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Color constancy denotes the ability to assign a particular
and stable color percept to an object, irrespective of its
surroundings and illumination. The light reaching the
eye confounds illumination and spectral reflectance of
the object, making the recovery of constant object color
an ill-posed problem. How good the visual system is at
accomplishing this task is still a matter of heated debate,
despite more than a 100 years of research. Depending
on the laboratory task and the specific cues available to
observers, color constancy was found to be at levels
ranging between 15% and 80%, which seems
incompatible with the relatively stable color appearance
of objects around us and the consistent usage of color
names in real life. Here, we show close-to-perfect color
constancy using real objects in a natural task and natural
environmental conditions, chosen to mimic the role of
color constancy in everyday life. Participants had to
identify the color of a (non-present) item familiar to
them in an office room under five different experimental
illuminations. They mostly selected the same colored
Munsell chip as their match to the absent object, even
though the light reaching the eye in each case differed
substantially. Our results demonstrate that color
constancy under ideal conditions in the real world can
indeed be exceptionally good. We found it to be as good
as visual memory permits and not generally
compromised by sensory uncertainty.

Introduction

Perceptual constancies are the workhorse of our
sensory abilities. In vision, the stimulation on the retina
is extremely variable with respect to size, form, speed,
and wavelength. Yet, we do perceive a stable world
where, for example, an object does not appear to change
when we walk past it, even though changes in distance,
projection, eccentricity, and illumination might lead
to a vastly different stimulation of our visual system.

For many of these constancies, it is known that the
compensation achieved by our visual system depends
on the richness of contextual cues that are available.
This has been shown very elegantly for size constancy in
the classic experiments of Holway and Boring (1941),
and similar findings have emerged for other constancies
(see Epstein, 1977; Walsh & Kulikowski, 1998).

Color constancy seems to be a notable exception, and
the degree to which humans achieve color constancy
is still heavily debated (for reviews, see Foster, 2003;
Foster, 2011). On the one hand, some researchers argue
that the problem of color constancy is intractable
mainly due to metamerism (Logvinenko, Funt, Mirzaei,
& Tokunaga, 2015; Witzel, van Alphen, Godau, &
O’Regan, 2016), and several empirical studies have
observed rather low levels of compensation, around
20% (Arend & Reeves, 1986; Tiplitz, Blackwell, &
Buchsbaum, 1988; Valberg & Lange-Malecki, 1990).
On the other hand, experiments have shown that, as
cues are added to the visual stimulus, color constancy
increases to levels of about 80% (Kraft & Brainard,
1999). Indeed, over several decades the degree of color
constancy measured experimentally seems to have
steadily risen (Foster, 2011; Witzel & Gegenfurtner,
2018).

At least partly, this controversy seems to be due to
the introduction of very strict methods to quantify
color constancy in terms of a single number. A hundred
years ago, nobody doubted that there would be a
constancy of color to a very high degree (Gelb, 1929;
Katz, 1911; Koffka, 1932). The main question was how
this was achieved. von Helmholtz (1910) proposed the
influence of unconscious inferences, possibly supported
by low-level sensory adaptation (von Kries, 1923).
The view of Hering (1920) is quite close to current
thinking. He proposed low-level effects of adaptation
and simultaneous contrast, supported by high-level
effects of memory color: the known color of some
objects. Empirical studies by Katz (1911) found that

Citation: Gegenfurtner, K. R., Weiss, D., & Bloj, M. (2024). Color constancy in real-world settings. Journal of Vision, 24(2):12, 1–22,
https://doi.org/10.1167/jov.24.2.12.

https://doi.org/10.1167/jov.24.2.12 Received March 31, 2023; published February 27, 2024 ISSN 1534-7362 Copyright 2024 The Authors

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://www.allpsych.uni-giessen.de/karl/
mailto:gegenfurtner@uni-giessen.de
mailto:david.weiss@psychol.uni-giessen.de
mailto:m.bloj@bradford.ac.uk
https://doi.org/10.1167/jov.24.2.12
http://creativecommons.org/licenses/by/4.0/


Journal of Vision (2024) 24(2):12, 1–22 Gegenfurtner, Weiss, & Bloj 2

a large field of view and a structured scene led to
very good constancy. Helson (1938) and Helson and
Jeffers (1940) agreed with this view but observed that
constancy would be poorer under highly saturated
chromatic illuminations.

Many of the 20th-century studies observing low
degrees of constancy have used asymmetric matching
techniques with two different illuminants simulated on a
CRT monitor displaying a range of flat, matte surfaces.
Observers have to match the color of two test objects
in these different regions (Arend & Reeves, 1986). This
allows testing objects with arbitrary colors, but it also
limits the degree of adaptation that is possible, and local
contrast becomes basically the only cue that is available
for achieving color constancy. Constancy in these
paradigms has generally been poor, but experiments
with more immersive environments and illumination

gradients have brought the degree of constancy up to
60% (Brainard, Brunt, & Speigle, 1997). The degree of
immersion can also be increased by using achromatic
matching, sequential matching, or color categorization
under a single, full-field illuminant. In many of these
studies, relatively high levels of constancy at or above
80% have been found (Brainard, 1998; Foster, Amano,
& Nascimento, 2001; Hansen, Walter, & Gegenfurtner,
2007; Olkkonen, Hansen, & Gegenfurtner, 2009;
Olkkonen, Witzel, Hansen, & Gegenfurtner, 2010;
Smithson & Zaidi, 2004). However, there are also
drawbacks to these paradigms. In achromatic matching,
the observer makes neutral settings under different
illuminations. Therefore, the only “color” that is ever
adjusted is gray. In categorization and naming tasks,
there is a severe limit to the resolution, because only
a limited number of categories or names can be used.

Figure 1. Personal objects brought for the study by participants shown under neutral daylight illumination (top left) and the four
experimental filter conditions (A–D). In the top right, we show details of several objects under the four colorful illuminants to
illustrate how different the reflected wavelength composition and cone excitations are under each illumination. These images were
taken with a Nikon D70 digital camera with the white balancing turned off. They were not colorimetrically calibrated and only serve
illustration purposes. The objects were never seen by the observers during the experiments.
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What is missing from the literature is a paradigm that
mimics color constancy in everyday life. The selection
paradigm, where observers have to select a colored
target seen under illuminant A under a different
illuminant B, comes closer to real life, but so far it
has been mainly used in asymmetric viewing contexts
(Bramwell & Hurlbert, 1996; Radonjic, Cottaris, &
Brainard, 2015a; Radonjic, Cottaris, & Brainard,
2015b; Zaidi & Bostic, 2008). Although the degree of
constancy was higher than in standard matching tasks,
it seems that constancy was still limited by factors
related to the asymmetric matching paradigm.

