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Targeted knockdown of PGAM5 in synovial macrophages
efficiently alleviates osteoarthritis
Yuhang Liu 1,2, Ruihan Hao1,2, Jia Lv3, Jie Yuan4, Xuelei Wang5, Churong Xu6, Ding Ma1,2, Zhouyi Duan1,2, Bingjun Zhang1,2,
Liming Dai1,2, Yiyun Cheng3✉, Wei Lu5✉ and Xiaoling Zhang 1,2✉

Osteoarthritis (OA) is a common degenerative disease worldwide and new therapeutics that target inflammation and the
crosstalk between immunocytes and chondrocytes are being developed to prevent and treat OA. These attempts involve
repolarizing pro-inflammatory M1 macrophages into the anti-inflammatory M2 phenotype in synovium. In this study, we
found that phosphoglycerate mutase 5 (PGAM5) significantly increased in macrophages in OA synovium compared to
controls based on histology of human samples and single-cell RNA sequencing results of mice models. To address the role of
PGAM5 in macrophages in OA, we found conditional knockout of PGAM5 in macrophages greatly alleviated OA symptoms
and promoted anabolic metabolism of chondrocytes in vitro and in vivo. Mechanistically, we found that PGAM5 enhanced
M1 polarization via AKT-mTOR/p38/ERK pathways, whereas inhibited M2 polarization via STAT6-PPARγ pathway in murine
bone marrow-derived macrophages. Furthermore, we found that PGAM5 directly dephosphorylated Dishevelled Segment
Polarity Protein 2 (DVL2) which resulted in the inhibition of β-catenin and repolarization of M2 macrophages into M1
macrophages. Conditional knockout of both PGAM5 and β-catenin in macrophages significantly exacerbated osteoarthritis
compared to PGAM5-deficient mice. Motivated by these findings, we successfully designed mannose modified
fluoropolymers combined with siPGAM5 to inhibit PGAM5 specifically in synovial macrophages via intra-articular injection,
which possessed desired targeting abilities of synovial macrophages and greatly attenuated murine osteoarthritis.
Collectively, these findings defined a key role for PGAM5 in orchestrating macrophage polarization and provides insights into
novel macrophage-targeted strategy for treating OA.
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INTRODUCTION
Osteoarthritis (OA) is the most common joint degenerative and
age-related disorder and is characterized by cartilage degradation,
ectopic osteophyte formation, subchondral bone remodeling, and
synovial inflammation.1,2 Current standard of care does not
provide satisfactory relief for many patients due to the complex
pathophysiology of OA.3 One of the primary pathologies of
osteoarthritis is chronic and low-grade inflammation mainly
caused by joint damage and debris, which triggers the innate
immune response in the early stage of OA and finally results in
infiltration of immune cells and synovial hyperplasia.4 In OA
synovium, M1 and M2 macrophages compete with each other in
various pathologic conditions, which is critical for the homeostasis
of OA.5 M1 macrophages accumulated more in the synovial
membrane of experimental OA than M2 macrophages and further
exacerbated the progression of OA, while M2 macrophages could
induce cartilage synthesis and inhibit chondrocyte apoptosis.5–7

Thus, exploring the mechanisms underlying macrophage polariza-
tion and remodeling synovial macrophages is emerging as a
strategy for OA intervention.

Phosphoglycerate mutase 5 (PGAM5) is a mitochondrial serine/
threonine phosphatase located in the mitochondrial membrane,8

which acts as a critical regulator of mitochondrial metabolism and
dynamics and controls a series of functions of cells. PGAM5 is vital
in programmed cell necrosis by dephosphorylating Drp1, leading
to mitochondrial fragmentation.9 PGAM5 also regulates mito-
phagy by recruiting the E3 ubiquitin ligase PARKIN or depho-
sphorylating FUNDC1 to modulate the degradation of
mitochondria.10 In addition, PGAM5 modulates cellular senes-
cence by regulating mitochondrial dynamics11 and was also
shown to enhance inflammasome activation in macrophages,
which has a critical role in processing of pro-IL-1β in bone marrow-
derived macrophages (BMDMs).12 However, the role of PGAM5 in
regulating synovial macrophages in OA has not been reported
before.
We herein found macrophage PGAM5 significantly increased in

macrophages in OA synovium based on histology of human
samples and single-cell RNA sequencing results of mice models.
Furthermore, we found that conditional knockout of PGAM5 in
macrophages alleviated murine OA symptoms via repolarizing M1
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macrophages into M2 macrophages in synovium. Mechanistically,
we found PGAM5 enhanced M1 polarization via AKT-mTOR/P38/
ERK signaling pathways, whereas inhibited M2 polarization via
STAT6-PPARγ signaling pathway. Besides, we identified PGAM5
inhibited β-catenin via dephosphorylation of DVL2 to regulate
macrophage polarization and conditional knockout of both
PGAM5 and β-catenin in macrophages led to increased OA
symptoms compared to PGAM5-deficient mice. In order to
precisely modulate PGAM5 in synovial macrophages of OA, we
constructed nanoparticles (NPs) composed of mannose modified
fluoropolymers and siPGAM5 to inhibit PGAM5 specifically in
macrophages, which significantly reduced the OA symptoms via
repolarization of M1 macrophages into M2 macrophages (Fig. 1).
Our results, therefore, demonstrated that PGAM5 plays a critical
role in regulating macrophage polarization which has excellent
potential for clinical OA treatment.

