origin of DNMs
using a haplotype phasing strategy. This can be performed
directly using the WGS data from the family trio when an
informative heterozygous single nucleotide polymorphism
(SNP) is present in the vicinity of the DNM that allows the
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maternally and paternally-derived alleles in the child to be
distinguished (Fig. 1B) (28, 29). Such phasing methods have
shown that approximately 80% of all DNMs are present on
the paternally-derived allele, and the number of DNMs in a
child is predominantly influenced by the age of the father at
conception (Fig. 1C) (23–25, 28).

On average, approximately 1–2 additional DNMs arise in
the genome of a child per additional year in the age of the fa-
ther (22–24, 30). Juxtaposed to this, a smaller (but significant)
maternal age effect has been reported (23, 25, 26, 31) (Table 1).
Aside from DNM datasets derived from family trios, WGS
studies of individual multi-sibling families with large age
differences between the first and last child have again
shown that the predominant factor determining the number
of DNMs in a child is the paternal age, and overall only a
modest variability in familial mutation rates has been
reported (24, 26, 32, 33).

It has long been accepted that differences in the biology
of the male and female germlines provide a compelling expla-
nation as to why most (approximately 80%) of the DNMs are
paternal in origin, in particular the number of germline cell
divisions in the life history of a sperm compared with an
egg (Fig. 1C) (Table 1) (34). All cell divisions take place during
early embryogenesis that are required to produce an oocyte.
By contrast, spermatogonial stem cells (SSCs) within the sem-
iniferous tubules of the testis divide continuously to sustain
sperm production throughout a man’s reproductive life, and
so the number of genome replications increases with age. It
can be estimated that the sperm produced by a 25-year-old
man would have undergone approximately 350 SSC replica-
tions compared with approximately 750 in a 45-year-old man
(Fig. 1C) (34). In addition to the number of mitotic divisions in
the male germline resulting in incidental copying errors, other
factors have been proposed that contribute to the age effect,
including damage-associated mutations (particularly oxida-
tive stress) during environmental exposures, age-related
reduction in DNA repair and epigenetic reprogramming of
germ cells (27, 35–37). However, molecular evidence
derived from large WGS data is consistent with SSC
replications being the predominant factor influencing the
parental bias in DNM origin and the PAE of DNMs. For
example, large WGS mutation datasets have been used to
derive ‘‘mutational signatures’’ (defined as specific DNA
substitution patterns typically caused by distinct underlying
mutational processes, such as DNA replication errors, DNA
damage caused by ultraviolet exposure, or other exogenous/
endogenous exposure, defective DNA repair pathways) (38).
This approach shows that the most common signatures
observed in DNMs are similar to those associated with
spontaneous preneoplastic somatic mutations (i.e.,
‘‘mutation signatures 1 and 5’’) (24–26, 39). This supports
the idea that stem cell cycling is the main mutational
process operative in the germline and the principal
contributor to DNMs (24, 30, 38). Mutational signatures
associated with paternally and maternally derived DNMs
are distinct from one another, pointing that they originate
through different processes (Table 1) (24, 25, 27, 30, 40–42).

More recently, in a large WGS study comparing muta-
tional load across distinct histologic laser–microdissected
VOL. 118 NO. 6 / DECEMBER 2022



