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Abstract

Objectives: Magnetron sputtering was evaluated to equip surfaces of orthodontic

elastomeric ligatures with silver and bismuth nanofilms.

Material and Methods: Antibacterial properties were evaluated by the adhesion of

Streptococcus mutans. Polyurethane‐based elastomeric ligatures were coated with

silver and bismuth nanofilms via direct current magnetron sputtering. Surface

roughness (Ra) and surface‐free energy (SFE) were assessed. Coated specimens were

incubated with S. mutans for 2 h. Adhering bacteria were visualized by Hoechst

staining and quantified by an ATP‐based luminescence assay. One‐way analysis of

variance with Tukey post hoc testing and Pearson correlation analysis were

performed (p < .05) to relate bacterial adhesion to surface roughness and surface‐

free energy.

Results: Elastomeric ligatures were successfully coated with silver and bismuth

nanofilms. Ra was significantly reduced by silver coating. Silver and bismuth coatings

showed significantly higher SFE than controls. Adhesion of S. mutans was

significantly decreased by silver coating. No correlation between bacterial adhesion

and SFE was found. Correlation between bacterial adhesion and Ra was positive but

not statistically significant.

Conclusions: Magnetron sputtering proved to be a feasible method to equip

orthodontic elastomeric ligatures with silver and bismuth nanofilms. Silver coatings

of elastomeric ligatures may reduce white spots and carious lesions in orthodontic

patients. Future research is required to stabilize coatings.
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1 | INTRODUCTION

During orthodontic treatment, fixed appliances complicate oral

hygiene while simultaneously creating retentive niches for microbial

accumulation (Atack et al., 1996; Balenseifen & Madonia, 1970;

Gwinnett & Ceen, 1979). While microbial adhesion to dental hard

tissue does not necessarily have pathological consequences per se, a

dental biofilm can develop cariogenic properties due to a dysbiosis of

the oral microbiome (Johansson et al., 2016). An oral dysbiosis can be

modulated by dietary habits and is manifested in an altered,

potentially pathological composition of dental biofilms (Kahharova

et al., 2023; Pitts et al., 2021; Zheng et al., 2021). Among the multiple

microorganisms present in dental biofilms, Streptococcus mutans is

considered a primary causative agent for enamel decalcification due

to its ability to produce lactic acid by processing low molecular

weight oligosaccharides (Hamada & Slade, 1980; Legéňová &

Bujdáková, 2015; Loesche, 1986). In the presence of fixed

orthodontic appliances, levels of S. mutans are elevated in the saliva

and dental plaque of patients (Lundstrom & Krasse, 1987; Pellegrini

et al., 2009; Rosenbloom & Tinanoff, 1991). White spots and carious

lesions of the adjacent enamel are prevalent adverse side effects of

fixed orthodontic treatment (Enaia et al., 2011; Gorelick et al., 1982;

Ogaard et al., 1988; Richter et al., 2011; Sundararaj et al., 2015;

Tufekci et al., 2011).

Common strategies to prevent enamel decalcification during

orthodontic treatment include mechanical plaque debridement,

individual hygiene instructions, fluoride application, and the use of

antimicrobial mouthwashes (Geiger et al. 1988, 1992; Harvey &

Powell, 1981; Srivastava et al., 2013). However, all of these

approaches depend on the patient's individual motivation and

compliance (Geiger et al. 1988, 1992; Hadler‐Olsen et al., 2012).

Orthodontic appliances with antibacterial properties would be of

great clinical value to limit bacterial adhesion regardless of patient

compliance.

Besides brackets that are bonded to the tooth surface, ligatures

that secure arch wires to bracket slots are prone to microbial

adhesion (Forsberg et al., 1991; Gastel et al., 2009; Papaioannou

et al., 2007). Due to their advantageous handling, elastomeric

polyurethane‐based ligatures are widely used by clinicians nowadays,

although they are associated with higher levels of bacterial adhesion

than conventional steel ligatures (Forsberg et al., 1991). Some

attempts to modify elastomeric ligatures to reduce bacterial adhesion

have been reported in the literature but were not found to be

effective: the assessment of fluoride‐releasing elastomeric ligatures

showed no long‐term clinical efficacy in reducing S. mutans counts in

saliva or plaque (Miura et al., 2007; Wilson & Gregory, 1995).

