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Abstract

Estimating total infection levels, including unreported and asymptomatic infections, is important 

for understanding community disease transmission. Wastewater can provide a pooled community 

sample to estimate total infections that is independent of case reporting biases toward individuals 

with moderate to severe symptoms and by test-seeking behavior and access. We derive three 

mechanistic models for estimating community infection levels from wastewater measurements 

based on a description of the processes that generate SARS-CoV-2 RNA signals in wastewater 

and accounting for the fecal strength of wastewater through endogenous microbial markers, daily 

flow, and per-capita wastewater generation estimates. The models are illustrated through two 

case studies of wastewater data collected during 2020–2021 in Virginia Beach, VA, and Santa 

Clara County, CA. Median simulated infection levels generally were higher than reported cases, 

but at times, were lower, suggesting a discrepancy between the reported cases and wastewater 

data, or inaccurate modeling results. Daily simulated infection estimates showed large ranges, 

in part due to dependence on highly variable clinical viral fecal shedding data. Overall, the 

wastewater-based mechanistic models are useful for normalization of wastewater measurements 
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and for understanding wastewater-based surveillance data for public health decision-making but 

are currently limited by lack of robust SARS-CoV-2 fecal shedding data.

Graphical Abstract:

Keywords

COVID-19; infectious disease surveillance; mechanistic modeling; SARS-CoV-2; wastewater

INTRODUCTION

SARS-CoV-2, the virus that causes COVID-19 infections, primarily causes respiratory 

illness (CDC 2021a). However, the RNA from this virus is also present in feces of infected 

symptomatic, pre-symptomatic, post-symptomatic, and asymptomatic individuals (Cheung 

et al. 2020; Foladori et al. 2020; WHO 2020a; Wolfel et al. 2020; Zhang et al. 2020; Zheng 

et al. 2020). Environmental surveillance through the testing of wastewater for evidence of 

pathogens has a long history of use in public health, particularly for poliovirus and more 

recently antimicrobial resistance (Asghar et al. 2014; WHO 2020b, 2020c). SARS-CoV-2 

RNA has been reported in untreated wastewater and settled solids (e.g., sludge) in a 

number of countries (WHO 2020a), and wastewater SARS-CoV-2 RNA monitoring data 

have proven useful as an indicator of community illness in conjunction with traditional case 

reporting and surveillance methods (Medema et al. 2020; Peccia et al. 2020; D’Aoust et 

al. 2021; Fernandez-Cassi et al. 2021; Saguti et al. 2021; Weidhaas et al. 2021; Hewitt et 

al. 2022). Because of this, wastewater surveillance systems are being implemented for the 

COVID-19 response to provide data on overall infection trends and variant tracking within 

specific populations as a complement to clinical- and individual-based surveillance data for 

public health decision-making (Bivins et al. 2020; Medema et al. 2020; Peccia et al. 2020; 

Betancourt et al. 2021; Graham et al. 2021; Zhu et al. 2021; Kirby et al. 2022).

In addition to community infection trends, wastewater-based surveillance data have been 

proposed as a tool for estimating absolute community-level COVID-19 infections (Ahmed 

et al. 2020; Bivins et al. 2020; Hart & Halden 2020; Gerrity et al. 2021; Wurtzer et 
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al. 2021). Estimating absolute infection levels (reported and unreported) is important for 

understanding disease transmission and designing effective mitigation strategies but has 

proven difficult to achieve using traditional surveillance indicators due to the large and 

variable relative burden of unreported cases (Bivins et al. 2020; Medema et al. 2020). 

To date, methods for estimating wastewater-based SARS-CoV-2 infections have included 

mechanistic-, statistical-, and epidemiological-based numerical modeling approaches (Baud 

et al. 2020; Ceylan 2020; Medema et al. 2020; Paul et al. 2020; Turk et al. 2020; Gerrity et 

al. 2021; Huisman et al. 2022; Kaplan et al. 2022; Weidhaas et al. 2021). For a mechanistic 

example, Ahmed et al. (2020) proposed an approach for COVID-19 wastewater surveillance 

in Australia based on the concentration of SARS-CoV-2 RNA in wastewater, the volume 

wastewater generated daily in a catchment, the number of SARS-CoV-2 RNA copies shed 

in stool by an infected individual each day, and the concentration of SARS-CoV-2 RNA 

in feces, each of which is represented by a combination of point estimate values and 

statistical distribution estimates in a Monte Carlo-based numerical simulation. Kaplan et al. 

(2022) proposed an epidemiologically- and statistically-calibrated scaling model to estimate 

incidence in a community from sludge RNA, a transmission dynamics model that aligns 

lagged epidemic indicators, and a site-specific scaling factor.

Mechanistic wastewater models are based on the processes that generate SARS-CoV-2 

RNA signals in wastewater without additional statistical calibration against reported cases. 