In everyday life, we take it for granted that objects
“have” a color. From early childhood on, we regularly
use color terms to describe objects (Bornstein, 1985;
Franklin & Davies, 2004). We say that a shirt “is” green,
for example, and not that the shirt “looks greenish under
this particular lighting.” Our high, innate expectation
of color as a common and reliable object identifier
became clear in February 2015 when what seemed to
be the whole world became irritated by looking at the
same picture but seeing the portrayed object as different
colors: the well-publicized blue–black/white–gold
dress conundrum (Aston & Hurlbert, 2017; Brainard
& Hurlbert, 2015; Gegenfurtner, Bloj, & Toscani,
2015; Uchikawa, Morimoto, & Matsumoto, 2017;
Lafer-Sousa, Hermann, & Conway, 2015; Schlaffke
et al., 2015; Toscani, Gegenfurtner, & Dörschner, 2017;
Wallisch, 2017; Winkler, Spillmann, Werner, & Webster,
2015; Witzel, Racey, & O’Regan, 2017).

Given the low levels of color constancy observed in
some experiments and the variability between different
observers and tasks (e.g., Arend & Reeves, 1986;
Radonjic & Brainard, 2016), one would expect these
inconsistencies in color identification across different
observers to happen frequently. This does not seem to
be the case, hence the uproar in 2015. In order to be able
to use color terms consistently and persistently, colors
have to be remembered. However, solely remembering
colors would not be enough to recognize our favorite
shirt outside in bright sunlight and inside in the office
under artificial light. From a physical point of view, the
spectral distribution of the light that reaches our eyes
from the shirt in these situations is very different, as are
the ensuing excitations of the cone photoreceptors in
the retina and yet, indoors and outside, the shirt seems
to mostly appear the same color to us.

Our visual system seems able to compensate for such
illumination and surround changes (for reviews, see
Brainard & Radonjic, 2014; Foster, 2011; Hurlbert,
2007; Olkkonen & Ekroll, 2016; Smithson, 2005) and
enables us to perceive the environment as relatively
stable with respect to color. In other words, we perceive
objects as color constant.

Figure 1 illustrates why this is a major achievement.
The light reflected by a sample of the objects used
in our study changes noticeably under daylight and

the four other illuminants we employed. In each case,
the reflected wavelength composition and resulting
cone excitations are very different. When viewed as
isolated patches rather than full objects, the patches
seem to change under the different illuminations, and
we would frequently even assign a different color name
to them. We investigated whether our participants are
able to identify the same constant colors for these
objects—purely from memory in the absence of the
objects—under these different illumination conditions.

Methods

Participants

Sixteen subjects (five females) participated in this
study. All subjects were members of the Department of
Psychology of the University of Giessen and provided
informed consent before taking part. Experiments
were performed in agreement with the tenets of the
Declaration of Helsinki and were approved by the local
ethics committee (LEK 2013-0018). Twelve participants
were naïve to the purpose of the experiment. Mean age
of the participants was 35 years, with a range between
26 and 61. All observers had normal or corrected to
normal visual acuity and normal color vision, as tested
with the 24-plate edition of the Ishihara test for color
deficiencies (Ishihara, 2018).

Materials and methods

Subjects were asked to bring a personal object that
was well known to them and that had a certain color
that the participant was sure to have a good memory
of. One subject provided two objects, a brown sweater
and an orange sweater. Another subject only performed
matches under two out of the four filter conditions
for the blue spike massage ball. Photographs of the 17
objects are shown in Figure 2. The objects were taken
away by the experimenter and were not seen by the
participants until the end of the experiments. They were
not present during the experiments.

Procedure

In the absence of their object, subjects were asked
to select a chip from the Munsell Book of Color
(Glossy Finish Collection) that best matched their
recollection of the color of the object. The 1600 chips
were arranged in 40 plastic bins by hue, as shown
in Figure 3. Observers performed the chip selection
task in two rooms of similar size, window aperture, and
orientation to the sun path. Both had white painted
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Figure 2. Photographs of the 17 objects brought by our
participants. These photographs serve only to illustrate that
each object indeed had a Munsell chip that matched its color
quite well. To create these photographs, the experimenter
selected the best-matching chip in the presence of the object.
The photographs were in no way calibrated. Notice the variety
of materials, sizes, and colors that represent the diversity of
objects used in our study.

walls and gray floors and were filled with experimental
equipment, office furniture, and objects. The rooms
were illuminated only by neutral daylight or by daylight
modified by the use of one of four filters obtained from
Lee Filters (Andover Corporation, Surrey, UK). The
filters were attached in an inconspicuous way to the
window in the rooms. Data for the neutral daylight
and purplish filters were collected in the first room,
data for the remaining three filters were collected in
the other room. Details of the filters used and their

Figure 3. Photograph of the 1600 chips from the Munsell Glossy
collection displayed in 40 plastic bins (here, under neutral
daylight) as they were seen by observers after completing the
adaptation task and before making their memory match
selection.

chromaticity are provided in Table 1, Figure 4, and
Table A1.

Before doing the chip selection, participants adapted
for at least 2 minutes to the illuminant. The chips were
arranged in bins, each containing one Munsell hue
category of about 33 chips. The initial arrangement
of the bins was in random order. During adaptation
time, participants had to sort the bins by hue, so that
the arrangement at the start of the selection task was
as shown in Figure 3. This task allowed participants
not only to adapt to the illuminant but also to become
familiar with the Munsell chips. To keep participants
from remembering the spatial position of the bin they
chose a chip from in a previous trial, the absolute
position of the bins was rotated after every session.
A session consisted of two memory matches under a
single illumination condition. Each participant ran
five sessions, one under neutral daylight and one for
each filter. The sessions were spaced over several weeks,
during which the filters were changed on the windows.
The observers did not see their object during that time.

Before and after each participant completed
their selection procedure, the ambient illumination
was measured by using a RS-2 (51-mm diameter)
polytetrafluoroethylene (PTFE) reflectance standard
(Photo Research, Syracuse, NY) and a CS-2000
Spectroradiometer (Konica Minolta Sensing,
Singapore). The measured illuminants are shown
in Table 1 and Figure 4. The variation within each
illuminant is due to the different times of day the
individual experiments were run. Figure 4 shows that
neither of the filtered illuminants was aligned with
the daylight axis. However, the differences between
the yellow and green illuminants and between the red
and violet illuminants closely parallel the daylight
axis, whereas the differences between the yellow and
red illuminants and between the green and violet
illuminants are approximately orthogonal to the
daylight axis.
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Illuminant Lee filter specification xmean (SD) ymean (SD) Y (cd/m2) mean (SD)

Daylight — 0.3135 (0.0103) 0.3395 (0.0159) 186 (63)
Green (A) 242 Fluorescent 4300K 0.2430 (0.0148) 0.3539 (0.0203) 80 (33)
Yellow (B) 138 Pale Green 0.3082 (0.0234) 0.4364 (0.0155) 175 (88)
Red (C) 035 Light Pink 0.3338 (0.0109) 0.3100 (0.0103) 67 (47)
Violet (D) 136 Pale Lavender 0.2832 (0.0143) 0.2627 (0.0143) 84 (31)

Table 1. Illuminant specifications and averaged Judd–Vos corrected CIE x,y, and Y coordinates of the white standard measurements.
The values are means (SD) over all sessions for a specific illuminant. See also Table A1.