RESULTS
PGAM5 expression increased in macrophages of the OA synovium
To investigate the factors that modulate the progression of
osteoarthritis, we examined human synovium from OA patients
and normal controls (patients with femoral fracture) and observed
enhanced expression of inducible nitric oxide synthase (iNOS) and
reduced expression of CD206 in the OA synovium compared to
controls (Fig. 2a). Immunohistochemistry showed that PGAM5 was
mainly detected in the human OA synovium (Fig. 2a). To address
the role of PGAM5 in OA macrophages, we further observed
increased expression of PGAM5 in macrophages in human OA
synovium compared to controls, as confirmed by double-positive
immunostaining for PGAM5 and CD68, a marker of macrophages
(Fig. 2b), indicating the potential role of PGAM5 in modulating
macrophages in the OA synovium. In addition, we confirmed that
the protein and RNA levels of PGAM5 increased in human OA
synovium (Fig. 2c). Based on the results in human samples, we
further performed destabilization of the medial meniscus (DMM)
surgery in 8-week-old male wild - type (WT) mice. The knee joints
of mice were collected and sectioned for histological examination
28 days after DMM surgery, and safranin O staining, immunohis-
tochemistry of matrix metalloproteinase 13 (MMP13) and aggrecan

(ACAN) in the knee joints indicated successful joint osteoarthritis
induction in the DMM group (Fig. 2d). OARSI scores of safranin O
staining were listed in the supplementary materials (Fig. S1). As
expected, we also observed enhanced iNOS and reduced CD206
expression in the OA synovium of mice, and PGAM5 was
upregulated in the murine synovium of DMM model compared
to the sham group (Fig. 2d). We further investigated the database
in NCBI and reanalyzed the single-cell RNA sequencing for murine
synovium in an OA model induced by anterior cruciate ligament
rupture13 and found that the expression of PGAM5 increased in the
synovial cells of OA mice compared to the sham group, specifically
in the macrophage cluster which showed enhanced expression of
IL1b, IL6, and reduced expression of Pparg and IL10 in the surgical
group (Fig. 2e, f), indicating that PGAM5 might be a potential
regulatory factor of OA macrophages in the synovium.

PGAM5 regulated osteoarthritis in mice by modulating
macrophage polarization
To address the role of macrophage PGAM5 in osteoarthritis, we
generated Pgam5fl/fl -lyz2-Cre (Pgam5 cKO) mice, by crossing
Pgam5fl/fl mice with transgenic mice that carried lysozyme (Lyz2)
proximal promoter - mediated Cre recombinase, which specifically
ablates PGAM5 from macrophages. We then employed DMM
surgery in 8-week-old male Pgam5fl/fl and Pgam5 cKO mice for 28
days. We found that Pgam5 cKO mice exhibited relieved OA
symptoms compared to Pgam5fl/fl mice, indicated by enhanced
safranin O staining, increased expression of ACAN, and decreased
expression of MMP13 in cartilage (Fig. 3a). OARSI scores of safranin
O staining were listed in the supplementary materials (Fig. S2). We
further observed decreased M1 and increased M2 macrophages in
the synovium of Pgam5 cKO mice compared to Pgam5fl/fl mice, as
confirmed by immunofluorescence of iNOS and CD206 (Fig. 3a, b).
RNA-seq of BMDMs from Pgam5 cKO mice and Pgam5fl/fl mice was
performed to evaluate the modulatory role of PGAM5 deletion on
macrophages at the transcriptome level. Kyoto Encyclopedia of
Genes and Genomes pathway analysis showed that various
macrophage polarization-associated pathways, including the
Toll-like receptor signaling pathway, PI3K-Akt signaling pathway,
MAPK signaling pathway, and arginine biosynthesis14 in BMDMs of
Pgam5 cKO mice were significantly different from that in BMDMs
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Fig. 1 Schematic illustration of the role of PGAM5 in osteoarthritis and related macrophage-targeted therapy. PGAM5 on the mitochondrial
membrane directly dephosphorylated DVL2, further led to the degradation of β-catenin via activating GSK3β, resulting in the loss of
regulation of Akt-mTOR/p38/ERK and STAT6-PPARγ signals by β-catenin in nucleus, which tilted macrophages to M1 polarization. Targeted
knockdown of PGAM5 in macrophages could be established via intraarticular injection of nanoparticles (NPs) composed of mannose modified
fluoropolymers combined with siPGAM5, and could directly inhibited PGAM5 in synovial macrophages and greatly reduced OA symptoms
in mice
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of Pgam5fl/fl mice, suggesting that PGAM5 potentially modulated
macrophage polarization (Fig. 3c). mRNA levels of M1 markers,
iNOS and CD80, and M2 markers, arginase 1 (Arg1) and CD206,
were detected in peritoneal macrophages of Pgam5 cKO and
Pgam5fl/fl mice, which indicated that Pgam5 cKO mice showed
fewer proinflammatory phenotypes than Pgam5fl/fl mice (Fig. 3d).
These results were validated by flow cytometry of peritoneal
macrophages, which indicated fewer CD86+ (M1) and more
CD206+ (M2) cells in Pgam5 cKO macrophages (Fig. 3e). To further
examine the potential function of PGAM5 in macrophage
polarization, we examined whether the expression of PGAM5
changed during the induction of macrophage polarization.
BMDMs of WT mice were collected and induced to the M1
polarized state by lipopolysaccharide (LPS) and interferon-γ (IFNγ)
or induced to the M2 state by stimulation with IL4. M1 induction
significantly reduced PGAM5 mRNA and protein levels within 24 h.
However, M2 induction increased PGAM5 mRNA and protein
levels in macrophages within 24 h (Fig. 3f, g). The results above
indicated that PGAM5 might be involved in regulating macro-
phage polarization to modulate OA.