Hydrogel‐polymer coating of elastomeric ligatures to smoothen

surfaces did not exhibit antibacterial properties (Magno et al., 2008).

Various dental materials including titanium implants, resin

composites, and temporary filling materials have been successfully

equipped with antimicrobial properties by incorporating metallic

agents, with silver and bismuth particles attracting particular

attention (Chen et al., 2010; Gosau et al., 2015; Hotta et al., 1998;

Yamamoto et al., 1996; Yoshida et al., 1999). However, for silverized

elastomeric ligatures, evidence about antimicrobial properties in vivo

is conflicting. A product that releases silver ions from silver‐zeolite

integrated into an elastomeric structure showed a reduction of

periodontal pathogens and gingival inflammation in a study by

Caccianiga et al. (2012), while no significant antimicrobial effect was

reported by Kim et al. (2012). The authors suggested that the

concentration of silver ions at the surface of the ligatures was

insufficient for significant antimicrobial effects.

Poor surface concentrations of metallic agents could be over-

come by coating material surfaces with metallic nanoparticles, which

are insoluble particles with a size of less than 100 nm that show a

high surface‐to‐volume ratio. This allows them to interact closely

with microbial membranes and provides a large surface area for

antimicrobial activity (Cushing et al., 2004; Morones et al., 2005;

Verran et al., 2007). The antibacterial effect of metallic nanoparticles

consists of several mechanisms including the disruption of bacterial

metabolic processes, interactions with bacterial DNA, and the

increase of the cytoplasmatic membrane permeability (Eckhardt

et al., 2013; Feng et al., 2000; Lok et al., 2006; Morones et al., 2005).

In a recent in vitro study, elastomeric ligatures decorated with

plant‐extracted silver nanoparticles showed antibacterial potential

(Cabral‐Romero et al., 2013). While this elaborated technology is a

sustainable approach for the future of surface treatment, easy‐to‐

perform and well‐established technologies remain relevant at the

present. Among those, magnetron sputtering is a widely performed

state‐of‐the‐art technology used to coat textiles and biomedical

products with metallic nanofilms (Alvarez et al., 2019; Berumen

et al., 2019; Miśkiewicz et al., 2019; Rtimi et al., 2017; Tan

et al., 2018). It combines the advantages of controllable film

thickness, easy procedure, satisfactory adhesion to the target

substratum, and high purity of the deposited metal (Kylián et al., 2019;

Tan et al., 2018). Hence, magnetron sputtering could be an effective

method to equip surfaces of elastomeric ligatures with silver and

bismuth nanofilms that, to our knowledge, has not yet been assessed.

In the present in vitro study, the feasibility of coating elastomeric

ligatures with silver and bismuth nanofilms by magnetron sputtering

was evaluated. In addition to the surface characteristics, the

antibacterial properties of the nanofilms were investigated by

assessing S. mutans adhesion.

2 | METHODS

2.1 | Specimen preparation

Cylindrical specimens (diameter: 10mm, height: 1.5 mm) were

obtained from a polyurethane‐based material used for elastomeric

ligatures (Sani‐Tie®, Dentsply Sirona). Specimens were cleaned with

99% isopropanol and deionized water in a 1:1 ratio with ultrasound

assistance and then dried. Coating of the specimens with nanopar-

ticles of silver and bismuth was performed by direct current

magnetron sputtering (Wasa et al., 2012) at the Fraunhofer Institute
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for Interfacial Engineering and Biotechnology IGB using the following

setup: Power supply was provided by a direct current generator (PFG

2500 DC, Trumpf Hüttinger GmbH & Co. KG). Before the metallic

coating was performed, plasma activation of specimen surfaces was

carried out for 1min using radio frequency plasma (13.67MHz) at a

radio frequency power of 40W provided by an AGC‐5 generator (Eni

Power Systems) under impedance matching (viking impedance

matching network, Nye Company). The subsequent coating process

was carried out with a continuous flow of argon gas, which was

controlled by a needle valve. The base pressure and the pressure

during the coating process were continuously controlled by a

ionization vacuum gauge (Ionivac Granville‐Phillips®, MKS Instru-

ments), a vacuum gauge (Convectron Granville‐Phillips® Pirani, MKS

Instruments), and a capacitance manometer (Baratron®, MKS Instru-

ments). After reaching the base pressure of 2.1–6 mbar, argon was

fed into the sputtering system and the process pressure of 6 µbar

was set via the gas flow. The coating process with silver and bismuth

nanoparticles was each carried out at a current of 0.4 A for 5min.