Although wastewater-based disease research is rapidly advancing, the previously proposed 

mechanistic models fail to account for salient attributes of the wastewater processes, 

such as target decay within the system, and to account for variability in available data 

to estimate human contribution to the wastewater stream. In addition, the proposed 

statistical and epidemiological wastewater-infection-based models are either site-specific, 

using statistical correction factors dependent on reported cases, or are dependent on 

other clinical surveillance data; both limit the ability of wastewater to provide estimates 

independent of the variability in these clinical surveillance data (Li et al. 2020; Wu et 

al. 2020; Fernandez-Cassi et al. 2021). Moreover, epidemiologic compartmental models 

anchored to hospitalization or death rates are limited in their ability to provide near real-time 

infection estimates due to delayed nature of these indicators (Kaplan et al. 2021).

In this study, we derive three mechanistic models for estimating community infection levels 

from wastewater measurements that are agnostic to location. Each model uses a distinct 

approach to account for the human fecal content of wastewater, including endogenous 

microbial markers, wastewater flow measurements, and population-level estimates of per-

capita wastewater generation. A numerical method is used to simulate the models, which 

are illustrated through two case studies of wastewater data and COVID-19 case data 

collected over several months in 2020–2021 (Virginia Beach, VA, and Santa Clara County, 

CA). We also propose a mathematical approach for connecting wastewater-based infection 

estimates to clinical surveillance data for public health interpretation. Finally, we describe 

the uncertainty associated with each modeling approach and the critical data needed to 

effectively use wastewater pathogen measurements to estimate community infections for 

public health decision-making.
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METHODS

Our model formulations were developed to estimate the fraction of infected individuals in 

a community that could be shedding SARS-CoV-2 RNA either through respiratory or fecal 

secretions, or both, regardless of symptoms (referred to hereafter as ‘infected’). Some of 

these individuals may not be considered ‘infected’ from a clinical perspective because the 

fecal shedding of viral RNA does not necessarily correspond with respiratory symptoms 

or shedding (Wolfel et al. 2020; Zheng et al. 2020). We use a stochastic, Monte Carlo 

numerical simulation-based mechanistic modeling approach (Soller & Eisenberg 2008) 

encompassing the following three related formulations: (1) a flow generation formulation 

based on per-capita domestic potable water use adjusted for wastewater generation from 

non-domestic sources; (2) a fecal strength formulation that is a modified flow generation 

formulation to include an endogenous human fecal control as a proxy for dilution and loss 

of human feces and associated pathogens during the sewer transport and testing processes; 

and (3) a flow receipt formulation based on collection site daily flow measurements and 

wastewater utility provided sewershed population estimates. The inputs of the models are 

microbial wastewater influent concentrations (i.e., SARS-CoV-2 RNA and endogenous 

control when applicable), where influent is defined as the untreated wastewater entering 

a treatment plant containing both solids and liquids.

The three formulations are summarized below, and detailed mathematical specifications 

are provided in Supplementary Material (SI) Section A. The model formulations, as 

applicable, incorporate the following: variability in each model parameter using data from 

the peer reviewed scientific literature; differences between disease presentation that exhibit 

gastrointestinal (GI) symptoms and those that do not (i.e., account for differences in 

total fecal matter shed for those with and without GI symptoms); per-capita water use; 

the decay of viral RNA during transport within the wastewater collection system, and 

finally, the fraction of wastewater that results from human fecal waste (versus commercial, 

industrial, run-off, etc.) (refer to Supplementary Material, Table A1 for a comparison of 

the three formulations). All three modeling approaches are fundamentally dependent on the 

levels of SARS-CoV-2 RNA in the feces of infected individuals and are related as shown 

mathematically in Supplementary Material, Section A.

Flow generation formulation

The flow generation formulation is based on a mechanistic conceptualization of daily SARS-

CoV-2 RNA input into the wastewater stream resulting from the fraction of SARS-CoV-2-

infected individuals fecally shedding the virus Fsℎed , both with Fdiar, Ddiar, V diar  and without 

GI symptoms Mnodiar Dnodiar , over the course of an individual’s daily water use V ww . The 

formulation then accounts for time within the sewer system T sewer  and resulting decay 

over that period kvirus  to estimate the total daily SARS-CoV-2 RNA concentration at the 

wastewater treatment plant influent (or settled solids) collection point Dww  (Equation (1)). 

Settled solids concentrations are converted to estimated wastewater influent concentrations 

via the use of a viral-specific solid-to-liquid partitioning coefficient Kd  following methods 

described in Kim et al. (2022) and Graham et al. (2021). Of note, T sewer does not include time 
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spent in the sedimentation basin for settled solids measurements, which in some systems 

could be longer than time spent in the sewer system.