FIGURE 1

Origins of de novo mutations: (A) Sequencing of the whole genome or whole exome of both biological parents and a child (trio sequencing) allows
identification of newmutations only present in the child. Such studies have shown that each newborn acquires�30–90 de novomutations (DNMs),
depending on parental age at conception. (B) Determination of the parental origin of a DNM by haplotype phasing. When an informative
heterozygous SNP - for example, the SNP is AA (purple) in the mother and BB (blue) in the father - is present in the vicinity of a DNM (green
star) in the child, it can be used to distinguish the maternally- and paternally-derived alleles and determine the parent of origin of the DNM. (C)
Gametogenesis and origins of DNMs. In humans, segregation of PGCs from somatic lineages occurs after �10 mitoses, just before gastrulation
takes place. Embryonic germ cells then undergo a few more replications (�22 in females and �30 in males). After birth, oocytes do not
undergo any further mitotic divisions. However, throughout adulthood, spermatogonial stem cells SSCs actively replicate to sustain sperm
production, dividing every �16 days (�23 divisions per year). It can be estimated that the sperm produced from a 25-year old male has
undergone �350 replications, while �750 SSC replications would have taken place to sustain sperm production in a 45-year old male. These
differences in germ cell biology likely account for the observed 80:20 ratio of paternal to maternal DNMs observed in offspring, the majority of
which arise from copying errors during SSC cycling, with the number of DNMs doubling with every additional 20 years of paternal age.
Lightning bold represents a mutational event. Figures created with BioRender.com. PGC ¼ primordial germ cell; SNP ¼ single nucleotide
polymorphism; SSC ¼ spermatogonial stem cell.
Wood. Paternal age effect and de novo mutations. Fertil Steril 2022.
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tissues, Moore et al. (43) showed that the overall mutation rate
(estimated 1.35 mutations per year of paternal age) and muta-
tional signatures derived directly from the analysis of testic-
ular stem cells was comparable to the mutation rate
estimated from WGS trio studies (22–24). Therefore, these
data provide further evidence consistent with copying errors
within SSCs being the main source of DNMs (43).

However, the mutational rate of the germline is 1–2 or-
ders of magnitude lower than in any other somatic cell types
implying that other mechanisms maintaining genomic integ-
rity must be at play (43, 44). Processes such as increased DNA
repair capabilities or ‘‘transcriptional scanning’’ have been
proposed to modulate the germline mutation signatures and
VOL. 118 NO. 6 / DECEMBER 2022
mutation rate in human testes (27, 45). Xia et al. (45) proposed
that widespread transcription in the testis (which expresses
over 80% of protein-coding genes in humans) facilitates
DNA repair and copy-error correction, thus reducing germline
mutation rates (46–48).
DNMs AND GENETIC DISEASE
Although DNMs are rare events, they are important contribu-
tors to genetic disease. In a seminal publication from the
United Kingdom Deciphering Developmental Disorders study,
a large-scale trioWES study of over 4000 families with severe,
undiagnosed developmental disorders, the contribution of
1003
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TABLE 1

Characteristics and effects of parental age on prevalence of different classes of DNMs.

Origin of mutational event Characteristics
Rate of increase
with parent’s age

No. of DNMs in
child (with 20–25-year-old

parent)

No. of DNMs in
child (with 40–45-year-old

parent)

DNM occurring in the paternal
germline

Most of the DNMs (�80%) across
the genome are on the
paternally-derived allele.

Most paternal DNMs have a specific
mutational pattern or signature,
characteristic of processes
involving stem cell cycling, and
induction of copy errors (23–27)

1–2 DNMs per year of paternal age Approximately 35 DNMs Approximately 70 DNMs

DNM occurring in the maternal
germline

Approximately 20% of DNMs are
found on the maternally derived
allele. These often exhibit a
distinct mutational signatures
and are found as ‘‘clustered
DNMs’’ in specific regions of the
genome—characteristic of
accumulation of double-strand
break-induced mutations
throughout oocyte aging (23,
25, 28, 31)

Approximately 1 DNM every 4 y of
maternal age

Approximately 5 DNMs Approximately 10 DNMs

Mosaic DNM: Mutational event
occurring in the
primordial germ cells of one of
the parents,
or in the offspring during early
development
(the first few mitotic divisions) of
the fertilized embryo

DNMs caused by germline
mosaicism in either one of the 2
parents are associated with an
increased recurrence risk in
future pregnancies. (28–30)

Mosaic DNMs occurring during
offspring’s early development
can be difficult to distinguish
from constitutive (heterozygous)
DNMs (26, 30).

No change with parental age
No bias in parental origin

Approximately 5–10 DNMs Approximately 5–10 DNMs

Selfish DNM: causing paternal age
effect disorder

Small subset of recurrent functional/
pathogenic DNMs in genes
clustering in specific
spermatogonial stem cell
pathways, which present with a
high apparent mutation rate.