PGAM5 enhanced M1 polarization and inhibited M2 polarization
of BMDMs
To further illustrate the role of PGAM5 in macrophage polarization,
we isolated BMDMs from Pgam5 cKO and Pgam5fl/fl mice and
induced them to an M1-polarized state by LPS plus IFNγ for 24 h in

vitro. PGAM5 deletion in BMDMs significantly suppressed the
mRNA levels of proinflammatory genes, including iNOS, IL1α, IL1β,
IL6, and IL12, compared with that in Pgam5fl/fl macrophages
(Fig. 4a). The number of CD86+ cells was significantly lower in
Pgam5 cKO BMDMs than in Pgam5fl/fl BMDMs after M1 induction,
as determined by flow cytometry (Fig. 4b). Enzyme-linked
immunosorbent assay (ELISA) of the supernatant of BMDMs
treated with LPS plus IFNγ also verified that PGAM5 deletion led to
decreased secretion of proinflammatory cytokines in macro-
phages (Fig. 4c). In addition, the protein level of iNOS was
significantly lower in Pgam5 cKO BMDMs than in Pgam5fl/fl

macrophages after M1 induction (Fig. 4d). To clarify the influence
of PGAM5-deficient macrophages on cartilage, BMDMs from
Pgam5 cKO and Pgam5fl/fl mice were cocultured with chondro-
cytes after M1 induction in vitro. The protein levels of ACAN and
MMP3 and the mRNA levels of COL2A1 and SOX9 in chondrocytes
indicated that PGAM5 deletion in macrophages limited the
proinflammatory phenotypes of chondrocytes (Fig. 4e, f).
Next, we aimed to investigate whether PGAM5 plays an

essential role in M2 macrophage polarization. Pgam5 cKO and
Pgam5fl/fl BMDMs were isolated and stimulated with IL4 for 24 h
for M2 induction. After IL-4 stimulation, Pgam5 cKO BMDMs
expressed enhanced mRNA levels of Arg1, CD206, PPARγ, and
IL10, compared to Pgam5fl/fl BMDMs (Fig. 4g). The number of
CD206+ cells was significantly higher in Pgam5 cKO BMDMs than
in Pgam5fl/fl BMDMs after M2 induction, as determined by flow
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cytometry (Fig. 4h). The protein level of CD206 significantly
increased in Pgam5-cKO BMDMs compared to Pgam5fl/fl macro-
phages after M2 induction (Fig. 4i). In conclusion, PGAM5 led to an
increased M1 response and a decreased M2 response in
macrophages in vitro.

PGAM5 induced M1 polarization via the AKT-mTOR/P38/ERK
signaling pathway, whereas inhibited M2 polarization through
STAT6-PPARγ signaling pathway
In previous studies, a series of signaling pathways were activated
by induction of M1 polarization, such as the AKT-mTOR and MAPK
signaling pathways.12 We further examined whether PGAM5
promotes M1 polarization through these specific signals. Treated
with LPS and IFNγ, BMDMs from Pgam5 cKO mice significantly
showed lower protein levels of p-p38 and p-ERK than Pgam5fl/fl

macrophages and nearly identical expression of total p38 and
total ERK, indicating that PGAM5 activates the p38 and ERK

signaling pathways to enhance M1 polarization since MAPK
signaling has been proven to increase M1 polarization in previous
studies15 (Fig. 5a). However, we did not find different expression
pattern of p-JNK in Pgam5 cKO and Pgam5fl/fl BMDMs (Fig. 5a).
p-AKT and p-mTOR significantly decreased in Pgam5 cKO
macrophages compared with Pgam5fl/fl macrophages stimulated
by LPS and IFNγ (Fig. 5a). To explore the possible role of AKT and
mTOR in mediating the intensive role of PGAM5 in macrophage
inflammation, we employed the specific mTOR activator
MHY148516 to activate the mTOR pathway. Activating mTOR
rescued the decreased levels of iNOS, IL1α, IL1β and IL-6 in
PGAM5-deficient macrophages after LPS and IFNγ stimulation, as
examined by qPCR (Fig. 5b), indicating that mTOR activity is
involved in the regulation of M1 macrophage polarization by
PGAM5. The protein level of iNOS was also enhanced in the
presence of MHY1485 in Pgam5 cKO macrophages (Fig. 5c). The
activation of mTOR, also presented by phosphorylation of mTOR,
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increased in BMDMs when treated with doses of 0, 1, 5, and
10 μmol/L of MHY1485 (Fig. 5d), and the mRNA levels of iNOS,
IL1α, IL1β, and IL6 increased in Pgam5 cKO macrophages in a
dose-dependent manner (Fig. 5e), indicating that PGAM5 pro-
moted the M1 phenotype by activating the mTOR signaling
pathway.
To explore the mechanisms by which PGAM5 modulates M2

polarization, we focused on the STAT6-PPARγ signaling pathway,
which regulates M2 polarization.17 After stimulation with IL4 for
24 h, the protein levels of PPARγ and p-STAT6 enhanced in
Pgam5-cKO BMDMs compared to Pgam5fl/fl BMDMs (Fig. 5f),
indicating that the STAT6-PPARγ signaling pathway might be
involved in PGAM5-mediated M2 polarization. Next, inhibition of
PPARγ by a specific inhibitor, T0070907,18 markedly reduced the
protein level of CD206 in a dose-dependent manner (Fig. 5g).
Furthermore, T0070907 decreased the M2 polarization response in
Pgam5 cKO macrophages, as indicated by significantly decreased
mRNA levels of Arg1, chitinase-like 3 (Ym1), and CD206 (Fig. 5h).
Besides, the protein level of CD206 was also markedly reduced by
treatment with T0070907 in Pgam5 cKO macrophages stimulated
by IL4 (Fig. 5i), suggesting that M2 polarization was regulated by
PGAM5 through the STAT6-PPARγ signaling pathway. To identify

the role of STAT6 in the PGAM5 modulation of M2 polarization,
specific inhibition of STAT6 by AS151749919 was added to Pgam5
cKO and Pgam5fl/fl macrophages at a dose of 10 μmol/L. As a
result, the protein expression of PPARγ and CD206 significantly
reduced, indicating that STAT6 functions as a regulator of PPARγ
(Fig. 5j). In conclusion, PGAM5 regulates M2 polarization via the
STAT6-PPARγ signaling pathway.