DW W = DdiarV diarFdiar + DnodiarMnodiar 1 − Fdiar e −kvirusTsewer Fsℎed
V W W

FactiveFcont

(1)

where Fsℎed is the fraction of infected individuals that shed viral RNA in feces (unitless); 

Fdiar is the fraction of infected individuals with diarrhea (unitless); Ddiar is the SARS-CoV-2 

RNA concentration in feces among infected individuals with diarrhea (viral copies/mL); 

V diar is the volume of feces per person per day among infected individuals with diarrhea 

(mL/day); Dnodiar is the SARS-CoV-2 RNA concentration in feces among infected individuals 

without diarrhea (viral copies/g); Mnodiar is the mass of feces per person per day among 

infected individuals without diarrhea (g/day); V ww is the wastewater generated per person per 

day (L/person day); kvirus is the pseudo-first-order decay coefficient for SARS-CoV-2 RNA 

in sewage (1/day); T sewer is the time wastewater spends in the sewer prior to reaching the 

wastewater treatment plant (days); Fcont is the volume fraction of wastewater coming from a 

source that could potentially contain SARS-CoV-2 RNA (unitless).

By rearranging the equation, the fraction of the population with an active infection Factive

can be estimated for a specified median level of SARS-CoV-2 in the wastewater influent 

(Equation (2)).

Factive = DW W V W W

DdiarV diarFdiar + DnodiarMnodiar 1 − Fdiar e −kvirusTsewer FsℎedFcont

(2)

The defining attribute of this formulation is a variable that defines the fraction of daily 

municipal wastewater that could be contributing SARS-CoV-2 RNA into the waste stream 

Fcont . Fcont represents a variable, but time-invariant, estimate of the ‘human fecal strength’ 

(FS) of the wastewater. The salient assumption for this formulation is that it is feasible (e.g., 

for a wastewater treatment plant manager at the site monitored) to estimate with reasonable 

accuracy.

Fecal strength formulation

The flow generation formulation is limited when Fcont cannot be estimated accurately or 

when temporal variation of fecal strength is important. Such temporal variation could occur 

because of increased flows due to wet weather or variable wastewater composition due to 

dynamic water usage and human behavioral patterns (e.g., governmental restricted water 

usage or communities with large population influxes such as tourist locations). To address 

this, we reconfigured the flow generation model to define FS-based on an endogenous 

microbial control – a wastewater constituent that is present in relatively stable, high, 

and measurable concentrations in human excreta – rather than an expert judgement point 
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estimate. We used Pepper Mild Mottle Virus (PMMoV) as the example human fecal-specific 

endogenous control (Zhang et al. 2006; Hamza et al. 2011).

This alternative approach for parameterization of fecal strength is the ratio of the 

concentration of endogenous control measured in wastewater, adjusted for decay in 

the sewer, to the expected wastewater endogenous control concentration if only human 

wastewater sources were contributing (e.g., sources of wastewater that could potentially 

contain SARS-CoV-2 RNA). A theoretical fecal strength of 1 would mean that human-

associated wastewater is undiluted by other sources (e.g., industrial or run-off). The 

notation for the variables in the fecal strength formulation and the flow receipt formulation 

follow those presented above for the flow generation formulation where D refers to the 

concentration in feces and M refers to the mass of feces, with subscripts providing details 

about the specific parameters. FS is defined as follows, noting that this quotient is a unitless 

fraction:

FS = DW W − endog

e(−kendogTsewer) Dstool − endog × Mstool/V W W

(3)

where kendog is the pseudo-first-order decay coefficient for endogenous control in sewage 

(1/day); Dstool − endog is the endogenous control concentration in stool (gc/g); and Mstool is the 

stool mass generated per person per day (g/person day).

To demonstrate the mechanistic relatedness of the flow generation and fecal strength 

formulations, FS can be substituted for Fcont in Equation (2) of the fecal strength formulation 

as follows:

Factive − SARS

= DW W − SARSV W W

DdiarV diarFdiar + DnodiarMnodiar 1 − Fdiar e −kvirusTsewer Fsℎed − SARS( DW W − endog /e(−kendogTsewer) Dstool − endog × Mstool/V W W )

(4a)

Comparison of Equations (2) and (4a) indicates that two additional pieces of information 

are needed for this formulation compared to the flow generation formulation: (1) the 

concentration of the endogenous control in stool Dstool_endog , which does not distinguish 

concentrations between diarrheal and non-diarrheal stool and (2) the corresponding decay 

coefficient kendog .

Assuming that the concentration in stool is ~1.0 g/mL (Penn et al. 2018) and that the decay 

rate constants of the endogenous control and SARS-CoV-2 RNA are negligible or similar 

(which is most plausible for an RNA viral control such as PMMoV), the fecal strength 

formulation simplifies as follows (details provided in Supplementary Material, Section A):

Factive − SARS = Dstool − endogDW W − SARS
Dstool − SARSDW W − endogFsℎed − SARS

.