Figure 4. Judd–Vos-corrected CIE x,y chromaticities of the five
illuminants measured in each session. Each colored circle
represents the average of measurements before and after each
session. The solid disk with a black outline represents the
chromaticity of one illuminant averaged over all measurements.
The solid gray line represents the daylight locus.

Data analysis

The most straightforward way to analyze our data is
in the domain of the Munsell chips. An observer who
is perfectly color constant would always select the same
chip, irrespective of the particular illuminant. One way
to quantify constancy is therefore to determine the
proportion of such “perfect matches.” This is what we
refer to as “Top1-accuracy.” The catalog of Munsell
chips was empirically designed to cover all colors fairly
evenly, so that neighboring chips would be perceptually
approximately equidistant. If two chips that differ only

in hue, chroma, or value are placed next to each other,
they appear similar, but they can be well discriminated.
However, if memory is involved, this is no longer the
case and confusion occurs (e.g., Godlove, 1951). To
account for these small inaccuracies, we also define
a “TopN-accuracy,” which counts how often a chip
was selected that was identical to the perfect one, or
one of the 26 chips neighboring the perfect one in
any of the three dimensions of the Munsell catalog.
For hue, the chips fall into 40 different categories, as
illustrated in Figure 3. There are 10 value categories.
Chroma labels range from 2 to 16, but their spacing is
2. The probability of selecting the Top1 Munsell chip
by chance is less than 1 in 1000, and that of selecting a
TopN Munsell chip less than 17 in 1000.

For a more continuous analysis of errors, we chose
to plot the chromaticity of selected chips in the
approximately perceptually uniform color space CIE1976
L*a*b*. For this we used measured reflectance of the
selected Munsell chips provided by the University
of Joensuu Spectral Color Research Group (Orava,
2002) and average ambient illumination measured in
our experimental rooms to calculate corresponding
CIE XYZ values using Judd–Vos-corrected color
matching functions (Judd, 1951; Vos, 1978), provided
by the Color and Vision Research Laboratory (CVRL)
database (http://cvrl.ucl.ac.uk/), and converted them to
CIE 1976 L*a*b* (Wyszecki & Stiles, 2000).

For some object/illumination combinations, the
chromaticity of the chip selected by the owner under
daylight was no longer represented in the Munsell
collection under a different illuminant. For example,
under the greenish illumination, there is no Munsell
chip that matches the chromaticity coordinates of
the “red book” object under the neutral illumination.
Thus, zero color constancy cannot be obtained under
these conditions, because any selected chip will be
shifted toward the “red book” object under the
greenish illuminant (i.e., will tend toward constancy).
In these cases, we calculated for the corresponding
object/illumination combination the lower bound of
color constancy using the chromaticity of the chip
that under that illuminant would provide the lowest
possible constancy index. The calculated lower bounds
for constancy are shown in the bar charts later on
as dark shaded regions. The problem emerges only

http://cvrl.ucl.ac.uk/
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for a few object/illumination combinations and is
not systematically related to the overall high level of
constancy we obtained.

Metamer analysis

To calculate potential metamers of the Munsell
chips selected by participants in our study as memory
matches under neutral illumination, we compared
the spectral distribution of each of them to 11,302
surface spectra gathered from different online databases
(Arnold, Savolainen, & Chittka, 2008; Barnard,Martin,
Funt, & Coath, 2002; Berns, 2017; Haanpalo, 2017;
Hiltunen, 2017; Jaaskelainen, Silvennoinen, Hiltunen,
& Parkkinen, 1994; Marszalec, 2017; Matsumoto
et al., 2014; Orava, 2002; Parkkinen, Jaakelainen, &
Kuittinen, 1988; Regan et al., 1998; Westland, Shaw,
& Owens, 2000), leading to 192,117 (17 × 11, 302 –
317) possible comparisons (for details, see Akbarinia
& Gegenfurtner, 2018). Each reflectance was rendered
under each of the five illuminant spectra used in
our experiment. The resulting spectral product was
converted to CIE1931 XYZ values using CIE1931
2°-observer color matching functions. To make the
illuminants comparable for this analysis, the luminance
according to an ideal reflector was normalized to Y
= 1 before calculating the spectral product. Further,
to be able to examine perceived differences between
two surface reflectances, XYZ tristimulus values were
converted to CIE L*a*b using the white point of the
given illumination. Metamer pairs were defined using a
threshold limit in perceived differences (CIE �E2000)
(Luo, Cui, & Rigg, 2001) in CIE L*a*b. If two surfaces
were below that threshold under one illumination and
above it under another illumination, they were regarded
as metamers. There is no official agreement on how CIE
�E2000 is related to just notable differences (JNDs).
The MacAdam ellipses range in CIE �E2000 values
from 0.23 to 0.89, with a mean of 0.5. We chose a
slightly higher threshold of CIE �E2000 = 1.5 for
defining metameric matches.

We also calculated metameric mismatch volumes
using the approach suggested by Logvinenko, Funt, and
Godau (2014), as described by Witzel et al. (2016). For
each reflectance of the chips selected by participants
under neutral daylight, metameric mismatch volumes
were calculated for the four illuminant changes from
neutral daylight to the chromatic illumination in CIE
L*a*b.

Results

As laid out in the Methods above, our analysis is
twofold. We first present the results solely as the discrete
selections of our observers in the Munsell chips catalog.

We then map these selections into the CIELAB color
space and analyze them in a more continuous manner.

Discrete analysis in munsell space

Figure 5 shows an RGB rendering of the selections,
purely for illustration purposes. Each row is for one of
the objects. The 10 colored patches show the selections
made for the five illuminations and the two repeats
in each session. In some cases, individual patches
are subdivided in the rare cases when an observer
selected more than a single chip. Even though the
illustration cannot reproduce the appearance of the
individual chips in a totally accurate manner, it does
convey the main result of our work quite well. The
differences between the chips in each row are relatively
modest, meaning that observers’ matches are highly
consistent across illuminations, achieving a high degree
of constancy. All observer choices in standard Munsell
notation are listed in Table A2.