Selfish DNMs are exclusively found
on the paternally-derived allele.
Associated with increased
paternal age (56).

Strong correlation between disease
prevalence and paternal age:
fathers are significantly older
than population average (2, 56).

Exponential increase of the
mutation levels in sperm with
age of the donor (56)

DNA mutational events are rare, but once they
occur, they lead to clonal expansion
within the testis over time, because
they encode functional mutant
proteins with oncogenic-like
properties, i.e., the relative increase
with age depends on the activity
and the selective advantage
conferred by the mutant protein.

DNA ¼ deoxyribonucleic acid; DNM ¼ de novo mutation; No. ¼ number.

Wood. Paternal age effect and de novo mutations. Fertil Steril 2022.

1
0
0
4

V
O
L.118

N
O
.6

/D
EC

EM
BER

2022

V
IEW

S
A
N
D
REV

IEW
S



Fertility and Sterility®
DNMs to spontaneous monogenic developmental disorders
was estimated to be approximately 1 in 300 live births, greater
than the combined impact of trisomies 13, 18, and 21 (49).
Importantly, this study also showed a linear relationship
between the prevalence of live births with dominant disorders
caused by DNMs and parental age, doubling every 20 years
(with prevalence estimated to range from approximately
1:448 [0.22% of all births] in young [20 years old] to
approximately 1:213 [0.47%] in older [45 years old] couples),
an almost identical slope to the relationship between
paternal age and number of genome-wide characteristics of
DNMs (49).

Overall, data on DNMs obtained from WGS/WES studies
of large family trios and/or testicular tissues show that we all
acquire a small but consistent number (approximately 30–90)
of new mutations at each generation; there is a strong
paternal bias in the origin of DNMs; most DNMs exhibit
mutational signatures suggesting they occurred as copy errors
during stem cell cycling; paternal age is the main contributor
to the number of DNMs in a child, in most cases showing a
linear relationship; and the prevalence of spontaneous devel-
opmental disorders shows a trend with paternal age almost
identical to that observed for the genome-wide number of
DNMs. Taken together, these findings strongly support the
proposal that for most genetic disorders caused by DNMs,
the effect of paternal age on disease prevalence is causally
linked to the slow and steady accumulation of DNMs in
SSCs over time.

There is robust epidemiological evidence that many other
negative reproductive outcomes, such as preterm birth, low
birth weight, poor Apgar scores, and increased morbidity,
show a similar linear increase with paternal age; however,
for these conditions, the link with DNM accumulation in
SSCs is more tenuous (19, 50–52). For example, a study of
over 40 million live births in the United States between
2007 and 2016 found a J-shaped association curve between
paternal age and adverse perinatal outcomes after
adjustment for maternal age, race, education, smoking
status, and number of prenatal visits, with the youngest
fathers having poorer reproductive outcomes than men in
their 20s, that was followed by a steady and linear increase
in negative pregnancy outcomes with increased paternal
age (50). Given the linear relationship between paternal age
and increased number of DNMs, it is tempting to suggest
that many of the aforementioned adverse reproductive
consequences are also caused by the DNM accumulation as
a man ages; however, further evidence, including the role of
genetic factors in these conditions, is required to support
this hypothesis.
GERMLINE MOSAICISM, DNMs, AND
RECURRENCE RISK
Germline mosaicism is now recognized as another impor-
tant source of DNMs and thus a genetic disease (Table 1).
Spontaneous mutations can occur during early embryonic
mitotic divisions in either one of the two parents—either
before specification of the primordial germ cells resulting
in mixed somatic and germline mosaicism or
VOL. 118 NO. 6 / DECEMBER 2022
post-specification of the primordial germ cells, resulting
in confined germline mosaicism. Moreover, these mutations
may occasionally occur in the offspring post-fertilization
(Fig. 1C) (29, 53). Although mosaicism has a small contri-
bution to the overall DNM load, it has important clinical
implications for sibling recurrence risk (29, 54). Because
DNMs occurring spontaneously in the adult male or female
germlines are rare events (mutation rate: approximately 1.2
� 10-8 per nucleotide/generation), the risk of the same
DNM occurring as an independent mutational event is
negligible. Conversely, in case of germline mosaicism, the
DNM is present in multiple parental germ cells, leading to
a substantial risk (up to 50%) of recurrence in future chil-
dren (29). As a result, the average recurrence risk for con-
ditions caused by DNMs is approximately 1–2% (24, 26,
29). A recent WGS study of paired blood–semen samples
from 14 men showed that an average of approximately
30 mosaic variants were present (albeit most at very low
levels) in their semen (55). The DNMs with a mosaic origin
exhibit no parental age effect and no parental bias (the ra-
tio of paternal to maternal mutations is approximately
50:50 compared with the approximate 80:20 ratio for germ-
line DNMs).
SELFISH SELECTION AND PAE DISORDERS
PAE and Spontaneous Mendelian Disorders

