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Abstract

Purpose of the review: Pompe disease is a rare, inherited, devastating condition that 

causes progressive weakness, cardiomyopathy and neuromotor disease due to the accumulation 

of glycogen in striated and smooth muscle, as well as neurons. While enzyme replacement 

therapy has dramatically changed the outcome of patients with the disease, this strategy has 

several limitations. Gene therapy in Pompe disease constitutes an attractive approach due to the 

multisystem aspects of the disease and need to address the central nervous system manifestations. 

This review highlights the recent work in this field, including methods, progress, shortcomings, 

and future directions.

Recent findings: Recombinant adeno-associated virus (rAAV) and lentiviral vectors (LV) are 

well studied platforms for gene therapy in Pompe disease. These products can be further adapted 

for safe and efficient administration with concomitant immunosuppression, with the modification 

of specific receptors or codon optimization. rAAV has been studied in multiple clinical trials 

demonstrating safety and tolerability.

Summary: Gene therapy for the treatment of patients with Pompe disease is feasible and offers 

an opportunity to fully correct the principal pathology leading to cellular glycogen accumulation. 
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Further work is needed to overcome the limitations related to vector production, immunologic 

reactions and redosing.
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INTRODUCTION

Pompe disease is an autosomal recessive condition secondary to mutations in the acid-

α-glucosidase (GAA) gene, responsible for lysosomal glycogen degradation[1]. Pompe 

disease has a predicted genetic prevalence of ~1:10,000–30,000 based on newborn 

screening data but historically this ranged between 1:35,000 and 1:138,000, with a carrier 

frequency of 1:77[2, 3]. The disease results in pathologic accumulation of glycogen 

primarily in cardiac, skeletal and smooth muscle, and it was once considered a muscle 

disease, however, there is growing evidence of the impact in endothelial cells and motor 

neurons with glycogen deposition in the central nervous system (CNS), progressive 

neuro-degeneration, vasculopathy and cognitive impairment, highlighting its multisystemic 

impact[4–6]. Similarly, the commonly seen respiratory dysfunction is caused by disruption 

of the proximal and distal airways structure and function, in addition to the well described 

muscular weakness[4, 7, 8]. Pompe disease is classified as infantile onset (IOPD) and 

late onset (LOPD)[9]. Classical IOPD is characterized by cardiomegaly, hypotonia and 

cardiorespiratory failure during the first year of life, and non-classical IOPD has a less 

severe phenotype[9, 10]. LOPD is subdivided into childhood or juvenile, and adult-onset, 

both characterized by myopathy that presents later in life and the lack of cardiomyopathy[9, 

11].

Enzyme replacement therapy (ERT) was approved by the Food and Drug Administration 

(FDA) in 2006. The process of ERT involves intravenous administration of recombinant 

human alglucosidase alfa (rhGAA)[12, 13]. Early ERT impacts cardiomyopathy in IOPD 

patients but they continue to present skeletal and smooth muscle dysfunction with associated 

weakness[14]. rhGAA has limited efficiency due to preferential uptake of rhGAA by 

the liver, suboptimal binding of mannose-6-phosphate (M6P) to the cation-independent 

M6P receptor (CI-M6PR) and abnormal trafficking of M6P in the lysosomes[15]. 

Avalglucosidase-alpha, a synthetic oligosaccharide that includes M6P residues linked to 

rhGAA to enhance the affinity for CI-M6PR, was approved in 2021 for LOPD, with 

ongoing trials in IOPD[16–18]. Another approach is the use of small molecule chaperones 

to improve the bioavailability of rhGAA. Chaperones assist in the folding of rhGAA to 

prevent premature degradation, while retaining enzyme activity[19]. Cipaglucosidase alfa + 

miglustat uses this approach. A phase III clinical trial in LOPD patients concluded that the 

combination was not superior to standard ERT based on 6-minute-walk-test[20].

In addition to the aforementioned limitations, ERT requires biweekly infusions, does not 

cross the blood brain barrier (BBB) and can result in immunological reactions towards 

rhGAA[21–23]. Therefore, there is a need for novel interventions for patients with Pompe 
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disease. Herein, we discuss the recent advancements in the field of gene therapy, as well as 

other recent strategies.

GENE THERAPY FOR POMPE DISEASE

A functional gene is introduced to substitute for the mutated gene, enabling endogenous 

production of GAA, which then undergoes natural posttranslational modifications for 

efficient trafficking to the lysosome[24]. It is crucial to target the right cells by selecting 

an appropriate vector capsid serotype, promoter, and route of administration[25].