Both plasma activation and the coating process were performed

under a continuous vacuum environment.

2.2 | Surface roughness and topography

The arithmetical mean roughness values (Ra) were calculated by five

independent measurements using widefield confocal microscopy

(Zeiss Smartproof 5, Carl Zeiss) and automated software analysis

(ConfoMap ST 7.4.8076, Carl Zeiss). Surface imaging was performed

by a Zeiss Object Lens C Epiplan‐APOCHROMAT (Carl Zeiss

Microscopy GmbH) with 20‐fold magnification. Images of true‐

color surface topography and three‐dimensional surface texture

were generated with the help of ConfoMap‐Software (Carl Zeiss

Microscopy GmbH).

2.3 | Surface‐free energy

To determine surface‐free energy, at least nine independent contact

angle measurements were performed: 1 µL of distilled water and 1 µL

of methylene iodide were applied to the specimen's surface. Within

30 s after application, a computer‐aided measurement device (Drop

Shape Analyzer DSA 25, Krüss) performed 10 contact angle

measurements for each liquid. The surface‐free energy was calcu-

lated using the method by Owens and Wendt (1969).

2.4 | Microbial culture

S. mutans (strain 20523; DSMZ) was cultured in sterile trypticase soy

broth (Tryptic Soy Broth; BD Diagnostics) supplemented with yeast

extract (Sigma‐Aldrich) at 37°C and 55 rpm for 16 h. Bacteria were

harvested by centrifugation, washed twice with phosphate‐buffered

saline (PBS, Merck), and resuspended in PBS. Using densitometry (Bio

Photometer, Eppendorf), the suspension was adjusted to an optical

density of 0.3 at 600 nm.

2.5 | Luminescence assay

Under sterile conditions, uncoated and coated elastomeric

specimens (n = min. 23) were transferred to 24‐well plates and

attached to well bottoms using silicone (Z‐Dupe, Henry Schein

Dental). Then, 1 mL of S. mutans suspension was added to each

well and incubated for 2 h at 37°C and 55 rpm. The viable cells

were quantified using an adenosine triphosphate (ATP)‐based

luminescence assay (LT07‐221, Lonza): after washing with PBS

twice to remove non‐adherent cells, 300 µL of a cell lysis reagent

were added to each well to extract ATP. After 10 min, 100 µL of

the supernatants were transferred to a 96‐well plate, where

100 µL of ATP monitoring reagent plus were added to each well.

After 5 min of incubation, luminescence was measured using a

plate reader (FLUOstar Omega, BMG Labtech) at a preset gain of

4000. The relative luminescence of PBS and pure bacterial

solution served as control references.

2.6 | Bacterial staining

Exemplary Hoechst staining was performed for each test group after

bacterial incubation: silver and bismuth‐coated elastomeric speci-

mens and uncoated controls were washed three times with 0.85%

saline. Then, 1mL bisbenzimide H 33342 trihydrochloride (Sigma

Aldrich) was added to each specimen for 15min. Staining solution

was removed by washing three times with 0.85% saline. S. mutans

cultures were fixated using 8% paraformaldehyde solution. Speci-

mens were dried for 10min, then mounted on object

slides. Visualization was carried out using fluorescence microscopy

(BZ‐X710, Keyence).