Figure 6 shows the same selections of our observers
with respect to Munsell hue, value, and chroma. If
observers were perfectly color constant, there would
only be a single point visible above the x-axis for each
observer. Because data points were indeed frequently
overlapping for individual observers, we added small
horizontal offsets to retain visibility. Figure 6 indicates
that there was hardly any deviation for Munsell hue
and relatively little deviation with respect to value and
chroma. In the following, we regard the selections of
the observers under the neutral illumination as the
“correct” one and consider the deviations in a more
quantitative manner. We define bias as the average
signed deviation from the correct choice. Accuracy (or
inaccuracy, to be accurate) is defined as the average
absolute deviation from the correct choice. Precision
is defined as the standard deviation of the signed
deviations from the average choice. In the following, we
also average multiple choices under each condition and
average across the two repeats, so that we are left with
five settings for each observer (or three for observer AZ,
who completed only two illumination conditions).

In Figure 7, we have plotted histograms of these
deviations. In all three panels, the x-axis covers three
neighboring chips on each side of the Munsell catalog.
Note that the range for chroma is larger because
Munsell chroma increases by steps of two for all
but extremely unsaturated chips. Figure 8 shows the
two-dimensional distribution of these errors.

Figures 6, 7, and 8 reveal that the selections made
by our observers were highly accurate. In 35% of all
cases, they chose the correct hue, and in 95% of all
cases they chose the correct one or the neighboring
one. Only in four cases did observers on average choose
a hue that deviated by more than one Munsell step,
and in all of these cases the deviation was less than or
equal to two steps. Because hue is not a directional
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Figure 5. Rendition of the Munsell chip selections of all 17 observers under the neutral (gray bounding box) and the four chromatic
illuminants. The two columns per illuminant show the two repeats. Sometimes, more than one color is rendered within a single
square. That is the case when observers were uncertain and selected more than a single Munsell chip as their match (see also
Table A2). For rendering, the CIE XYZ values provided by the University of Joensuu Spectral Color Research Group (Orava, 2002) chips
were converted to standard RGB (sRGB).

property, we would not expect any bias for hue, and
indeed we did not observe one, bias = 0.037, t(65) =
0.46, p = 0.65. Accuracy, the average absolute deviation
from the correct choice (the selection under the neutral
illumination), was 0.43, and well within one Munsell
step. Precision, the standard deviation of the signed
deviations from the average choice, was 0.65, also less
than one Munsell hue unit.

The choices with respect to Munsell value were
similarly accurate (accuracy = 0.35) and precise
(precision = 0.47). However, value was the only

dimension with a significant bias of 0.245, t(65) =
4.21, p < 0.0001, indicating a tendency for observers to
choose a Munsell chip with a slightly higher reflectance
than their neutral choice. This was not correlated with
the other choices and did not depend on illumination.
Observers chose the correct Munsell value in 45% of
cases, and, if they did not pick the correct one, they
always picked the one just below or just above the
correct one.

Observers picked the correct chroma in 23% of all
cases, and in 97% of all cases they were no more than
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Figure 6. Distribution of the observers’ selections of Munsell chips. For each observer, we plotted Munsell hue (top), (Middle) Munsell
value (middle), and Munsell chroma (bottom) of all selected chips. The different colors indicate the five different illuminants. Small
horizontal offsets were introduced to make all of the data points visible. Some observers have more than 10 data points because they
kept several choices for particular conditions (see also Figure 5 and Table A2).

one chip apart from the correct choice. The only two
larger errors were for the red candle under the reddish
and greenish illuminants, where the chroma was highly
overestimated (chroma of 16 rather than 10). Overall,

the bias for chroma (0.247) was not significant, t(65) =
1.37, p = 0.17. Accuracy was 0.96 and precision was
1.44. Although these numbers are higher than for value,
one has to keep in mind that the difference in chroma
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Figure 8. Two-dimensional distribution of selection errors in Munsell space. The different colors indicate the color of the four different
illuminants. Small random offsets were introduced to make overlapping data points visible.

between two neighboring Munsell chips is two, rather
than one for hue and value.

When considering the selections in all three
dimensions at the same time, we found a Top1-accuracy
of 50%. That is, about half of the time, observers picked
the same Munsell chip under the four experimental
illuminants that they had selected under the neutral
illuminant. TopN-accuracy was 90%. In nine out of
10 trials, observers selected either the perfect or a
neighboring chip. This reflects quite a remarkable
degree of constancy that is actually close to the limits
of the observers’ memory for these objects (Bloj, Weiss,
& Gegenfurtner, 2016). In fact, we did find that the light
brown chess piece under the yellowish illuminant led to
particularly poor constancy. In our previous study on
memory color for the objects used in this experiment
(Bloj et al., 2016), we also found the highest variance
in chroma for the chess piece compared with all other
objects even in object-present matches, so we suggest
that the object itself is difficult to match due to its
surface properties.

So far, we have considered all illuminations as being
equal. One long-standing question in color constancy
research has been whether there are differences in
the degree of constancy for different illumination
conditions. In particular, the idea that the visual
system has adapted to the type of illumination

changes occurring naturally has been often tested with,
so far, inconclusive results (Delahunt & Brainard,
2004; Hedrich, Bloj, & Ruppertsberg, 2009; but see
Pearce, Crichton, Mackiewicz, Finlayson, & Hurlbert,
2014). Figure 9 shows the accuracies for each illuminant
separately. There were only unsystematic differences
between the Top1-accuracies and TopN-accuracies
under the different illuminants, F(3, 45) = 1.13, p =
0.34. However, none of the illuminations we considered
fell on the potentially privileged daylight axis in color
space. But, our choice of illuminations does give us a
way to analyze the results with respect to this question.

Figure 4 shows that the illumination variations we
observed during the day closely matched the difference
between the yellowish and greenish illuminants and
between the reddish and bluish illuminants. If we
are less sensitive to daylight variations, then the
matches might agree better between these two sets of
illuminants, which we refer to as “consistent.”The other
two pairings, between the alternative two sets, greenish
and bluish versus yellowish and reddish, we refer to
as “inconsistent,” because they differ along an axis
roughly orthogonal to the daylight axis. We therefore
calculated the Munsell space difference between these
pairwise settings for each observer. The averaged
errors in Munsell space (hue, value, 0.5*chroma) are
plotted in Figure 10. Errors are significantly smaller
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Figure 9. Top accuracies separately for the four different
experimental illuminants. The filled bars indicate the
proportion of cases in which the exact matching Munsell chip
was chosen under the four experimental illuminants by the
color of the bars. The open bars indicate how often an
immediately neighboring chip was chosen.
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Figure 10. Selection errors as distances in Munsell space. Error
was calculated as the Euclidean distance between hue, value,
and 0.5*chroma settings. A value of 1 indicates the distance
between two neighboring Munsell chips. Consistent
illumination changes were along the daylight variation
indicated in Figure 4, whereas inconsistent changes were
roughly orthogonal.