(4b)
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This fecal strength formulation (Equation (4a) and (4b)) has both advantages and 

disadvantages compared to the flow generation formulation (Equation (2)). The advantages 

are that the endogenous control (e.g., PMMoV RNA) measurements can theoretically 

serve as a normalizing control in that they can reflect the strength of human feces 

in the wastewater, the viral losses and dilution that occur as stool is transported from 

excreta through the sewage collection system to the sampling location, and the viral losses 

that occur during laboratory processing and testing. The primary disadvantage of this 

formulation is that it relies on measurements of the endogenous control concentrations 

in human feces, of which data are limited, and that endogenous control measurements 

must be made in each sample. This disadvantage is further complicated by the fact that 

wastewater processing and testing methods are not standardized, meaning that absolute 

concentrations generally cannot be compared across laboratories (without first conducting 

inter-lab comparisons).

Flow receipt formulation

Like the flow generation formulation, the flow receipt formulation relies on flow rate 

measurements to estimate the number of active SARS-CoV-2 infections within a sewershed 

(Factive) (Equation (5d)). However, in this formulation, the flow estimates are measured at the 

sampling site, often at the influent to a wastewater treatment plant V W W TP  over the course of 

one day, which enables flow to vary from sample-to-sample (or day to day). To put flow on a 

per-capita basis, this formulation also requires an explicit sewershed population estimate N
and estimate of the number of infected individuals in a population (Iactive). This formulation is 

derived from a mass balance equation on the number of RNA copies in wastewater:

DW W V W W TP = DstoolV stoole−kcirusTsewerFsℎedIactive

(5a)

where

Iactive = FactiveN

(5b)

Thus,

DW W V W W TP
N = DstoolV stoole−kvirusTsewerFsℎedFactive

(5c)

or

Factive = DW W V W W TP

DstoolV stoole−kvirusTsewerFsℎedN

(5d)
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Similar to the derivations provided above, this flow receipt formulation is equivalent to 

the fecal strength formulation under specific, realistic conditions (mathematical details are 

provided in the Supplementary Material, refer to formulas A3.6–A3.11). This formulation 

also assumes that the SARS-CoV-2 RNA wastewater measurement multiplied by the average 

daily flow rate reasonably represents the average SARS-CoV-2 RNA load over one day. A 

primary advantage of this formulation is that, for samples collected at treatment plants, flow 

measurements and population estimates are commonly available. Therefore, the flow receipt 

formulation reduces the requisite number of laboratory measurements compared to the 

other two formulations. Moreover, flow measurements and population estimates may have 

lower relative error and/or variability than microbial endogenous control measurements, 

which vary on a log-scale basis. The disadvantages of the flow receipt formulation are 

that it does not reflect SARS-CoV-2 RNA losses that occur during laboratory processing 

or unpredictable SARS-CoV-2 RNA losses in the sewage system that are attributable to 

processes other than the modeled gene target decay. This formulation also requires a 

static wastewater contributing population estimate, total daily flow measurements, and an 

aggregated average value for Dstool (used to account for variability in influent over the course 

of a day into a treatment facility).

Wastewater modeling case studies

The characteristics of the wastewater case studies are summarized in Table 1, including 

information on geographic area and population represented, sampling and testing 

methodologies, and clinical case data. For both case studies, viral wastewater concentration 

data (SARS-CoV-2 and PMMoV RNA) were measured by reverse transcriptase quantitative 

polymerase chain reaction (RT-qPCR) using digital droplet PCR technology (ddPCR). Note 

that the SARS-CoV-2 RNA and PMMoV RNA data were collected from primary settled 

solids rather than wastewater influent for the San Jose, CA case study (SJ). For the purposes 

of numerical modeling, the observed settled solids concentrations of SARS-CoV-2 RNA 

and PMMoV RNA were converted to estimated wastewater influent concentrations using a 

solid-to-liquid partitioning coefficient Kd  following methods described in Kim et al. (2022) 

and Graham et al. (2021). Use of a fixed Kd assumes the viral RNA remains at a consistent 

level of equilibrium between water and solids through the sample collection period.

Model parameterization and implementation

To parameterize the model for SARS-CoV-2, we used SARS-CoV-2 data from the 

scientific literature, other surrogate pathogen data when not available for SARS-CoV-2, and 

professional judgement as needed – details are provided in Supplementary Material, Section 

B. The model variables, corresponding statistical distributions, and distribution parameters 

used in the model formulations are shown in Table 2.