2.7 | Statistical analysis

Statistical analyses were performed using GraphPad Prism 9

(GraphPad Software). The overall level for significance

was set at α = .05. Surface roughness and surface‐free energy

data are shown as means and standard deviations. Data

from the ATP luminescence assay are shown as medians with

box‐and‐whisker plots. For the analysis of surface roughness,

surface‐free energy, and bacterial adhesion, data were tested for

normal distribution (Q–Q plotting and Shapiro–Wilk test) and

variance homogeneity (Levene's test). Then, one‐way

analysis of variance and Tukey's multiple comparison post hoc

analysis were performed. Pearson correlation analysis was used to

determine the correlation between surface roughness and micro-

bial adhesion or surface‐free energy and microbial adhesion,

respectively.
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3 | RESULTS

3.1 | Surface characteristics

Exemplary true‐color surface imaging showed the surface topogra-

phy of the elastomeric ligatures after deposition of silver and bismuth

nanofilms by magnetron sputtering (Figure 1a). The uncoated

controls showed ubiquitous scratches and dents. Silver‐coated

surfaces were more finely textured with visible pits and scratches

while bismuth coating displayed more homogeneous surfaces. Three‐

dimensional surface texture imaging revealed smoother surfaces of

silver and bismuth‐coated elastomeric ligatures compared to

uncoated controls (Figure 1b). Corresponding arithmetic mean

roughness (Ra) and surface‐free energy are shown in Table 1. Silver

sputtered surfaces were significantly smoother (p < .0001) than

uncoated and bismuth coated ligatures. Bismuth sputtered surfaces

were not significantly smoother than uncoated controls (p = .328).

Both silver and bismuth sputtered surfaces showed significantly

higher surface‐free energy values than uncoated controls (p < .0001).

Sputtering ligatures with bismuth significantly increased surface‐free

energy compared to sputtering with silver (p < .001).

3.2 | Bacterial adhesion

Hoechst staining (Figure 2a) was performed to visualize the adhesion

of S. mutans to the investigated coated and uncoated elastomeric

ligatures. S. mutans cells accumulated in typical chain formations on

the surfaces of the specimens. There was a tendency for lower

bacterial adhesion on silver‐coated specimens. The ATP assay

(Figure 2b) revealed significantly less bacterial adhesion to silver‐

coated specimens than to control specimens. Bismuth coating did not

result in significantly reduced adhesion of S. mutans.

Pearson correlation analysis showed a positive but insignificant

correlation between surface roughness and bacterial adhesion

(correlation coefficient r = .9821, p = .1205). There was no correlation

between surface‐free energy and bacterial adhesion (r = −.2688,

p = .8267).

4 | CONCLUSION

Fixed orthodontic devices tend to accumulate microorganisms and

complicate patients’ oral hygiene. White spots and carious lesions are

undesirable biofilm‐associated side effects of fixed orthodontic

therapy (Bergstrand, 2011; Lovrov et al., 2007; Ogaard et al., 1988;

O'Reilly & Featherstone, 1987; Richter et al., 2011). To equip the

surfaces of orthodontic elastomeric ligatures with antimicrobial

properties, the present study assessed magnetron sputtering as a

method to deposit silver and bismuth nanofilms on orthodontic

elastomeric ligatures.

F IGURE 1 Surface characteristics of elastomeric ligatures after magnetron sputtering with silver and bismuth. (a) True‐color surface imaging
shows the silver and bismuth nanofilms of the specimens. Uncoated controls show ubiquitous scratches and dents, silver coating is finer in
structure with visible scratches and pits, bismuth coating displays the most homogeneous surface. (b) Three‐dimensional surface texture reveals
smoother surfaces of silver‐coated specimens compared to bismuth‐coated and uncoated specimens indicated by peaks with small amplitudes.

TABLE 1 Surface characteristics of the investigated elastomeric
ligature modifications.

Surface modification Ra (µm)
Surface free
energy (mN/m)

Silver coating 0.31 ± 0.01ab 69.69 ± 1.41cd

Bismuth coating 2.15 ± 0.11a 73.92 ± 1.48ce

Uncoated control 2.05 ± 0.15b 62.93 ± 3.78de

Note: Data are expressed as means and standard deviations. Equal letters
indicate significant differences (see text for level of significance).
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Widefield confocal microscopy revealed successful deposition of

nanofilms on the surface of elastomeric ligatures. Surface imaging

showed homogeneous surfaces in bismuth‐coated specimens. Silver

coating was heterogeneous but finer in texture than uncoated

controls which showed ubiquitous scratches and dents. In contrast to

the visual impression, surface roughness was significantly decreased

by silver‐sputtering while bismuth‐sputtering had no significant

effect on surface roughness compared to uncoated controls. This

finding is in line with a study on titanium implants by Gosau et al., in

which bismuth coating by magnetron sputtering was associated with

rougher surfaces than silver coating, possibly due to the crystal

nanostructure of bismuth (Gosau et al., 2015) that was not detectable

by confocal microscopy in the present study.