Figure 11. Representation in CIE a*b* plane of the color
coordinates of the chip selected by the owner of the green scarf
under neutral daylight illuminant (A, dot), the coordinates of
that same chip under one of the test illuminants (B, circle), and
of an alternative chip under the same illuminant (C, cross). AC’,
indicated by a red line, gives the vector projection of AC onto
AB. D represents a zero constancy choice for this
object-illuminant combination.

for the illumination changes consistent with daylight
changes than for the inconsistent changes, t(15) = 2.43,
p < 0.05.

Taken together, our analysis of the observers’
selections in Munsell color space indicates a rather high
level of color constancy in our natural environment. In
the following, we present a second analysis, where we
transform our data into CIELAB space. This allows us
to calculate measures of color constancy that are better
comparable to previous studies.

Continuous analysis in CIELAB space

Figure 11 illustrates the basic results in CIELAB
color space using the green scarf as an example. For
this object, under neutral daylight illuminant, the
owner selected chip 5GY5/4 (represented by point A
in Figure 11) as a match to their object. The matches,
as well as those under the other illuminants, were made
from memory, as the actual object was not present.
If this participant were fully color constant, then
they would also select chip 5GY5/4 under all four
experimental illuminants (represented here, under the
purplish illuminant by point B in Figure 11). If they
were less constant they might select an alternative chip
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Figure 12. Diagrams showing in CIE a*b* plane the direction and magnitude of the four illuminant shifts (A, greenish; B, yellowish;
C, reddish; D, bluish) with a heavy line that starts at the chromaticity of neutral daylight and ends at the chromaticity of the test
illumination. As in Figure 11, the lines for each object start at the chromaticity of their memory match under neutral daylight and
extend to their memory match under the new illuminant, represented by crosses. The line ending in a circle represents the
chromaticity shift of the memory selection for a given object from neutral daylight to the test illuminant. Plots are averages over two
sessions. Changes in the lightness plane are not shown here.

such as 2.5GY5/4 (represented by point C in Figure 2).
We computed the corresponding color constancy index
(CCI) by projecting vector AC onto AB (indicated by
AC’). When C and B are identical, the index equals 1
(expressed as 100%), indicating perfect color constancy.
Zero constancy would instead be represented if the
observer would pick a chip that has an equal color
signal under the purplish illuminant as the memory
match under neutral daylight, in this case 5GY7/8
(represented by point D in Figure 11). Note that this
index, usually referred to as Brunswick ratio (BR;
see Foster, 2011) can achieve values larger than 1.
We discuss advantages and disadvantages of various
indices later on. The main advantage of the BR over
other measures is that it is an unbiased estimator in the
presence of noise. If the true value of color constancy
is 1, then the BR will estimate it to be 1, whereas other
indices might underestimate constancy.

Figure 12 shows the results for all objects under
the four experimental illuminants, averaged over two

sessions. For each object, two lines emerge from the
memory color selection under daylight. One line
connects the color coordinates of the selected chip
under daylight to the color coordinates of the same
chip under the new illuminant (represented by a circle).
The second line extends to the color coordinate of
the chip the observer selected from memory under
the new illuminant (represented by a cross). Figure 12
shows that for most objects these lines stay close
together and frequently overlap. Constancy is close
to perfect under all conditions, with a mean value of
93.9% (±20% SD) and a median of 99.2% across all
objects and illuminants. There was small variation
between illuminants, as shown in Figure 13, and some
variation between objects (and observers), as shown in
Figure 14.

Another way to evaluate constancy is to look at the
differences between the perfect match and the selected
chip. In the CIE1976 L*a*b* color space, the Euclidean
distance �E to a first approximation represents a
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Figure 13. Constancy indices averaged over all objects for each
test illuminant. Shaded regions indicate lowers bounds for color
constancy as described in Methods.

perceptual JND, based on measurements by MacAdam
(see Brainard, 2003). From a previous memory study
(Bloj et al., 2016), we know that the reliability of visual
long-term memory for our participants and objects is
of the order of one Munsell step in hue, one and a
half in chroma and half a step in value (see Figures 3
and 4 of Bloj et al., 2016). This roughly corresponds to
the distance between two neighboring Munsell chips,
which is roughly equivalent to 5 �E units for the 17
chips selected under neutral daylight in this study. The
observed deviations between the selected chip and the
chip representing perfect color constancy were small
and of the same order as this memory limit (mean �E,
5.5; median �E, 5.14 ± 3.5 SD, ±0.43 SE), as shown
in Figure 15 (see also Table 2). In 23 out of 132 cases,
participants even selected the very same chip under the
test illuminant as under natural daylight. The bimodal
shape of the histogram arises due to the discreteness of

0 2 4 6 8 10 >11
Delta E

0

2

4

6

8

10

N
o 

of
 c

as
es

Figure 15. The bars depict the frequency of deviations from a
perfect color constant match in Euclidian distances in CIE
L*a*b* color space. Multiple selections and the two repeats
(see Table A2) were averaged before calculating �E. The total
number of matches was therefore 66. The trough in the
distribution at small values is expected due to the discrete
nature of the Munsell chip system.

the collection of chips. This means that our observers,
with just a few exceptions, were as good as would be
expected based on their visual memory.

Analysis of metamers

It has been argued many times that, in theory,
color constancy is impossible to achieve because of
the metamer mismatch problem (e.g., Foster, Amano,
Nascimento, & Foster, 2006; Logvinenko et al., 2015).
The spectral distribution of light reflected from an
object varies continuously in wavelength. In the eye,
it gets reduced to three numbers: the excitation of
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Figure 14. Color constancy indices averaged over all illuminant conditions for each object. A value of 1 indicates perfect color
constancy, and error bars represent standard errors of the mean. Shaded regions indicate lower bounds for color constancy as
described in Methods.
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Object Reddish Greenish Blueish Yellowish

Red book 0.00 2.36 0.00 3.01
Light pink scarf 5.81 3.80 5.80 6.25
Turquoise dummy 8.59 1.31 4.12 8.72
Blue spike massage ball 6.25 9.00
Green t-shirt 1.95 2.07 2.23 14.66
Turquoise sweater 4.47 3.77 2.20 7.01
Green pick 7.55 7.12 8.37 5.19
Light yellow part of kitchen 0.61 0.77 6.65 0.00
Wooden chess piece 11.66 13.71 15.79 8.22
Orange sweater 4.36 4.46 4.91 5.36
Brown sweater 5.10 3.10 5.17 8.46
Green scarf 7.12 4.31 0.00 0.00
Red candle 24.21 17.55 11.05 3.52
Pink hippo 6.64 5.36 5.10 8.34
Red metallic bike tool 5.63 11.26 6.66 2.87
Blue elephant 2.76 1.58 3.45 1.55
Turquoise potato 11.63 4.63 9.24 4.32

Table 2. Values of �E under each illuminant change from neutral to chromatic illumination in CIE L*a*b. Multiple selections and the
two repeats (see Table A2) were averaged before calculating �E.