When we consider the PAE in reference to genetic disease,
there is a source of misunderstanding in the field which
we seek to clarify. Although so far we have described
the linear and remarkably similar relationship between
DNMs, paternal age, and incidence of most developmental
disorders, specific DNMs associated with a small subset of
spontaneous Mendelian disorders show a nonlinear rela-
tionship with paternal age (therefore the birth prevalence
of these disorders rises sharply as paternal age at concep-
tion increases) (2, 56). We previously defined these disor-
ders as ‘‘PAE’’ disorders and proposed that additional
mechanisms beyond a simple linear increase in DNMs
across the genome arising from SSC replication underlies
these conditions. The striking impact of advanced paternal
age on these disorders has been recognized for over a cen-
tury (2, 34). As such, because PAE disorders are well-
characterized recurrent conditions with elevated birth
prevalence that have received considerable attention, these
are often considered to be exemplars for other sponta-
neous disorders. However, we must emphasize that PAE
disorders are exceptions that differ from most of the spon-
taneous disorders already discussed in this review. Impor-
tantly the study of these rare disorders has provided novel
insights into the intimate relationship that exists between
the homeostatic regulation of SSCs and spermatogenesis,
DNM prevalence and disease incidence.

The best known examples of PAE disorders are those
caused by specific point mutations in FGFR2 (causing Apert,
Crouzon, and Pfeiffer syndromes); FGFR3 (achondroplasia,
thanatophoric dysplasia, hypochondroplasia, and Muenke
syndrome); RET (multiple endocrine neoplasia types 2A and
2B); PTPN11 (Noonan syndrome); and HRAS (Costello
1005



TABLE 2

Paternal age effect genes in the RTK-RAS-MAPK pathway and associated Mendelian disorders.

Gene Clinical disorder [OMIM reference number] Reference

FGFR2 Apert syndrome [101200] Goriely et al. (2003) (59)
Crouzon syndrome [123500] Goriely et al. (2005) (60)
Pfeiffer syndrome [101600] Qin et al. (2007) (61)

Choi et al. (2008) (62)
Yoon et al. (2009) (65)
Maher et al. (2016) (71)
Maher et al. (2018) (72)

FGFR3 Achondroplasia [100800] Tiemann-Boege et al. (2002) (58)
Thanatophoric dysplasia [187601] Giudicelli et al. (2008) (63)
Hypochondroplasia [146000] Goriely et al. (2009) (64)
Muenke syndrome [602849] Shinde et al. (2013) (68)

Maher et al. (2016) (71)
Maher et al. (2018) (72)

HRAS Costello syndrome [218040] Giannoulatou et al. (2013) (67)
Maher et al. (2016) (71)

KRAS Cardiofaciocutaneous syndrome [615278] Maher et al. (2016) (71)
Noonan syndrome [609942] Maher et al. (2018) (72)

PTPN11 Noonan syndrome [163950] Yoon et al. (2013) (69)
Eboreime et al. (2016) (70)
Maher et al. (2016) (71)
Maher et al. (2018) (72)