Adhesion of S. mutans to coated and uncoated specimens was

visualized by Hoechst staining, an established method for assessing

bacterial colonization (Dai et al., 2020; Schubert et al., 2021; Yang

et al., 2021). A state‐of‐the‐art ATP‐based luminescence assay with

high reproducibility and sensitivity was performed to quantify the

adhered bacteria (Almohandes et al., 2021; Crouch et al., 1993;

Dexter et al., 2003; Hahnel et al., 2008; Schubert et al., 2021;

Wassmann et al., 2020). Silver coating resulted in a significant

decrease of S. mutans adhesion compared to uncoated controls.

Similar antimicrobial effects of silver have been reported for various

dental materials. Resin composites loaded with high concentrations

of silver‐containing fillers showed significant inhibitory effects on S.

mutans growth (Yoshida et al., 1999). Titanium implants coated with

silver showed antimicrobial effects against S. epidermidis (Gosau

et al., 2015) and silver‐containing temporary filling materials

exhibited antibacterial activity against oral streptococci in vitro (Hotta

et al., 1998; Yamamoto et al., 1996). In elastomeric ligatures,

however, the antimicrobial effect of silver ions within a porous

crystalline network was insignificant against S. mutans (Kim

et al., 2012). Low surface concentrations of silver ions have been

discussed as a possible reason for the insufficient antimicrobial

effects. From the results of the ATP‐assay performed in the present

study, it can be assumed that magnetron sputtering is a suitable

method to equip surfaces of elastomeric ligatures with sufficiently

high concentrations of silver nanoparticles to achieve antimicrobial

effects.

Bismuth coating showed a tendency for reduced adhesion of S.

mutans compared to uncoated controls. However, the effect was

weaker than the one exerted by silver. Due to a lack of studies, our

results cannot be compared with other findings on bismuth‐coated

orthodontic devices. However, there are multiple investigations on

bismuth‐coated dental implants with both significant and insignificant

antibacterial effects being reported (Almohandes et al., 2021;

Ciobanu & Harja, 2019; Gosau et al., 2015; Lin et al., 2013). In

calcium phosphate cement, bismuth had a potent antimicrobial

activity relevant for root canal fillings. The antibacterial effect of

bismuth remains controversial and needs further investigation. Based

F IGURE 2 Adhesion of Streptococcus mutans to the investigated silver‐ and bismuth‐coated elastomeric specimens. (a) Hoechst staining
shows typical chain formations of S. mutans cells. The surface of the uncoated control shows strong auto fluorescence. There is a tendency for
lower bacterial accumulation on silver‐coated specimens. (b) Results of the luminescence assay show significantly lower adhesion of S. mutans to
silver‐coated specimens compared to uncoated controls. *p < .05.
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on our data, silver coating is preferable to bismuth coating to achieve

antibacterial effects in elastomeric ligatures.

For the interpretation of the results from the adhesion assay, the

influence of surface properties on microbial adhesion should be

considered in addition to the effects attributed to the metallic

nanoparticles. The influence of surface roughness on microbial

adhesion to dental materials has been widely discussed in the

literature, and, in general, rough surfaces are more susceptible to

bacterial adhesion than smooth surfaces (Quirynen et al., 1993, 1996;

Teughels et al., 2006; Yoda et al., 2014). This can be explained by

larger surface areas exhibited by rough surfaces which increases the

absolute number of bacterial cells and by better protection of

bacteria from shear forces which facilitates initial cell adhesion

(Scheuerman et al., 1998; Teughels et al., 2006). Reducing surface

roughness of elastomeric ligatures to minimize bacterial adhesion has

already been subject of research: Magno et al. performed an in vivo

study on elastomeric ligatures coated with a hydrogel‐polymer that is

claimed to turn into a highly smooth surface when moistened.

However, adhesion of S. mutans was not reduced by this surface

modification, possibly due to detachment of the coating and fissures

in the surface after traction of ligatures during clinical application

(Magno et al., 2008). In contrast to this finding, Pearson correlation

analysis in the present study showed a positive, albeit not significant,

correlation between surface roughness and bacterial adhesion. This

tendency suggests that the significantly lower adhesion of S. mutans

to silver‐coated ligatures compared with uncoated controls may be

explained in part by the significantly lower surface roughness.