Object Reddish Greenish Bluish Yellowish

Red book 91.191 272.113 130.843 226.491
Light pink scarf 171.448 571.134 294.767 476.592
Turquoise dummy 161.747 803.340 338.545 561.796
Blue spike massage ball 102.432 626.760 165.480 269.364
Green t-shirt 240.930 816.007 350.736 804.361
Turquoise sweater 108.465 311.016 145.092 268.112
Green pick 246.439 487.150 247.779 737.481
Light yellow part of kitchen 71.585 263.121 135.139 223.991
Wooden chess piece 169.322 269.004 145.645 399.401
Orange sweater 154.386 329.545 161.807 343.679
Brown sweater 260.950 771.170 361.586 750.768
Green scarf 297.946 593.253 306.530 758.085
Red candle 92.978 276.204 140.267 233.110
Pink hippo 154.255 517.018 232.771 327.631
Red metallic bike tool 84.250 313.942 145.533 203.338
Blue elephant 112.151 640.097 184.789 267.858
Turquoise potato 187.935 815.161 365.093 580.422
Average volume 159.318 510.355 226.612 437.205
Cube root 5.421 7.991 6.097 7.590

Table 3. Size of metameric mismatch volumes under each illuminant change from neutral to chromatic illumination in CIE L*a*b.

long-, middle-, and short-wavelength-sensitive cones
(Stockman & Sharpe, 2000). Consequently, there must
be many physically different spectra that lead to the
same cone excitations under a particular illumination
but which may differ under another illumination.
In practice, the volume of color space under one
illumination that gets mapped into a single point under
a second illumination has been shown to be quite
large, and a recent study suggested that the size of that
volume is negatively correlated to some measures of
color constancy (Witzel et al., 2016). The open question

is whether the metamers actually occurring in nature
do present a problem for achieving color constancy
(Akbarinia & Gegenfurtner, 2018; Foster & Reeves,
2022; Zhang, Funt, & Mirzaei, 2016). We therefore
computed the size of the metameric mismatch volume
for the colors of the objects used in our study (see
Table 3). If the magnitude of the mismatch volume
determines the degree of constancy, then there should
be a correlation between these two quantities. A larger
metameric mismatch volume would go along with
poorer color constancy. There was no significant
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Illuminant change

Illuminant change Reddish Greenish Bluish Yellowish

MMV and BR correlation −0.060 0.240 −0.130 −0.320
p 0.820 0.350 0.610 0.210
MMV and CCI correlation 0.21 0.20 0.31 −0.38
p 0.42 0.46 0.21 0.13

Table 4. Correlations across all objects between metameric
mismatch volumes and color constancy for each illuminant
change. MMV, metameric mismatch volume; BR, Brunswick
ratio; CCI, color constancy index.

Object Number of metamers

Red book 16
Light pink scarf 6
Turqouise dummy 0
Blue spike massage ball 8
Green t-shirt 0
Turqouise sweater 0
Green pick 0
Light yellow part of kitchen 0
Wooden chess piece 4
Orange sweater 4
Brown sweater 4
Green scarf 42
Red candle 0
Pink hippo 6
Red metallic bike tool 0
Blue elephant 8
Turquoise potato 0

Table 5. Number of metamers for the objects tested in our
study. Frequencies are given for the five illuminants used in our
experiment, out of 11,302 reflectance samples.

correlation across objects with the CCI, with all r(15)
between –0.32 and 0.24 and all p > 0.21 (Table 4).
Also, the average mismatch volume was smallest for the
reddish illuminant, which then should also have the best
color constancy. This was not the case, as constancy
was worst under the reddish illuminant.

We also computed the frequency of metamers to
the selected Munsell chips within a large set of 11,302
natural reflectance spectra (Akbarinia & Gegenfurtner,
2018). Metamers were infrequent (5.1 × 10−04) for
the illumination changes used in this experiment. On
average, there were 5.76 ± 10.32 (see Table 5) metamers
per object, but only the green scarf (42 metamers) and
the red book (16 metamers) had a larger number of
metamers. For eight objects, there was no metameric
surface within the whole set of natural reflectance
functions. There was no significant correlation between
the number of metamers and the degree of color
constancy (rho = 0.21, p = 0.43). This held for CCI
and BR and also for several different combinations of

�E criteria to calculate the metamers. Based on these
calculations, we do not think that metameric mismatch
represents a big problem for color constancy under
these experimental conditions.

Discussion

Color constancy, in particular the degree to which
it holds, has been a topic of active debate for over a
century. Experimental findings on color constancy vary
widely, with reports of it being as low as 15% to as high
as 80%. This range seems at odds with the generally
stable appearance of colors in the real world and the
uniform way we name colors. Measurements of color
naming under different illuminations (Olkkonen et al.,
2009; Olkkonen et al., 2010) have shown that 40% to
50% of the Munsell chips from the World Color Survey
(Berlin & Kay, 1991) would change to another color
category without constancy. In our study, we have
demonstrated color constancy approaching perfection
using naturalistic settings more typical for daily life.
The most important differences between our study
and most others are (1) the use of an individual long
term memory stimulus as the test object, (2) a dense
sampling of color space by using a selection paradigm
with more than 1000 Munsell chips, and (3) the use
of the BR as an unbiased estimate of the degree of
constancy. In the following, we discuss these features
individually and relate them to the known mechanisms
of color constancy.

Tasks

If we want to measure the degree of color constancy,
color appearance must be measured under at least two
different illuminations. This implies that some form of
matching has to be performed either across space or
across time. The most straightforward and efficient way
to achieve such matches is to have different illuminants
in different parts of the visual field.