For each formulation, we ran simulations using Eqns 2, 4a and 5 (for the flow 

generation, fecal strength, and flow receipt formulations, respectively) using case study 

SARS-CoV-2 influent concentration data to estimate Factive. For the flow generation and 

fecal strength formulations, the measured daily average SARS-CoV-2 RNA concentration 

(via 24-h composite sampling) was converted to an estimated median SARS-CoV-2 RNA 

concentration. This conversion is necessary so that subsequent calculations are not biased by 
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the measured SARS-CoV-2 RNA concentrations, which are inherently mean values and right 

skewed rather than the median values that are required for the subsequent calculations. For 

each observation, this conversion was accomplished by running an initial set of simulations 

to solve for an Factive.value in which the simulated mean concentration equaled the observed 

mean. The median value of the simulated distribution was then used in the subsequent 

calculations as indicated above. For the flow receipt formulation, we computed an average 

value of Dstool through simulation for use in Eqn 5c for consistency with the conceptual 

model of flow receipt at a treatment plant rather than variation in Dstool from individuals. 

During each iteration of the numerical simulation, values for the parameters were drawn 

from their respective statistical distributions to estimate Factive, and each Monte Carlo 

simulation comprised of 100,000 iterations for each case study and model formulation.

Model performance evaluations

We conducted a series of in-depth analyses to determine the extent to which selected 

parameter value choices in the three model formulations affected the output (see 

Supplementary Material, Section D for further detail). The parameters evaluated include 

the following: (1) the concentration of SARS-CoV-2 RNA in feces of infected individuals, 

(2) the duration of SARS-CoV-2 RNA shedding in feces, and (3) the partitioning coefficients 

for SARS-CoV-2 and PMMoV (for the San Jose, CA case study where primary sludge 

was sampled). Not all model parameters were evaluated in this way and other potentially 

important considerations related to sensitivity include, but are not limited to (1) the 

gene target used to quantify SARS-CoV-2 RNA in sewage; (2) uncertainty or variability 

of sewage concentration measurements including the approach to handling SARS-CoV-2 

RNA values reported below quantifiable limits; and (3) relative contributions of non-fecal 

(mucosal) SARS-CoV-2 RNA shedding to the wastewater stream. Consideration of those 

additional factors could serve as a guide for future study.

RESULTS

Daily confirmed cases, cumulative confirmed cases, observed wastewater SARS-CoV-2 

RNA and PMMoV RNA concentrations from Virginia Beach, VA (VB) are presented in 

Figure 1(a). These case data represent the sewershed area determined from the Atlantic 

wastewater treatment plant service area polygons and address-level cases as reported in 

Gonzalez et al. (2020, 2021). The daily confirmed cases, cumulative confirmed cases, and 

computed influent SARS-CoV-2 RNA and PMMoV RNA data for the San Jose, CA (SJ) 

case study are presented below in Figure 1(b). The SJ case data represent the City of San 

Jose treatment plant service area within Santa Clara County, which comprises approximately 

75% of the population and 75% of the cumulative cases for the county.

Median Factive values from the case study simulations are presented in Figure 2 alongside the 

reported daily case numbers (sewershed level for Virginia Beach and county level for San 

Jose). Note that the ratio of Factive to the confirmed daily cases varies between the two case 

studies as shown on Figure 2(a) and 2(b). In general, the median Factive values from all three 

formulations followed the reported case data trends well. However, daily simulated infection 

estimates exhibited large ranges (two orders of magnitude), in part due to the strong model 
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dependence on highly variable viral fecal shedding data (Supplementary Material, Figure 

D1). Given the assumed uncertainty in the limited fecal SARS-CoV-2 RNA shedding data 

(further detail in Supplementary Material, Section C), the precision and accuracy of the 

estimated median Factive values is unknown within the range of simulated values.

To evaluate the simulated Factive results within the context of the reported number of cases 

at each study location, we relied on published data indicating that infected individuals shed 

detectable SARS-CoV-2 RNA in their feces for a median of 21 days (Weiss et al. 2020; 

Zhou et al. 2020). Because the model formulations treat fecal shedding as a time-invariant 

parameter, we computed the cumulative number of confirmed cases over 21 days and plotted 

those against Factive multiplied by the wastewater utility estimated sewershed contributing 

population (Figure 3). The slopes of the lines shown represent the average ‘ascertainment 

ratio (AR)’ (i.e., ratio of predicted to reported cases) over the period evaluated. As shown 

in Figure 3, at times the median simulated infection levels were lower than reported case 

burden. This observation suggests that there could be a discrepancy between the dates of 

reported cases and wastewater data (refer to Discussion), temporally varying nature of the 

true AR, and/or inaccuracies in the modeling results.