PGAM5 regulated macrophage polarization by targeting the
β-catenin pathway via dephosphorylation of DVL2
Although we have identified the related signaling pathways that
regulate PGAM5-mediated macrophage polarization, the direct
target of PGAM5 in regulating macrophage polarization has not
been verified. PGAM5 was reported to inhibit the Wnt/β-catenin
signaling pathway on the mitochondrial membrane in human cells
and Xenopus embryogenesis.20 Moreover, the β-catenin signaling
pathway is closely correlated with macrophage activation and
polarization.21–23 Nevertheless, whether PGAM5 modulates
β-catenin in synovial macrophage polarization and the related
targets have not been reported.
Thus, we first examined the potential regulation of PGAM5 on

β-catenin in macrophage polarization. Pgam5 cKO and Pgam5fl/fl
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BMDMs were isolated and stimulated to induce M1 or M2
polarization. After 24 h of stimulation, Pgam5 cKO BMDMs showed
increased phosphorylation of β-catenin at Ser675 and decreased
phosphorylation at Thr41/Ser45 in the M1- and M2-polarized
states, and increased protein levels of β-catenin were detected in
the M1-polarized state compared to Pgam5fl/fl BMDMs, indicating
that PGAM5 triggered inhibition of β-catenin in both M1 and M2
polarization (Fig. 6a). To better confirm the target of PGAM5 on
β-catenin in macrophage polarization, we focused on whether
PGAM5 could dephosphorylate Dishevelled Segment Polarity
Protein 2 (DVL2), which is a inhibitory regulator in the upstream
of β-catenin signaling pathway. Interestingly, the phosphorylation
sites of DVL2, S143 and T224, were both increased in Pgam5 cKO
macrophages when induced to M1 and M2-polarized states
compared to Pgam5fl/fl BMDMs (Fig. 6a), indicating potential
interaction of PGAM5 and DVL2. Thus, we detected whether
PGAM5 could directly bind to DVL2 and found that PGAM5 could
be coimmunoprecipitated with DVL2 in both M1 and M2
macrophages (Fig. 6b), indicating PGAM5 directly dephosphory-
lated DVL2 via binding to it. We then focused on whether
β-catenin was involved in PGAM5-modulated macrophage polar-
ization. Specific inhibition of β-catenin by ICG-00124 increased the
protein levels of p-p38, p-ERK and iNOS. ICG-001 also reduced the
expression of p-STAT6, PPARγ, and CD206, indicating that
β-catenin functions as a regulator of macrophage polarization
(Fig. 6c, d). In addition, as predicted, the expression of β-catenin

increased in the OA synovium of Pgam5 cKO mice compared to
Pgam5fl/fl mice (Fig. 6e). Thus, these results indicated that PGAM5
modulated macrophage polarization by inhibiting the β-catenin
pathway via directly targeting DVL2.
To verify the role of β-catenin in PGAM5-mediated macrophage

polarization in synovium, we generated mice in which both PGAM5
and β-catenin were ablated in macrophages, herein referred to as
DKO mice, by crossing β-cateninfl/fl mice with Pgam5 cKO mice.
Knee joints of DKO and Pgam5 cKO male mice were collected 28
days after DMM surgery for further investigations. DKO mice
significantly exacerbated OA symptoms compared to Pgam5 cKO
mice, as determined by safranin O staining (Fig. 6f). OARSI scores of
safranin O staining were listed in the supplementary materials
(Fig. S3). Expression of ACAN decreased while expression of MMP13
increased in the knee joint of DKO mice compared to Pgam5 cKO
mice, indicating that the relieved OA symptom by PGAM5
deficiency in macrophages was partly mediated by the enhanced
activity of β-catenin (Fig. 6f). In addition, iNOS-positive cells were
significantly increased and CD206+ cells were significantly
decreased in the synovium of DKO mice compared to Pgam5 cKO
mice (Fig. 6f, g), suggesting that PGAM5 regulates synovial
macrophage polarization by inhibiting the β-catenin signaling
pathway, further aggravating the progression of OA. Peritoneal
macrophages in DKO mice showed increased mRNA levels of iNOS
and CD80 and decreased mRNA levels of CD206 (Fig. 6h). In
addition, flow cytometry of peritoneal macrophages also indicated
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that DKO mice showed more proinflammatory phenotypes than
Pgam5 cKO mice (Fig. 6i). In conclusion, PGAM5 regulates
macrophage polarization by inhibiting the β-catenin signaling
pathway, and inhibition of β-catenin extensively reversed the
alleviation of OA symptoms in Pgam5 cKO mice.

Targeted knockdown of PGAM5 in synovial macrophages by
MFP9-2/siPGAM5 relieved OA symptoms
Based on the mechanisms of PGAM5 in regulating macrophage
polarization, we aimed to establish targeted deletion of PGAM5 in