In such classic experiments using simultaneous
asymmetric matching, participants are then asked
to adjust the color of a match object or surface
seen under one of the illuminants to the color of
the test object shown under the other illuminant.
Color constancy in this paradigm turned out to be
fairly poor, between 13% and 50%, especially when
surfaces were simulated flat, matte patches displayed
on small computer screens (Arend & Reeves, 1986;
Arend, Reeves, Schirillo,& Goldstein, 1991; Tiplitz
et al., 1988). Furthermore, the results depended on the
instructions given to the observer. When the observer
was asked to make the two patches under different
illuminations appear the same, constancy was quite low.
When the observer was asked to adjust the two patches
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as if they were made from the same paper, constancy
was higher. In both cases, participants’ adaptation to
either illuminant was compromised due to the constant
presence of two illuminants, the relatively small region
of the visual field illuminated by each illuminant, and
by eye movements. Although there are examples of
studies using asymmetric matching paradigms that
achieved higher degrees of constancy (Bäuml, 1999;
Troost & de Wert, 1991), on average these designs led to
constancy values of about 50% (Foster, 2011). It should
be noted that constancy in asymmetric matching can
also be improved by using a more immersive lighting
environment (Speigle & Brainard, 1999) or a more
natural selection task (Radonjic et al., 2015a; Radonjic
et al., 2015b).

Kraft and Brainard (1999) used an achromatic
matching task (see Brainard, 1998) with a single
illuminant to which participants were well adapted.
Their work elegantly showed that constancy can vary
between 20% and 80%, depending on the richness of
the cues available to the observers. They found that
three factors—global scene color, local contrast, and
the color of the brightest region—had an effect on
color constancy. Two problems remain, though. First,
the use of this technique where participants are asked
to adjust the patch until it appears gray is distinct
from how we experience color in our daily lives. Thus,
it cannot provide a general test because it is limited
to the single point in color space void of any color.
In our experiments, we used participants’ internal
representations of many colors as shown by the good
coverage of the color space in Figure 12 and the variety
of objects in Figure 2. But, even when all cues are
provided, constancy in the Kraft and Brainard (1999)
study remained significantly below perfection. This may
or may not indicate that color constancy is distinct from
other constancies. For size constancy, for example, the
availability of different cues also plays a big role. When
distance cues are poor (for example, at large distances),
size constancy can be quite poor (e.g., Kaufman &
Kaufman, 2000). When sufficient cues are provided,
constancy can be perfect (Holway & Boring, 1941).

A few studies have obtained even higher values of
constancy. These studies have used either color naming
(Troost & de Wert, 1991; Smithson & Zaidi, 2004) or
color categorization (Hansen, Walter, & Gegenfurtner,
2007; Olkkonen et al., 2009; Olkkonen et al., 2010) to
approximate the hypothesized function of color as an
identity tag in our daily lives. Their results show that
the appearance of objects under different illuminations
typically does not cross into a different color category.
Although both naming and categorization remain
very much intact under different illuminants, they
provide a relatively coarse sampling of our sensory and
perceptual color space due to linguistic limitations. In
our current study, we have shown that color constancy
is better than just categorical. Of course, Munsell

space is also not a continuous representation of the
millions of colors we may be able to discriminate under
ideal circumstances. It is very close, though, to the
perceptual graininess of color space, which amounts to
about 1000 different colors (Koenderink, van Doorn, &
Gegenfurtner, 2018).

A crucial aspect of our work is, as often in real
life, the use of memory to make the measurement of
constancy for absent colored objects possible. In some
previous work (Allred & Olkkonen, 2013; Hedrich
et al., 2009; Ling & Hurlbert, 2008; Uchikawa, Kuriki,
& Tone, 1998), memory performance was taken into
account when calculating the degree of constancy.
These authors found that, for real two-dimensional
paper patches (Uchikawa et al., 1998; Ling & Hurlbert,
2008), real three-dimensional paper cubes (Allred
& Olkkonen, 2013), or both (Hedrich et al., 2009),
constancy was as good as memory allowed for. Our
experiments differ in that we used objects that were
already highly familiar to our participants (see also
Olkkonen, Hansen, & Gegenfurtner, 2008; Smet, Zhai,
Luo, & Hanselaer, 2017). We can exclude a possible role
of memory biases (Bloj et al., 2016) in the present study
by only comparing memory matches across different
illuminations. Our results show that color constancy is
indeed close to perfection when a natural task, natural
illumination conditions, and natural stimuli are used in
combination.

Indices

Our results show that performance in a color
constancy task can be close to perfect under ideal
conditions. Previous studies have often used more
impoverished paradigms to get performance into
a range where the effect of different cues could be
investigated. Still, in all of these studies, a ceiling on the
very best performance emerged at levels of about 80%
constancy. Our results prove that no such hard ceiling
exists. One aspect that may have led to sometimes
relatively low estimates for the degree of constancy
concerns the estimates themselves (for review, see
Foster, 2011). The frequently used CCI, dividing the
difference between adjusted color and perfect match by
the magnitude of the overall colorimetric color change,
is only an unbiased estimate of constancy in the absence
of noise. This seems unrealistic, as some degree of
noise is even present under highly optimized conditions
used to measure color discrimination thresholds
(Krauskopf & Gegenfurtner, 1992; MacAdam, 1942).
Foster et al. (2001) showed that such noise can
be reduced by averaging the matches across many
observers. In their case, this led to an improvement of the
CCI from 60% to 70%.Whenmemory becomes involved
in such matches, adjustments become even less reliable
(Bloj et al., 2016), and the problem is exacerbated.
When CCI is used as the metric for color constancy,
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Figure 16. Relationship between BR and CCI. The black points
are our data, and the small red points are simulations based on
the color shifts from our study (23.84 ± 7.6 �E) and a noise
error of 5.13 �E units. Note that the black circle at (1, 1)
represents five data points that are completely overlapping.
The black line represents the average BR, and the red line
represents the average CCI for the simulated data.

all such noise gets attributed to an inherent lack of
constancy.

The BR we used here first projects all measurements
onto the axis of the colorimetric color change. This
leads to an estimate that is unbiased in the face of
measurement noise. Figure 16 illustrates this for our
measurements. We plot both estimates, BR and CCI,
against each other. The filled black symbols represent
our data, and the small red dots represent simulated
data of a perfectly color constant observer for the
illumination shifts we used and a memory noise
uniformly distributed within 5.13 �E units (the average
�E in our study). Each red dot shows one color choice
made by a hypothetical observer, who makes a perfect
match in CIELAB color space. To that perfect match,
a three-dimensional memory noise vector was added.
The data and simulation show quite nicely that perfect
color constancy in the presence of color matching noise
leads to an unbiased BR estimate of close to 100%,
(horizontal black line) whereas the CCI falls short of
that, with an average that is close to 80% (vertical red
line), a value that has been observed as the maximum
in some previous studies. Note that the different indices
cannot fully explain our results, because several data
points have CCIs larger than 0.9. This basically never
occurs in the simulated data, because it is exceedingly
unlikely that the random noise vector is close to zero in
all three dimensions.