RET Multiple endocrine neoplasia type 2A [171400] Choi et al. (2012) (66)
Multiple endocrine neoplasia type 2B [162300] Maher et al. (2018) (72)

BRAF Cardiofaciocutaneous syndrome [115150] Maher et al. (2018) (72)
LEOPARD syndrome [613707]
Noonan syndrome [613706]

CBL Noonan-like syndrome [613563] Maher et al. (2018) (72)
MAP2K1 Cardiofaciocutaneous syndrome [615279] Maher et al. (2018) (72)
MAP2K2 Cardiofaciocutaneous syndrome [615280] Maher et al. (2018) (72)
RAF1 Noonan syndrome [611553] Maher et al. (2018) (72)

LEOPARD syndrome [611554]
SOS1 Noonan syndrome [610733] Maher et al. (2018) (72)
Wood. Paternal age effect and de novo mutations. Fertil Steril 2022.
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syndrome) (Table 2) (56). These disorders present with unusual
features, including (56, 57):

� When the disorder is caused by a DNM, the causative mu-
tations are (almost) exclusively inherited from unaffected
fathers, pointing to the fact that the original mutational
events occurred during spermatogenesis.

� A strong epidemiological PAE, whereby fathers of affected
children are significantly older than the population average
(approximately 2–7 years older than the population mean).

� A narrow mutational spectrum with the causative muta-
tions encoding specific protein changes, typically associ-
ated with gain-of-function properties.

� A high apparent germline mutation rate, with individual
substitutions occurring up to 1000 times more frequently
than the average germline mutation rate.
These features led to the hypothesis that the causative

mutations should be present at elevated levels in testes and
sperm and become more abundant in older men. Given the
highly localized nature of the causative mutations (usually
a specific point mutation), it was possible to test this hypoth-
esis, although technically demanding, as the mutations are
anticipated to be present at extremely low levels (ranging
from approximately 10-4 to <10-6, based on the birth preva-
lence of the associated disorders). Nonetheless, specific path-
ogenic mutations in 12 genes (Table 2) that fulfill the above
1006
criteria were detected at elevated levels in sperm and/or testes
and showed the anticipated PAE (58–72). Being able to
quantify and visualize the mutations directly within the
tissue in which they originate (sperm and testis) has allowed
to define the mechanism by which these DNMs appear so
frequently in the population, termed ‘‘selfish selection.’’

In selfish selection, rare, specific point mutations that
confer functional properties to the encoded protein spontane-
ously occur in SSCs within a seminiferous tubule of the adult
testis, providing a competitive advantage and leading to
clonal expansion of the mutant SSCs as the man ages
(59, 60, 62, 64, 66–69, 71, 72). In turn, this leads to a sharp
increase in the relative mutation abundance in sperm over
time and an increased likelihood of fertilization by a
mutant sperm, resulting in the Mendelian disorder in the
offspring (Fig. 2A). This process is equivalent to clonal
growth observed in tumorigenesis; however, it occurs in the
germline rather than the somatic tissues. Hence, selfish
mutations have consequences not only for the individual in
which they occur, causing a rare benign testicular tumor
(spermatocytic tumor), but also for the next generation
(56, 64, 73).

All selfishly selected mutations known to date cluster
within the Receptor Tyrosine Kinase (RTK)-RAS-MAPK
signaling pathway, the most frequently mutated pathway in
VOL. 118 NO. 6 / DECEMBER 2022