synovial macrophages to treat OA in early stage. RNA interference
(RNAi) is a powerful technique to treat various diseases via specific
gene silence.25 However, targeted delivery of siRNA into synovial
macrophages is challenging owing to the complicated synovial
fluid composition and extracellular matrix in the joint microenvir-
onment.26 Here, we developed a series of mannose modified
fluoropolymers for macrophage-targeted siRNA delivery to treat
OA via inhibition of PGAM5. ε-PLL was conjugated with
fluoroalkanes (F7-F17, Fig. 7a) via amine-epoxide reactions, and
different feeding ratios were chosen to get PLL modified with
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average numbers of about 10 and 15 fluoroalkanes, respectively.
The obtained fluoropolymers were further grafted with mannose
via an amine-isocyanate reaction, and an average number of 1
mannose was conjugated on each polymer calculated by 1H NMR.
Take F7 for example, the mannose grafted polymer conjugated
with 10 F7 ligands and 15 F7 ligands were termed MFP7-1 and
MFP7-2, respectively. The siRNA delivery efficacy of the synthe-
sized nanoparticles (NPs) was first screened on Raw264.7 cells.
MFP9-2/siPGAM5 complexes exhibited the highest gene knock-
down efficiency, which was higher than that of the Lipofectamine
2000 (Lipo)/siPGAM5 complexes (Fig. 7b). The MFP9-2 transported
the FAM-labeled siRNA into the CD68+ synovial macrophages
rather than chondrocytes efficiently after intraarticular injection
(Fig. 7c), which is beneficial for achieving macrophage-targeted
RNAi. To validate the therapeutic efficacy of the MFP9-2 based
siRNA delivery system, MFP9-2/siPGAM5 complex was injected
into the joint of WT mice twice weekly in early stage of OA
established by DMM surgery and the joints were collected 28 days
after DMM surgery. Sham group, DMM group with no injection
and DMM group with injection of MFP9-2 combined with siNC
(MFP9-2/siNC) were established as controls (Fig. 7d). Intraarticular
injection of MFP9-2/siPGAM5 greatly relieved the OA symptoms
compared to DMM group and DMM with injection of MFP9-2/siNC
group, indicated by increased safranin O staining area, decreased
expression of MMP13 and enhanced level of ACAN in cartilage
(Fig. 7d). Besides, the amount of iNOS positive cells in synovium
treated with MFP9-2/siPGAM5 greatly decreased, while CD206
positive cells increased compared to DMM group and DMM with
injection of MFP9-2/siNC group (Fig. 7e, g), indicating the availability
of macrophage modulation in OA synovium by MFP9-2/siPGAM5. To
further confirm the modulatory function of MFP9-2/siPGAM5, we
detected whether the relief of OA symptoms was the result of
PGAM5 inhibition in synovial macrophage by MFP9-2/siPGAM5. We
found that injection of MFP9-2/siPGAM5 greatly decreased the level
of PGAM5 in CD68 positive macrophages in synovium compared to
injection of MFP9-2/siNC with FAM (Fig. 7f, g), indicating successful
targeting and inhibiting of PGAM5 in synovial macrophages, which
could further achieve better OA outcomes.
To conclude, PGAM5 serves as a novel factor of regulating

macrophage polarization in osteoarthritis via dephosphorylating
DVL2, resulting in increased activity of GSK3β and degradation of
β-catenin,27 which disables the translocation of β-catenin into
nucleus to bind to promotors for downstream signaling pathways,
further contributes to increased M1 and decreased M2 phenotypes
via specific signals. To better treat OA via early intervention of
macrophage PGAM5, specifically inhibition of PGAM5 in macro-
phages was achieved by intraarticular injection of MFP9-2/siPGAM5,
which could significantly target synovial macrophages and reduce
the expression of PGAM5 in macrophages, resulting in the relief of
OA symptoms. Together, we have clarified the modulatory role of
PGAM5 in OA macrophage and designed a functional macrophage-
targeted therapy, which might contribute to early and precise
immunological interventions in OA in clinic.

DISCUSSION
Early intervention of OA has been focused to gain better clinical
outcomes, which requires for identification of molecular biomar-
kers and validation of molecular targets for novel targeted
therapies in the early-stage OA.28 In the OA pathophysiology,
synovial macrophages exhibit distinct functions.29 Macrophages
showed distinct phenotypes of M1 and M2 macrophages. M1
macrophages are also termed proinflammatory macrophages,
which are activated by LPS produced by microbes or IFNγ and
characterized by the production of inflammatory cytokines such as
IL-1, IL-6, IL-12, TNF-α and iNOS, which promote the Th1
response.14,17,30 In contrast, M2 macrophages showed anti-
inflammatory functions by promoting the Th2 response and

enhanced tissue remodeling. M2 macrophages can be alterna-
tively activated by IL-4, IL-13, glucocorticoids, IL-10, and immu-
noglobulin complexes/Toll-like receptor ligands and are
characterized by enhanced expression of multiple cell surface
markers, including mannose receptor Mrc1 (also known as CD206),
CD9, and CD36. They also produce various cytokines, like arginase
(Arg), IL-10, IL-1 receptor antagonist (IL-1ra), and the type II IL-1
decoy receptor.14,30,31 Since investigations have shown that
synovial macrophage polarization is closely associated with
OA,5,32,33 precise therapies for macrophage to decrease synovitis
and attenuate OA progression need to be clearly proposed.
In this study, we found that PGAM5 significantly increased in

macrophages in OA synovium compared to controls based on
histology of human samples and single-cell RNA sequencing
results of mice models. Accordingly, we constructed DMM model
in transgenic mice with macrophage-specific deletion of PGAM5
to identify the modulatory role of PGAM5 in synovial macro-
phages. We observed alleviated OA symptoms in Pgam5 cKO mice
compared to controls due to repolarization of M1 macrophages
into M2 macrophages in synovium. Additionally, Pgam5 cKO
BMDMs tilted polarization toward M2 macrophages, which
promoted anabolic metabolism of chondrocytes in vitro. To clarify
the underlying mechanisms of macrophage polarization regulated
by PGAM5 in OA, we examined macrophage-related signalings in
Pgam5 cKO BMDMs. In previous studies, Akt-mTOR signaling
pathway is significantly activated in the process of M1 polarization
by stimulation of LPS and IFNγ, in which Akt activation could lead
to the inactivation of tuberous sclerosis complex (TSC) 1/2, a
critical factor for M2 polarization and attenuation of M1
responses,31 further activating mTORC1 and increasing the M1
phenotype.34 Thus, we examined Akt-mTOR signaling in Pgam5
cKO BMDMs during M1 induction and found that the decreased
M1 response of Pgam5 cKO macrophages was partly due to
reduced activation of the Akt-mTOR signaling pathway. However,
Jin Fan et al. also revealed that the activation of Akt pathway
could enhance M2 macrophage polarization,35 indicating the
different mechanisms of Akt signaling in modulating macrophage
polarization. To clarify the intracellular pathways involved in
PGAM5-mediated M1 polarization, we used MHY1485, a specific
mTOR agonist,16 to activate mTOR signaling in Pgam5 cKO
macrophages. As a result, MHY1485 significantly reversed the
decreased M1 phenotype of Pgam5 cKO macrophages in a dose-
dependent manner, indicating PGAM5 induced M1 polarization via
activating Akt-mTOR signaling. Furthermore, we detected whether
PGAM5 also activated MAPK-related signaling to modulate M1
polarization, since p38/STAT3, ERK/MEK, and JNK signals are proved
activated by M1-correlated stimuli such as LPS, serving as signal
transducers to enhance the M1 response.31,36–39 We then proved
that PGAM5 deletion in macrophages could inactivate p38 and ERK
signaling when treated with LPS and IFNγ, suggesting that p38/ERK
MAPK signaling pathways participated in PGAM5-induced M1
polarization. Similarly, we revealed that PGAM5 inhibited M2
polarization by STAT6-PPARγ by usage of STAT6 inhibitor
(AS1517499) and PPARγ inhibitor (T0070907). These results verified
that PGAM5 is a critical regulator of macrophage polarization.
However, we were not able to obtain Pgam5 OE(overexpression)
mice and further focused on the knockout of PGAM5 in
macrophages as a promising therapeutics in clinic.
In previous studies, PGAM5 was shown to play a complex role of