Following Wolfe et al. (2021), we plotted the observed daily cases as a function of 

the influent concentrations of SARS-CoV-2 RNA for both case studies, and influent 

concentrations of SARS-CoV-2 RNA normalized by observed PMMoV RNA concentrations 

to evaluate and compare across case studies the association between wastewater 

concentrations of SARS-CoV-2 RNA and reported cases (Figure 4). As shown, the datasets 

from the two case studies are more comparable when normalized by PMMoV highlighting a 

potentially important implementation consideration.

Model performance evaluations

Detailed results from the sensitivity evaluations are presented in Supplementary Material, 

Sections C and D. Section C includes the fecal shedding distribution evaluation, and 

Section D includes evaluation of the uncertainty in the simulation results (D1), variability/

uncertainty in computed influent concentrations for the San Jose case study based on the 

range of partitioning coefficients (D2), fecal shedding duration (D3), and model formulation 

sensitivity from inter-site variability (D4). The sensitivity evaluations indicate that: (1) 

there is substantial variability/uncertainty in the model output from individual simulations 

(Supplementary Material, Figure D1). These results are likely driven primarily by the highly 

uncertain fecal shedding data (Supplementary Material, Section C); (2) computed influent 

concentrations are strongly influenced by the selected values for the partitioning coefficients 

for conditions using sludge data as input (Supplementary Material, Figure D2); and (3) 

the general trends observed within any given site were not dependent on the specific fecal 

shedding duration used (Supplementary Material, Figure D3). Further details are presented 

in Supplementary Material, Sections C and D.

DISCUSSION

This study describes a modeling framework for estimating community-level COVID-19 

infection based on wastewater monitoring data that are independent of individual and 
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clinical surveillance data. However, the case studies presented highlight the limited available 

data to parameterize key model inputs, resulting in high outcome variability and presumed 

uncertainty, in turn, limiting model application to support public health decision-making 

for the COVID-19 response. The mechanistic modeling framework described encompasses 

three complementary formulations, each of which requires a unique set of inputs for 

estimating human contribution to wastewater (referred to as fecal strength) and size of 

population represented by a wastewater sample. A principal benefit of the mechanistic 

modeling approach is that it provides the conversion of wastewater (or sludge) levels into 

estimated total cases for direct comparison and interpretation against clinical surveillance 

data for public health decision-making. For example, this wastewater modeling approach 

can aid in understanding the variable effective reproductive number through the epidemic by 

estimating a total community infection burden that includes unreported and sub-clinical 

infections (Huisman et al. 2022). An additional benefit of the mechanistic modeling 

approach is that it can be updated to aid in understanding relative differences in community 

infection as the underlying drivers of transmission change temporally, such as changing 

variants and increasing vaccination levels. It can also be useful to provide insights about 

relative infection levels during time periods where community-level testing is changing 

(increasing or decreasing) or reporting of testing results is delayed or aggregated (such as 

holidays or some weekends).

Available wastewater-related data, and public health decision-making needs will determine 

which of these three wastewater-based infection model formulations would be most suitable 

for a community. For example, if it is reasonable to estimate the fraction of wastewater that 

derives from industrial and/or other sources that are unlikely to contain viral contributions 

and to assume those estimates are stable over the modeled period; or if endogenous 

control data are not available or feasible to collect, the flow generation formulation may 

be most applicable. Conversely, if a community is generating paired SARS-CoV-2 RNA 

and endogenous control wastewater surveillance data, the fecal strength formulation may 

be desirable over the flow generation formulation to provide enhanced potential for inter-

site comparability. Moreover, Figure 4 suggests that, when applying the model across lab 

methods, sample types, and locations, the FS model maybe more applicable because the 

fecal normalization incorporated into that model likely makes the ratio of SARS-CoV-2 to 

reported cases more consistent across sites and sample types.

Differences between wastewater characteristics in communities may also influence which 

formulation is most appropriate. For example, in communities with substantial agricultural 

contributions to the community wastewater, the use of PMMoV RNA or another endogenous 

control may be more complicated as PMMoV may not be human fecal-specific in those 

settings (Zhang et al. 2006), and thus, make the flow generation or flow receipt formulation 

more appropriate. Another consideration is the population served by a treatment facility and 

whether the population is relatively static (i.e., are there large changes over short periods of 

time or does a large fraction of the population live in one sewershed and work in another). 

The FS formulation may be more representative of the true population contributing feces 

to wastewater, but it is also likely more vulnerable to outliers, as seen in Figure 2, because 

the formulation is dependent on two microbial measurements that can easily vary across 

orders of magnitude. Interpretation of the modeling results is complicated in cases where 
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the population is more dynamic, and in such cases, careful consideration of these important 

factors is warranted.