In addition to surface roughness, surface‐free energy is a

predominant factor influencing microbial adhesion to solid surfaces

and has been assessed for various dental materials (Arima &

Iwata, 2007; Hahnel et al., 2008; Lee et al., 1998). Depending on

the experimental settings and conditions, variations of surface‐free

energy may have stimulating or reducing effects on microbial

adhesion (D'Ercole et al., 2020; Wassmann et al., 2017; Zhao

et al., 2004). For the adhesion of S. mutans to dental composite

resins, both insignificant and significant correlations with surface‐free

energy have been shown (Bilgili et al., 2020; Jeon et al., 2020;

Mandracci et al., 2015). To our knowledge, there is currently no

evidence about the effect of surface‐free energy on the adhesion of

S. mutans to elastomeric ligatures. In the present study, both silver

and bismuth coating resulted in a significant increase of surface‐free

energy. Yet, statistical analysis suggests no significant correlation

between surface‐free energy and the adhesion of S. mutans in the

performed investigations. The present data on silver and bismuth‐

coated elastomeric ligatures indicate that surface roughness had a

greater influence on bacterial adhesion than surface‐free energy.

Details about the complex interaction of biological and physico-

chemical mechanisms behind microbial adhesion to dental materials,

especially those coated with metallic nanofilms, remain to be

elucidated by future research.

As mentioned, caries can be seen as a potential consequence of a

dysbiosis of the oral microbiome (Atack et al., 1996; Johansson

et al., 2016). This implies a process of complex interaction of the oral

microbiota, which can be illustrated by the successive maturation and

growth phases of an oral biofilm. A mature multispecies biofilm

exhibits properties, for example, resistance to environmental

changes, that individual species do not (Kolenbrander et al., 2010;

Wang et al., 2020). The interactions in a biofilm, which can ultimately

become cariogenic, are therefore the subject of current research and

are difficult to simulate under in vitro conditions. The exact

identification of the cariogenic microorganisms is also inconclusive,

but Streptococcus mutans, as examined in this study, has the highest

detection rate in caries patients (Bhaumik et al., 2021; Ev et al., 2023).

An exemplary observation of a single species therefore does not

represent the complexity or resilience of a biofilm, but can provide

reliable findings before more complex or even in vivo tests.

Generally, the present study showed the feasibility of the

investigated magnetron sputtering procedure. Silver and bismuth

nanofilms were successfully deposited onto the surface of elasto-

meric ligatures. However, the nature of both metallic coatings was

rather unstable as stretching or moistening of the coated ligatures

resulted in partial detachment of the nanofilms, a phenomenon that

has been described for hydrogel‐polymer coatings as well (Magno

et al., 2008). Under in vivo conditions, ligatures are stretched to place

them around brackets. Moreover, they are exposed to stresses like

chewing, tonicity of the lips, saliva, and oral hygiene procedures.

Based on the results of the present investigation, it can be assumed

that the adhesion of the silver and bismuth nanoparticles to the

ligature surface is not sufficient to withstand the clinical conditions

during orthodontic treatment. Hence, the conclusions drawn from

the present in vitro study must be considered preliminary until in vivo

data is available. Considering the cytotoxic potential of metallic

nanoparticles, their detachment and swallowing may cause adverse

local or systemic side effects (Fu et al., 2014; Pérez‐Díaz et al., 2015;

Składanowski et al., 2016; Zhang et al., 2014). While the present

study showed the potential to reduce microbial adhesion to

elastomeric ligatures by silver and bismuth nanofilms, future research

is necessary to provide stable and lasting coatings. Also, their

biocompatibility should be assessed by evaluating cytotoxic effects.

The present in vitro study suggests that magnetron sputtering is a

feasible method to deposit silver and bismuth nanofilms to orthodontic

elastomeric ligatures. Silver nanofilms exerted a significant antibacterial

effect with potential clinical relevance to reduce white spots and carious

lesions in orthodontic patients. Future research is required to stabilize the

metallic coating to withstand in vivo conditions.
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