modulating β-catenin signaling pathway. DVL2 serves as a
substrate of PGAM5 and could be dephosphorylated by PGAM5
directly on the mitochondrial membrane due to its phosphatase
activity, which activates GSK3β, an antagonist of the Wnt-
β-catenin signaling pathway, by phosphorylating β-catenin on
Thr41 and inhibiting its activity,20,40,41 indicating that PGAM5
functions as an inhibitor of the β-catenin signaling pathway.
Nevertheless, some studies also proved that PGAM5 could directly
bind to β-catenin and activate the Wnt-β-catenin signaling
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pathway.42,43 To further verify the association between PGAM5 and
β-catenin signaling during synovial macrophage polarization, we
further examined the expression patterns of potential targets of
PGAM5. Our observations showed that the levels of β-catenin and
p-DVL2 were enhanced in Pgam5 cKO macrophages during M1 and
M2 induction, suggesting that PGAM5 might directly dephosphor-
ylate DVL2 to inhibit the β-catenin pathway in macrophages. Next,
co-IP of PGAM5 and DVL2 indicated that PGAM5 directly binds to
DVL2 and leads to inhibition of the β-catenin pathway. Accordingly,
inhibition of the β-catenin pathway by ICG-001, a specific inhibitor of
the β-catenin pathway,24 significantly enhanced the M1 phenotype
by activating the p38/ERK signaling pathway and reduced the M2
response by inhibiting the STAT6-PPARγ pathway in vitro. Further-
more, Pgam5/catenin DKO mice showed increased OA symptoms
compared to Pgam5 cKO mice, indicating that PGAM5 promoted M1
polarization and inhibited M2 polarization of synovial macrophages
by downregulating β-catenin both in vitro and in vivo.
Motivated by these findings, we aimed to deliver siRNA targeting

PGAM5 in synovial macrophages to treat OA. Few studies have
achieved macrophage-targeted delivery of siRNA in OA synovium,
since siRNA is a large hydrophilic molecule which is difficult to
penetrate across the semipermeable cell membrane, resulting in the
low efficacy of intracellular delivery.44 Besides, the negatively charged
siRNA could be easily degraded in the cytoplasm leading to short
residence of siRNA.44 Accordingly, we constructed mannose modified
fluoropolymers combined with siPGAM5 and treated mice via
intraarticular injection. The fluoropolymers modified by fluoroalkanes
have excellent advances in gene delivery,45 since the strong
hydrophobicity of fluoropolymers ensures efficient cell membrane
penetration and endosomal escape of siRNA, and cationic polymers
by fluorination protect nucleic acids from enzyme degradation. As a
result, we detected stable residency of FAM-modified siPGAM5 in
synovial macrophages up to a week. Furthermore, fluoropolymers
could be easily modified by mannose for targeting synovial
macrophages, owing to the widely expressed mannose receptors
on the surface of macrophages.46 Amazingly, we found that nearly a
hundred percent of synovial macrophages were targeted and PGAM5
in macrophages was inhibited via the intraarticular injection of
siPGAM5 NPs, leading to repolarization of M1 macrophages into M2
macrophages which greatly alleviated OA. What’s more, the
cytotoxicity of fluoropolymers is less than other cationic polymers
due to less nitrogen to phosphorus ratio,44 which is a promising
therapeutic for targeting synovial macrophages in clinical intervention.
In summary, we demonstrated that PGAM5 directly interacted

with DVL2 to modulate the β-catenin pathway, further amplifying
the M1 response via the Akt-mTOR, p38, and ERK signaling and
inhibiting M2 polarization mediated by downregulating the
STAT6-PPARγ pathway. Accordingly, targeted knockdown of
PGAM5 in macrophages by macrophage-targeted siPGAM5 NPs
greatly relieved OA symptoms in mice. This immune-targeted
approach promoted anabolic and inhibited catabolic metabolism
of chondrocytes, which offered a new avenue for OA intervention
in addition to traditional pharmacological strategies and regen-
erative therapies.47 Furthermore, the critical function of PGAM5 in
OA might provide novel clinical targets and the related
macrophage-targeted therapy will offer new therapeutic strate-
gies of precise immunomodulation in OA for better outcomes.

MATERIALS AND METHODS
Animals
Myeloid cell-specific PGAM5 conditional knockout mice (Pgam5
cKO mice) were obtained by crossing PGAM5loxp/loxp mice with
mice expressing Cre recombinase under the control of the
Lysozyme promoter (Lyz2). Myeloid cell-specific PGAM5 and
β-catenin conditional knockout mice (DKO mice) were obtained
by crossing β-cateninloxp/loxp mice with Pgam5 cKO mice.
Lyz2Cre-negative, PGAM5loxp/loxp and β-cateninloxp/loxp

littermates served as the controls. Eight-week-old mice (male)
were usually used for the in vitro experiments. PGAM5loxp/loxp
and Lyz2Cre mice were generous gifts from Prof. Wei Lu.8

β-cateninloxp/loxp mice were kindly provided by Prof. Xuefeng
Wu.48 All mice were maintained in a specific pathogen-free facility.
All experimental manipulations were undertaken in accordance
with the Institutional Guidelines for the Care and Use of
Laboratory Animals, Institute of Zoology (Shanghai, China).