Average modeled AR values ranged from 2 to 10 across the two case studies for the period 

of March 2020 to March 2021. While this range appears plausible given the reported levels 

of asymptomatic COVID-19 infections and estimates of unreported cases (Ma et al. 2021; 

Sah et al. 2021), the range of model results and sensitivity evaluations limit confidence 

in the model output for any specific data point. In particular, fecal shedding data for 

SARS-CoV-2 RNA and PMMoV RNA are presently limited, constraining the utility of 

the model. Moreover, multiple wastewater testing method evaluation studies have shown 

that absolute SARS-CoV-2 RNA wastewater measurements are not necessarily comparable 

across laboratory methods or wastewater sample types (Deng et al. 2021; Pecson et al. 2021; 

Foster et al. 2022; Kim et al. 2022). Therefore, it is unknown whether the differences in 

AR values between the two case studies reported here (mean AR values of 2–4 in VB 

compared to 6–10 in SJ) represent true differences in community infection levels captured 

by case reporting over the modeled period or are a function of differences in virus recovery, 

testing methods, and/or sample types (i.e., influent versus sludge). However, one interesting 

perspective from this modeling approach is the evaluation of the temporally varying nature 

of AR, which can vary due to many factors including community mitigation behavior (e.g., 

mask wearing, physical distancing), testing availability, circulating variants, and vaccination 

status. Few other analytical approaches have the ability to evaluate this characteristic on a 

time frame relevant for decision-making (Fernandez-Cassi et al. 2021; Huisman et al. 2022).

Although we conducted an extensive analysis of available data related to fecal shedding 

of SARS-CoV-2 RNA, there are limitations and uncertainties associated with those data. 

To mitigate potential bias associated with high levels of shedding, we selected best 

fitting distributions with an emphasis on the upper tails (refer to Supplementary Material, 

Section C for evaluation of this assumption on model estimates). However, future work is 

critically needed to characterize fecal shedding of SARS-CoV-2 RNA and human-specific 

microbial fecal targets, such as PMMoV RNA, to enhance the utility of this modeling 

framework. The model sensitivity evaluations showed that the mechanistic model was most 

sensitive to the fecal shedding parameter, which due to lack of available data was treated 

stochastically rather than temporally varying over the estimated shedding period. Temporal 

characterization of SARS-CoV-2 RNA fecal shedding over the full duration of infection, 

from exposure to recovery could allow for a time dependent model and in turn may reduce 

the uncertainty in community SARS-CoV-2 infection level estimates from wastewater. 

Similarly, inter-laboratory method evaluations that identify critical methodological impacts 

on measurement comparability would allow for model output comparability across sites. 

Finally, while shedding contributions via other bodily fluid types (e.g., mucous, urine, 

etc.) was found to be negligible compared to fecal contributions (Supplementary Material, 

Appendix B), these other shedding routes should be considered as variants emerge with 

potentially different clinical presentations.

Until more well characterized shedding data are available, site-specific relative 

ascertainment ratios (RAR) (relative to specific times of known infection and transmission 

profiles as described in the Supplementary Material, Section A for methods and 
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Supplementary Material, Figures D3 and D4 for examples) are a present use for the 

described SARS-CoV-2 infection modeling framework given the uncertainties in the 

available input data. Relative AR values could provide insight into coverage of testing 

resources in relation to trends in total community cases relative to reported cases 

(Supplementary Material, Section D). This may become particularly useful to continue 

monitoring SARS-CoV-2 infection levels as mass screening of asymptomatic patients is no 

longer conducted due to elevated costs and increased vaccination coverage. Another possible 

approach that could help to minimize bias associated with the proposed mechanistic model 

uncertainty is the use of multiple formulations. This general approach has proven to be 

useful in other unrelated applications that need to account for substantial uncertainty in the 

modeling (i.e., long-range weather forecasting).

The described mechanistic modeling framework can be used for future wastewater 

surveillance targets, such as those diseases currently endemic in the United States, like 

norovirus, or other pathogens where sufficient high-quality input data are available. One 

potential complicating factor is the presence of pathogens that are also shed from non-

human sources (i.e., parasitic protozoans such as Cryptosporidium spp.) as those other 

sources to the waste stream are not accounted for in the present framework. Antibiotic 

resistance genes (ARGs) are another promising target for wastewater surveillance, but in 

terms of modeling infection burden, ARGs have the added complication of being carried 

by multiple health relevant microorganisms. However, the current framework could be used 

for emerging pathogens whose characteristics are similar to currently well characterized 

pathogens – new SARS variants may fall into this category in the near term. In this case, 

the framework can be useful for complementing traditional epidemiological approaches (i.e., 

case counts, etc.) for broadly understanding pathogen spread within a community while the 

AR is unknown or changing.