FIGURE 2

Selfish spermatogonial selection (A) In selfish selection, rare specific mutations occur in genes involved in the homeostatic regulation of
spermatogonial stem cells (SSCs), conferring gain-of-function properties to the encoded protein. This provides the SSCs with a selective
advantage over the wild-type neighbors and results in their clonal expansion within individual seminiferous tubules. As a consequence of clonal
growth, the relative proportion of mutant sperm increases over the course of time. Fertilization of an oocyte by a sperm carrying a selfish
mutation results in a genetic disorder in the offspring. This process is akin to tumorigenesis but occurs in the germline with consequences for
the next generation. (B) Single-cell transcriptomics has allowed the key signaling pathways active in SSCs to be identified. To date, all known
selfishly selected genes (highlighted in red) cluster within the Receptor Tyrosine Kinase (RTK)-RAS-MAPK pathway (red box). Deciphering the
role of these pathways/genes in controlling proliferation, growth and survival of SSCs allows us to focus on new promising candidates for
selfishly selected genes within the testes. Note that most of these genes cause genetic disease when mutated. Adapted from refs 74-75.
Figures created with BioRender.com. SSC ¼ spermatogonial stem cell.
Wood. Paternal age effect and de novo mutations. Fertil Steril 2022.
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cancer and a known regulator of testicular homeostasis, and
the mutations all encode dominant gain-of-function, acti-
vating the pathway (57, 72). Based on our current under-
standing of the mechanism, we predict that any gene or
pathway expressed in SSCs that controls testicular homeosta-
sis could be under selection in the testis, provided that themu-
tations are compatible with the sperm viability and allow an
embryo to develop. The technical demands in identifying mu-
tations present at ultra-low levels in the male germline has
precluded large-scale discovery screens, although rapid tech-
nical advances are opening the door to evaluate the process at
scale (72). Over the last few years, single cell RNA-sequencing
of human testes has allowed unbiased identification of the
key molecular pathways that control the SSC homeostasis
and provide important starting points for the discovery of
additional selfishly selected genes (Fig. 2B) (74–78).
ADVANCED PATERNAL AGE AND COMPLEX
DISORDERS
Thus far, we have shown that for many monogenic disorders
there is an intimate relationship between paternal age, DNMs,
genetic disease, and homeostatic regulation of the male germ-
line, which strongly suggests a biologic link between these
VOL. 118 NO. 6 / DECEMBER 2022
factors. However, most of the genetic disease is not caused
by DNMs in single genes. Rather, ‘‘complex’’ (or common)
diseases such as diabetes, neurodevelopmental conditions
including autism and schizophrenia, and multiple sclerosis,
are caused by a combination of multiple genetic (inherited
variations and possibly DNMs), epigenetic, environmental,
and lifestyle factors. Overall, these multifactorial disorders
are poorly characterized, but for some of them, the association
with advanced paternal age is robust and reproducible. For
example, older fathers are at a high risk of having children
with schizophrenia or autism (3, 19, 20, 79–82). There is
considerable debate as to whether the link between
advanced paternal age and these disorders is due to:
inherited genetic factors influencing the health of fathers
and timing of reproduction (inherited model); testes-driven
DNMs that arise randomly as a consequence of aging (de
novomodel); environmental factors (such as oxidative stress);
epigenetic factors that accumulate over time; or (more likely)
a combination of the above (12, 50, 83–88). Unraveling the
contribution of these factors to the PAE in common
disorders is challenging (and beyond the scope of this
review), but before this can be attempted, a better
understanding of the etiology of these ‘‘complex’’ disorders
will be required (12, 89). For example, Yoon et al. (87)
1007
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recently showed that stratification of autism into two
subtypes (simplex/low-risk families with a single affected
child vs. multiplex/high risk with recurrent family history),
provides an efficient way to identify families with likely
causative de novo events, where they contribute to autism
risk in up to 70% of the low-risk families.