Human synovium
Normal human synovium was obtained from bone fracture patients
with no history of arthritic diseases (n= 3). Human OA synovium
was obtained from patients undergoing total knee replacement
surgery (n= 5). Human samples were obtained from Shanghai
Xinhua Hospital and Shanghai Dongfang Hospital. All patients gave
informed consent to use their clinical information for scientific
research. The study was approved by the Ethics Committee of the
Shanghai Xinhua Hospital and Shanghai Dongfang Hospital.

Reagents
Anti-mCD86-PE/Cy5 and anti-mCD206-FITC were purchased from
Cell Signaling Technology. Bacterial lipopolysaccharide (LPS; E. coli
055: B5) was purchased from Sigma‒Aldrich. Recombinant mouse
IL-4 and IFNγ were purchased from PeproTech (Rocky Hill, NJ). An
agonist of mTOR (MHY1485), inhibitor of PPARγ (T0070907) and
inhibitor of STAT6 (AS1517499) were purchased from Selleck.
Primary antibodies against ERK, p-ERK1/2 (Thr202/Tyr204), p-JNK
(Thr183/Tyr185), P38, p-p38 (Thr180/Tyr182), Akt, p-Akt (Thr308),
p-Akt (Ser473), STAT6, p-STAT6 (Tyr641), p-β-catenin (Ser675,
Thr41/Ser45) and β-tubulin were purchased from Cell Signaling
Technology. Primary antibodies against PGAM5, PPARγ, MMP13,
β-catenin, DVL2 and p-DVL2 (S143, T224) were purchased from
ABclonal. ACAN antibody was purchased from ABclonal (A11691;
Wuhan, China). All of these antibodies were diluted at 1:1 000 in
5% bovine serum albumin (BSA). ELISA was performed using the
Mouse IL-12p70 ELISA Kit (EK212/3-96, Lianke), IL-6 Mouse
Uncoated ELISA Kit (88-7064-88, Thermo Fisher), and Mouse IL-1
beta Uncoated ELISA (88-7013-88, Thermo Fisher).

Cell preparation
Bone marrow cells were cultured with Dulbecco’s modified Eagle
medium (DMEM) containing 10% (v/v) FBS and 10 ng/mL mouse
M-CSF or 10 ng/mL mouse GM-CSF for 12 days to obtain BMDMs.
The nonadherent cells were removed by washing with PBS. The
inflammatory response of macrophages was induced by LPS
(100 ng/mL) and IFNγ (50 ng/mL) for 24 h. M2 macrophages were
induced by IL-4 (1 000 U/mL) treatment for 24 h.

Quantitative PCR analysis
Total RNA was extracted by transfer to TRIzol reagent (Invitrogen,
Waltham, MA) from 6-well plates and then homogenized at high
speed on ice. DNase I (Sigma‒Aldrich, St. Louis, MO) was added to
the extracted mRNA to remove genomic DNA. The quantification of
mRNA was performed and calculated using a Nanodrop 2000
(Thermo Fisher Scientific). mRNA was reversely transcribed into
complementary DNA (cDNA) in each experimental and control
group using the PrimeScript RT Master Mix Kit (Takara Bio Inc.,
Dalian, China). Then, cDNA was tested by PCR via the SYBR Premix
Ex Taq Kit (RR420a; Takara, Tokyo, Japan). To normalize the mRNA
expression, the level of the housekeeping gene GAPDH served as a
control. Quantitative PCR (qPCR) primers for the genes and forwards
(F) and reverse (R) primer sequences were listed in Table 1.

Immunohistochemistry and pathological staining
ACAN, MMP13, β-catenin, iNOS and CD206 in pathological sections
were examined by immunohistochemistry. Paraffin sections of joints
were dewaxed, rehydrated, pretreated with pepsin at 37 °C for
30min, and then incubated with 3% H2O2 in methanol solution.
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After rinsing with PBS, the slices were blocked with BSA at room
temperature for 1 hour and then incubated overnight with primary
antibodies at 4 °C. Then, the slices were incubated with the
secondary antibody provided in the HRP polymer anti-rabbit IHC
kit (Kit 5005; MaxVision, Shenzhen, China) for 15min and stained
with substrate from the DAB Plus kit (DAB-2031) for 10min.
Histological images of the knee joint were obtained after staining
with safranin O and fast green. We performed immunofluorescence
using a multicolored immunofluorescence kit (abs50012, absin) and
observed the cells using a microscope from Zeiss.

Western blot assay and coimmunoprecipitation
Macrophages were cultured in DMEM with 10% FCS in 6-well
plates. Cells were treated with IL-4 (100 nmol/L) or LPS (100 ng/
mL) for the indicated times. After stimulation, cells were washed
once in cold PBS and lysed in RIPA buffer (50 mmol/L Tris–HCl pH

7.4, 1% NP-40, 0.25% Na-deoxycholate, 150mmol/L NaCl, 1 mmol/L
EDTA pH 7.4) with protease and phosphatase inhibitor cocktails
(Sigma) for 10 min on a rocker at 4 °C. Protein concentration was
determined using a BCA assay. Protein samples were analysed by
SDS polyacrylamide gel electrophoresis (SDS–PAGE) and trans-
ferred onto PVDF membranes (Millipore, CA)60. Each polyvinyli-
dene fluoride membrane was blocked with TBST (100 mmol/L
Tris–HCl pH 7.5, 150 mmol/L NaCl, 0.05% Tween 20) with 5% BSA
for 1 h and then incubated with primary antibodies overnight on a
shaker at 4 °C. The appropriate HRP-coupled secondary antibody
was then added and detected through chemiluminescence
(Millipore). GAPDH and β-tubulin were used as protein loading
controls. Coimmunoprecipitation was performed with indicated
antibodies and G/A beads following information of co-IP kit (absin,
abs955). Quantitative analyses with a p-value between indicated
groups in the WB were calculated via ImageJ.