Because of the public health utility of wastewater surveillance, the Centers for Disease 

Control and Prevention in the United States (CDC) launched the National Wastewater 

Surveillance System (NWSS) (CDC 2021b). NWSS provides novel national wastewater-

based disease surveillance infrastructure to support public health action during and after the 

COVID-19 pandemic by providing coordination, laboratory and epidemiology capacity, and 

technical guidance for wastewater surveillance programs implemented by state, tribal, local, 

and territorial health departments (Kirby et al. 2021). NWSS runs a centralized data system 

that standardizes wastewater data submission, analysis, visualization, and sharing between 

jurisdictions and with the public. If the uncertainty in wastewater-infection modeling is 

sufficiently reduced, NWSS is positioned to rapidly integrate this analytic capacity into the 

data dashboard for public health use, which may become more relevant as CDC adds new 

targets, including emerging pathogens and antimicrobial resistance genes (CDC 2021b).

The interpretation of wastewater SARS-CoV-2 RNA data will continue to be multi-faceted 

and complicated as vaccination and variant emergence evolve. Understanding the extent 

to which these emerging factors will affect SARS-CoV-2 RNA fecal shedding will be 

critical to understand the utility of this modeling framework. Nevertheless, interpretation of 

wastewater SARS-CoV-2 RNA data will continue to be important to complement traditional 
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surveillance data and the modeling framework presented can be useful for researchers and 

public health decision-makers.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• Reported COVID-19 cases do not capture total infections which is important 

for understanding community disease transmission.

• We present three wastewater mechanistic simulation models to estimate 

community infection levels and demonstrate them through two case studies.

• Wastewater-based mechanistic models presented are useful for public health 

decisions but currently limited by limited SARS-CoV-2 fecal shedding data.
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Figure 1 |. 
March 2020–February 2021 daily confirmed cases, cumulative confirmed cases, SARS-

CoV-2 RNA and PMMoV RNA concentrations for (a) Virginia Beach, VA and (b) San Jose, 

CA.
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Figure 2 |. 
Estimated percent of population actively infected each day monitored for the three model 

formulations compared to reported cases for (a) Virginia Beach, VA and (b) San Jose, CA 

beginning March 2020. Note that the ratio of the left and right y-scales differs between plots 

(a) and (b).
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Figure 3 |. 
21-day reported cases versus predicted cases for the median outcome value of three model 

formulation simulations (a) Virginia Beach, VA and (b) San Jose, CA beginning March 

2020. Reported slopes, representing ARs over surveyed period, are derived from linear 

regressions of linear scaled reported and estimated cases using the three model formulations.
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Figure 4 |. 
Reported daily cases versus observed influent concentrations of SARS-CoV-2 (left) and 

SARS-CoV-2/PMMoV (right) for Virginia Beach, VA and San Jose, CA case studies.
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Table 2

Model variables, distributions, and distribution parameters

Model parameter Description Distribution
Distribution 
parameters

Ddiar SARS-CoV-2 density in feces among infected individuals with 
diarrhea (log10 virus copies/mL)

Normal (5.1, 0.76)

Vdiar volume of feces per person per day among infected individuals with 
diarrhea (mL/day)

Normal (1000, 100)

Fdiar Fraction of infections with diarrhea (unitless) Uniform (0.2, 0.3)

Dnodiar SARS-CoV-2 density in feces among infected individuals without 
diarrhea (log10 virus copies/g)

Normal (4.067, 1.591)

Mnodiar Mass of feces per person per day for infected individuals without 
diarrhea (g/day)

Lognormal (4.84, 0.4)

Vww Wastewater generated per person per day (L/day) Lognormal (5.397, 0.1595)

Tsewer time wastewater spends in the sewer prior to reaching the 
wastewater treatment plant (h)

Lognormal (1.2, 0.85)

Fshed Fraction of infections resulting in shedding of viral RNA in feces 
(unitless)

Uniform (0.6, 0.8)

Fcont Volume fraction of wastewater coming from a source that could 
potentially be contributing to the observed reported influent SARS-
CoV-2 concentration (unitless)

Uniform (0.10, 0.85)

kvirus Pseudo-first-order decay coefficient estimate for SARS-CoV-2 RNA 
target (day−1)

Point Estimate 0.29

kpMMoV Pseudo-first-order decay coefficient estimate for PMMoV target 
(day−1)

Point Estimate 0.29

k_dSARS_CoV2 SARS-CoV-2 Partitioning coefficient for conversion of settled 
solids density to wastewater influent density (unitless)

Point Estimate - Median 900

Point Estimate (lower, 
upper)

(280, 10,000)

k_d PMMoV PMMoV Partitioning coefficient for conversion of settled solids 
density to wastewater influent density (unitless)

Point Estimate - Median 2000

Point Estimate (lower, 
upper)

(1000, 30,000)

DWW_endog PMMoV density in feces (log10 virus copies/g) Uniform from min-
median;

(5.58, 8.28)

Uniform from median-
max

(8.28, 9.99)
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