For those complex disorders where the de novo contribu-
tion has been established or is likely to be high (12, 85–87, 90),
it may be possible to ask whether selfish selection is a
contributory factor to the PAE. To assess this possibility, it
is important to consider the functional consequence of a
particular selfish mutation both for the testis (where it
provides a competitive advantage to mutant SSCs) and on
the fitness of the offspring who inherits the constitutive
mutation. Although ‘‘strong’’ selfish mutations causing the
PAE disorders discussed above provide a robust selective
advantage to SSCs and become significantly enriched in the
sperm of older men, they cause deleterious disease
phenotypes and poor reproductive fitness in the offspring,
such that the variants are rarely transmitted over multiple
generations. Although ‘‘weaker’’ selfish mutations are
enriched to a lesser extent in SSCs and sperm, these are
anticipated to cause more subtle and milder disease
phenotypes. Importantly, these milder mutations can
become a source of heritable material across several
generations and contribute to the mutational burden
characteristics of complex disorders (12, 90, 91). Further
supporting this scenario are several studies which have
shown that mutations in genes are known to operate in
selfish selection, such as the RTK-RAS pathway or more glob-
ally in SSCs regulation, have been implicated in the patho-
genesis of neurodevelopmental disorders (92, 93). Drawing
from what we have learned from the study of PAE disorders,
the general principles of age-related DNM accumulation and
selfish selection predict that ‘‘mild’’ functional and patho-
genic DNMs in specific growth-controlling pathways will
accumulate and/or synergize to eventually dysregulate spe-
cific pathways causing disease in future generations through
a mechanism we termed as the ‘‘global anticipation’’ of muta-
tion accumulation. The steady increase of age of paternity in
most developed countries is anticipated to accelerate this pro-
cess, with the possibility of disease phenotypes manifesting
over fewer generations. Transmission of newly acquired,
mildly deleterious variants across generations may provide
a parsimonious explanation for the association between
advanced grandparental age and neurodevelopmental disor-
ders (80, 94). Further evidence will be required to clarify
whether DNM accumulation and/or selfish selection provide
plausible mechanistic links to the PAE observed in some sub-
classes of neurodevelopmental (and more broadly, complex)
disorders, but these hypotheses will become amenable to scru-
tiny as our understanding of these common human diseases
broaden.
WHAT ARE THE WIDER IMPLICATIONS OF
SELFISH SELECTION?
There are several corollaries of selfish selection with potential
medical implications that are worth considering. First, the
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recurrence risk for selfish DNMs caused by selection is lower
than that for other spontaneous disorders because the
mutations arise and clonally expand during adulthood.
Despite positive selection in the testis, the levels of selfishmu-
tations in sperm will be lower than those observed for cases of
parental mosaicism (Table 1). This has implications for genetic
counseling and should be reassuring for the affected families
as the recurrence risk for PAE disorders is predicted to be
<0.1% (29, 95).

Second, the existence of selfish clones in the testes of all
aging men (71, 72) may have implications for procedures
involving biopsies for testicular sperm extraction combined
with intracytoplasmic sperm injection as a treatment for
male infertility. As an intriguing example, in a previous
study we analyzed a testis from a 90-year old man with se-
vere atrophy caused by strangulation in an inguinal hernia,
and identified very few seminiferous tubules containing
germ cells, consistent with the clinical presentation. Howev-
er, on analysis, we showed that the remaining SSCs all car-
ried the clonal FGFR3 p.K650E mutation, a known selfishly
selected mutation that causes the lethal disorder thanato-
phoric dysplasia in offspring (and is associated with bladder
carcinoma as a somatic event), implicating an apparent sur-
vival advantage of mutant compared with wildtype germ
cells in this diseased testis (64, 71). This anecdotal finding
raises the possibility that localized testicular biopsies used
for sperm retrieval in men with overall poor spermatogenesis
may be more prone to carry a selfishly selected DNM.
Caution may need to be observed with biopsies performed
in older men, and depending on the likelihood of selecting
such surviving clones, screening of these testicular biopsies
for known selfish DNMs may be advisable before use in
testicular sperm extraction combined with intracytoplasmic
sperm injection.
CONCLUSIONS AND PERSPECTIVES
Over recent years, concerns have been raised about the impact
of advanced paternal age on reproductive outcomes; howev-
er, remarkably little has been understood about the underly-
ing biology driving the PAE. Recent advances in next
generation sequencing technologies have facilitated large-
scale trio WES and WGS studies as well as the characteriza-
tion of DNMs at scale and in an unbiased manner. Such
studies have shed light on some novel features of the germline
in which the predominant contributor to the number of DNMs
transmitted to offspring is the age of the father. Although this
effect is small (an additional approximately 1–2 DNMs per
extra year of fatherhood), it has a significant impact on spon-
taneous disease. With DNMs contributing to approximately
1:300 live births for severe spontaneous developmental disor-
ders, this amounts to approximately 500,000 births annually
worldwide—a considerable disease burden that cannot be
ignored. Themutational signature of these DNMs is consistent
with the copying errors that arise during the turnover of SSCs.
The strong correlation between paternal age, the observed
number of DNMs, and the prevalence of monogenic develop-
mental disorders (and other negative reproductive outcomes)
compellingly suggests that the steady accumulation of DNMs
VOL. 118 NO. 6 / DECEMBER 2022
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in the male germline contributes most significantly to the
PAE.