Flow cytometry
Primary BMDMs were induced under specific conditions and labeled
with the following antibodies for identification of M1 or M2
macrophages: PE/Cyanine7 anti-mouse F4/80 Antibody (Biolegend,
123113) PE/Cyanine5 anti-mouse CD86 Antibody (Biolegend,
105015), FITC anti-mouse CD206 (MMR) Antibody (Biolegend,
141703). Related isotypes for control are PE/Cyanine7 Rat IgG2a, κ
Isotype Ctrl Antibody (Biolegend, 400521), PE/Cyanine5 Rat IgG2a, κ
Isotype Ctrl Antibody (Biolegend, 400509), FITC Rat IgG2a, κ Isotype
Ctrl Antibody (Biolegend, 400505). Cells were suspended and
incubated with antibodies for 30min, and analyzed via Guava
Easycyte 12HT (Luminex).

siRNAs
siRNAs targeting mouse PGAM5 with FAM labeled were purchased
from Sangon Biotech. Scrambled siRNA with FAM labeled was
used as a control. Raw264.7 cells were transfected with siRNA
using Lipofectamine 2000 (Invitrogen, Thermo Fisher Scientific,
Waltham, MA, USA) in serum-free conditional medium for
examination. Sequence of siRNA targeting PGAM5 is: sense (5’-
3’) : (FAM)CUGGAGAAGACGAGUUGACAUTT, antisense (5’-3’) :
AUGUCAACUCGUCUUCUCCAGTT. Experiments were repeated for
at least three times independently.

Synthesis of mannose modified fluoropolymers
ε-PLL (Mw: 4 224 Da) was mixed with epoxides bearing fluoroalk-
anes at different molar ratios in anhydrous methanol, and stirred
at 60 °C for 48 h. The crude products were dialyzed against
methanol and distilled water, then lyophilized to obtain the
fluoropolymers. The average number of fluoroalkanes modified on
each polymer was tested by a well-established ninhydrin assay49

(Fig. S9). The obtained fluoropolymers were further reacted with
d-mannopyranosylphenyl isothiocyanate in dimethylsulfoxide at a
molar ratio of 1:1 at room temperature for 24 h, then lyophilized to
obtain the mannose modified fluoropolymers. The average
number of mannoses modified on each polymer was character-
ized and calculated by 1H-NMR (Bruker, 500 MHz).

Statistical analysis
All data are presented as the mean ± s.d. Two-way ANOVA was
used for comparisons among multiple groups with SPSS 16.0 soft-
ware. Student’s unpaired t test for comparison of means was used
to compare two groups. Log-rank tests were used for mouse
survival assays. A P value less than 0.05 was considered to be
statistically significant.

DATA AVAILABILITY
All data needed to evaluate the conclusions in the paper are present in the paper
and/or the Supplementary Materials. Data will be made available upon reasonable
request.

Table 1. Primer sequences for qPCR

Gene Primer sequences

hPGAM5-F TCGTCCATTCGTCTATGACGC

hPGAM5-R GGCTTCCAATGAGACACGG

hGAPDH-F GGAGCGAGATCCCTCCAAAAT

hGAPDH-R GGCTGTTGTCATACTTCTCATGG

mCOL2A1-F ACGAGGCAGACAGTACCTTG

mCOL2A1-R CAGCCCTGGTTGGGATCAAT

mMMP13-F TTGGCTTAGAGGTGACTGGC

mMMP13-R CCACATCAGGCACTCCACAT

mSOX9-F TCAGCAAGACTCTGGGCAAG

mSOX9-R TCCGTTCTTCACCGACTTCC

mMMP3-F CCACTCCCTGGGACTCTAC

mMMP3-R TGAGAGAGATGGAAACGGGAC

mPGAM5-F CCCTGCAAGAAGACTGTGGT

mPGAM5-R GTCAGCGGGGGCTAAATCTT

mGAPDH-F TGACCTCAACTACATGGTCTACA

mGAPDH-R CTTCCCATTCTCGGCCTTG

mCD80-F TCAGTTGATGCAGGATACACCA

mCD80-R AAAGACGAATCAGCAGCACAA

mIL1β-F GCAACTGTTCCTGAACTCAACT

mIL1β-R ATCTTTTGGGGTCCGTCAACT

mTNF-F CCCTCACACTCAGATCATCTTCT

mTNF-R GCTACGACGTGGGCTACAG

mIL10-F CTTACTGACTGGCATGAGGATCA

mIL10-R GCAGCTCTAGGAGCATGTGG

mIL4-F GGTCTCAACCCCCAGCTAGT

mIL4-R GCCGATGATCTCTCTCAAGTGAT

mIL6-F CTGCAAGAGACTTCCATCCAG

mIL6-R AGTGGTATAGACAGGTCTGTTGG

mIL1A-F AGTATCAGCAACGTCAAGCAA

mIL1A-R TCCAGATCATGGGTTATGGACTG

mIl1b-F GAAATGCCACCTTTTGACAGTG

mIl1b-R TGGATGCTCTCATCAGGACAG

mIL12-F TGGTTTGCCATCGTTTTGCTG

mIL12-R ACAGGTGAGGTTCACTGTTTCT

mPPARγ-F GGAAGACCACTCGCATTCCTT

mPPARγ-R GTAATCAGCAACCATTGGGTCA

mArg1-F TGTCCCTAATGACAGCTCCTT

mArg1-R GCATCCACCCAAATGACACAT

mFizz1-F1 CTGCCCTGCTGGGATGACT

mFizz1-R1 CATCATATCAAAGCTGGGTTCTCC

mYm1-F1 CAAGTTGAAGGCTCAGTGGCTC

mYm1-R1 CAAATCATTGTGTAAAGCTCCTCTC
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