Of course, any approach trying to condense a
complex perceptual phenomenon into a single number
has its flaws. The CCI is not unbiased in the face of
sensory and memory noise. The BR can lead to high

estimates even when the matches are far off, due to the
projection. Its main advantage might lie in situations
when constancy is very good and all of the selections or
matches are close to the perfect match. This seems to
have been the case in our study, where visual inspection
of the data shows that there were no spuriously high
values of the degree of constancy (Figure 12).

Mechanisms

There are three good reasons why our results should
not come as a surprise. First, they do agree with our
experience of color in the natural world and with the use
of color names to label objects. Second, even relatively
simple computational models can achieve high levels
of color constancy. This is evidenced by the fact that
photographs taken under quite varying illumination
conditions typically look correct when viewed in a
different illumination context. The white balance
algorithms built into most cameras achieve this feat.
The magnitude of the correction easily becomes visible
by turning off the automatic correction (if possible), as
illustrated in Figure 1. Third, the neural mechanisms
underlying color constancy are well known. There are
relatively local adaptation mechanisms throughout the
visual system, starting in the retina. There are global
adaptation mechanisms emerging in higher cortical
areas (Albers, Baumgartner, & Gegenfurtner, 2022;
Bannert & Bartels, 2017). And, there are mechanisms
for computing color contrast across edges as early
as in primary visual cortex (Conway, 2001; Johnson,
Hawken, & Shapley, 2001; Shapley & Hawken, 2011).

The importance of these local contrast edges
has been emphasized numerous times. The very
first computational model of constancy, the retinex
algorithm by Edmund Land and John McCann (Land,
1964; Land & McCann, 1971), is based on such spatial
comparisons. The influential work by David Foster
and Sergio Nascimento (Foster & Nascimento, 1994;
Nascimento, Ferreira, & Foster, 2002; Nascimento &
Foster, 1997; Zaidi, Spehar, & DeBonet, 1997) pointed
out very clearly that local cone excitation ratios could
achieve an illumination-independent representation
of the visual scene that preserves relations between
different colors. There are numerous other potential
mechanisms for achieving color constancy that have
been summarized in review articles (Foster, 2011;
Hurlbert, 2007; Smithson, 2005). Also, there is
an abundance of computational models achieving
color constancy at very high levels, ranging from
geometric constraints (Uchikawa, Fukuda, Kitazawa,
& MacLeod, 2012; Morimoto, Kusuyama, Fukuda,
& Uchikawa, 2021) to deep neural networks (Flachot
et al., 2019; Heidari-Gorji & Gegenfurtner, 2023). In
light of all these different ways to achieve good color
constancy, it should not come as a surprise that human
observers do indeed exhibit good color constancy.
Counter-examples can always be constructed, but how
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often we encounter such constructs in our natural
environment can be debated.

Conclusions

Our study resolves a riddle that has long puzzled
vision scientists. In everyday life, we take color
constancy for granted, whereas in the lab constancy
turns out to be between mediocre and incomplete. We
have shown that, in a natural environment using a
natural task where the visual system has all possible
cues available, we can indeed achieve near-perfection,
as was shown decades ago for most other perceptual
constancies, such as size constancy (Holway & Boring,
1941). This is reassuring in the light of a recent
widely publicized example (#TheDress) showing a
lack of constancy and large individual variation when
insufficient cues about the illuminant and scene are
available. Of course, our real-world stimuli are not very
prone to experimental manipulation, as was the case in
the earlier study by Kraft and Brainard (1999). Here,
virtual reality offers an attractive option combining
the best of natural environments and experimental
possibilities. We have recently shown that the latest
virtual reality systems can both produce photorealistic
output while allowing accurate color calibration (Gil
Rodríguez et al., 2022).

Keywords: color constancy, natural environments,
illumination changes, natural task
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Appendix

Wavelength Neutral Reddish Greenish Bluish Yellowish

380 1.7212 0.5497 0.8647 1.3072 0.5787
390 1.8831 0.6527 0.9191 1.4558 0.5648
400 1.9611 0.8966 0.9785 1.5354 0.5723
410 2.0650 1.1377 1.0424 1.6314 0.6069

Table A1. Emission spectra of the five different illuminations in
1000*W/sr/m2.

Wavelength Neutral Reddish Greenish Bluish Yellowish

420 2.2379 1.1894 1.1142 1.7776 0.6676
430 2.4882 1.2121 1.1900 1.9807 0.7923
440 2.6585 1.2991 1.2792 2.1069 1.0002
450 2.7547 1.4248 1.4283 2.1518 1.2247
460 2.8075 1.4700 1.5505 2.1392 1.4616
470 2.8805 1.4507 1.6345 2.1216 1.7029
480 2.9112 1.3892 1.6985 2.0468 1.9354
490 2.8833 1.3324 1.7394 1.9091 2.1523
500 2.8515 1.2582 1.7488 1.7559 2.3327
510 2.8173 1.1677 1.7246 1.5987 2.4663
520 2.7729 1.1182 1.6813 1.4314 2.5145
530 2.7356 1.1006 1.6231 1.2748 2.4558
540 2.6779 1.0745 1.5332 1.1279 2.3476
550 2.6243 1.0020 1.4158 1.0230 2.2108
560 2.5630 0.9606 1.2725 0.9717 2.0584
570 2.4962 1.0257 1.1252 0.9579 1.9068
580 2.4290 1.1876 0.9905 0.9625 1.7462
590 2.3553 1.3256 0.8642 0.9778 1.5872
600 2.2761 1.3814 0.7453 1.0140 1.4441
610 2.2206 1.4059 0.6454 1.0926 1.3190
620 2.1519 1.3704 0.5711 1.1852 1.2083
630 2.1030 1.3506 0.5198 1.2868 1.1007
640 2.0598 1.3303 0.4926 1.3860 1.0187
650 2.0043 1.3085 0.4884 1.4811 0.9569
660 1.9149 1.2960 0.5060 1.5504 0.9375
670 1.8601 1.3085 0.5348 1.6498 0.9430
680 1.8095 1.2210 0.5883 1.7299 0.9367
690 1.7167 1.1430 0.6575 1.7241 0.9316
700 1.6428 1.1225 0.7192 1.7023 0.9571
710 1.6018 1.0917 0.7364 1.6887 1.0001
720 1.5760 0.9821 0.8048 1.6739 0.9988
730 1.4970 0.9509 0.8526 1.5926 1.0178
740 1.4689 1.0492 0.9076 1.5569 1.0496
750 1.4393 1.0099 0.9683 1.5212 1.0493
760 1.4515 0.8417 1.0151 1.5244 1.0315
770 1.4795 0.7977 1.0399 1.5408 1.0446
780 1.4374 0.9760 1.0628 1.4929 1.0456

Table A1. Continued.
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