However, we have emphasized that the classic PAE disor-
ders are outliers to the above model. The unusual features of
these disorders have allowed us to investigate selfishly
selected mutations directly within sperm and testes and pro-
pose a unified mechanism for clonal expansion of mutant
SSCs. Selfish selection is a universal process occurring in
the testes of all men as they age. To date, it has only been
possible to demonstrate that a handful of mutations causing
a few spontaneous dominant disorders within the RTK-
RAS-MAPK pathway genes are selfishly selected, but the
study of large cohorts and the rapid improvements in technol-
ogy are paving the way to investigate this process on a much
larger scale (96, 97). Moreover, we speculate that increased
age of fatherhood in the general population may lead to
global anticipation of mutation accumulation that extends
beyond the few rare PAE disorders characterized so far, to
include a contribution to some complex and common
disorders.

These findings have provided helpful insights to the bio-
logic mechanisms driving epidemiological observations;
however, as it is often the case in science, they have also
raised new questions which should open novel research ave-
nues. A key question in the field, which remains largely unan-
swered, is how the male germline maintains low mutation
rate, despite SSCs dividing over decades, a process which is
inherently mutagenic. Although DNMs accumulate with
increasing paternal age, it is important to note that this phe-
nomenon occurs in the backdrop of extremely low mutation
rates, several orders of magnitude lower than in any other so-
matic cell types analyzed. Perhaps what is remarkable is not
the fact that we mutate, but how few DNMs arise in our
genome at each generation. Another notable feature of the
germline that distinguishes it from somatic cells, is its resil-
ience and robustness to mutagenic factors. Rather reassur-
ingly, several WGS studies have shown that treatments with
potentially mutagenic chemotherapeutic agents and/or expo-
sure to ionizing radiation do not result in an increased inci-
dence of DNMs or congenital malformations in offspring
(98–103). Confirming this expectation, a recent survey of
DNM load from WGS data from approximately 22,000
family trios highlighted the remarkable consistency and
monotonic linear increase with parental age of the numbers
of DNMs. Indeed, only 12 individuals (0.05%) behaved as
outliers, exhibiting 2–7 times more de novo single
nucleotide variants than expected (27). Finally, there is no
evidence of increased DNM load or altered mutation
spectrums in mice or humans born as a result of assisted
reproductive technology compared with spontaneously
conceived offspring (104, 105).

Overall, the individual disease risk to offspring owing to
advanced paternal age remains small; however, its impact
on population health is nonnegligible. Moreover, the conse-
quences of raising the age of fatherhood may need to be
considered over several generations. Because DNMs occur
in every newborn, it will be difficult to circumvent the genetic
risks associated with paternal age; however, it is possible to
anticipate the consequences of this phenomenon, for
VOL. 118 NO. 6 / DECEMBER 2022
example, by offering prenatal screening for PAE conditions
to older couples—similar to the testing provided routinely
for the conditions associated with advanced maternal age.
Finally, it is important to acknowledge that a small amount
of new functional variants in our genome may also be desir-
able as this ensures the introduction of beneficial alleles in our
genomes (106) and promotes genetic heterogeneity and diver-
sity among individuals; these are essential attributes that
have likely contributed to make us adaptable and successful
as a species.
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