1. Adeno-associated viral vectors in Pompe disease

Adequate selection of the gene promoter and adeno-associated virus (AAV) serotype is 

key in developing a gene therapy product. Some studies focus on the skeletal and cardiac 

symptoms of the disease using ubiquitous promoters, such as human cytomegalovirus 

(CMV) or the hybrid CMV enhancer/chicken β-actin (CBA). CMV and CBA promoters 

offer quick, strong, and long-lasting expression throughout the body[26, 27], however 

expression of GAA in other cell types, such as antigen presenting cells can cause adverse 

events. Conversely, a variety of muscle specific promoters are utilized to restrict expression 

to striated muscle, showing minimal expression in non-muscle tissues and potentially 

reducing the immune response to the transgene[28]. The desmin promoter is expressed 

in all cells with intermediate filaments and provides selective expression in motor neurons, 

skeletal and cardiac muscles. The synapsin promoter targets principally neurons and the 

liver-muscle promoter (LiMP) provides expression in non-dividing muscle cells and hepatic 

tissues[27, 29, 30].

1.1. Intravenous AAV-derived gene therapy—Several studies have tested AAV 

serotypes with increased muscle tropism to target and correct pathology in Pompe disease, 

either intravenously or directly into the muscle[29–49]. A single intravenous injection of 

an rAAV1-GAA vector restored GAA activity in the Pompe mouse model and exhibited 

a long-lasting corrective effect on cardiac and skeletal muscle resulting in improvement 

in force mechanics of the soleus and diaphragm[32]. In a separate study, an injection 

of rAAV-PHP.B, a rAAV9 variant, resulted in therapeutic levels of GAA activity while 

decreasing glycogen in skeletal and myocardial muscles resulting in improved gait and 

reduced peripheral neuropathy[50].

AAVB1-DES-hGAA, a vector with high affinity for muscle and CNS, and AAV9-DES-

hGAA were utilized in Gaa−/− mice. AAVB1 treatment resulted in weight gain, forelimb 

strength, and higher levels of transduction in the diaphragm, tongue base, and thoracic 

spinal cord when compared to AAV9. Both groups displayed above-average GAA activity 

and reduced glycogen accumulation in the heart, diaphragm, tongue, gastrocnemius, and 

lung[45].

A study in mice and non-human primates using AT845, an AAV8 vector where GAA 

expression is driven by the murine muscle creatine kinase (MCK) promoter/enhancer 

and expressing a codon-optimized GAA, resulted in high enzyme levels, leading to dose 

dependent functional improvements and glycogen clearance. Unfortunately, higher doses 
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in cynomolgus macaques led to immune responses and cardiac abnormalities requiring 

euthanasia. It was later determined that the immune responses were largely due to a 

xenogenic anti-GAA immune response[38**]. AT845, was used in a phase 1/2 trial in 

four LOPD patients, three subjects discontinued ERT and functional outcomes were stable 

51 weeks later[51]. The study was recently on clinical hold due to neuropathy in one 

subject[52, 53].

A highly potent AAV variant, AAV.cc47 was recently tested in Gaa−/− mice. Mice received 

intravenous 1.3e14vg/kg with a single stranded genome encoding GAA driven by the CBh 

promoter. This resulted in GAA levels of 67% of wild type mice, compared to 26% in 

AAV9-GAA treated mice[46*].

Eleven rhesus macaques received AAVhu68 tagged with an insulin-like growth factor 2 

variant (vIGF2) peptide to increase uptake (AAVhu68-vIGF2-hGAA). Five animals had 

immune responses, including dose independent T-cell-mediated myocarditis. Toxicity was 

associated with a major histocompatibility complex class I haplotype in three animals[47**].

Remarkably, the liver can secrete high levels of engineered proteins and can serve as a 

depot for secretion of rhGAA[54]. The liver can promote immune tolerance and help prevent 

immune reactions caused by transgene products, provided the gene is expressed only in liver 

cells[55]. AAV8 vectors in pre-clinical studies have shown GAA expression and secretion 

through hepatocytes, with evidence of reduced muscle glycogen content and improved 

functional tests in mice[29, 36, 56–59]. A study in a canine model demonstrated persistent 

correction of GAA activity two years after concurrent systemic- and liver-targeted vector 

delivery of rAAV9-DES-hGAA and rAAV9-LSPcoGAA in association with anti-thymocyte 

globulin and methylprednisolone. This strategy supports the use of dual vector to achieve 

GAA tolerance[60*].

Two current clinical trials are focused on liver-directed gene therapy by creating a 

liver depot for GAA production[61, 62]. The trial by SPARK therapeutics uses an 

AAVRh74 derived capsid in a phase 1/2 trial. (NCT04093349). Smith et al showed the 

preliminary results in three subjects receiving AAV8-LSPhGAA at 1.6×1012vg/kg. The 

authors demonstrated safety, however, the lack of glycogen lowering suggested that despite 

increased GAA activity in skeletal muscle, the efficacy was not sufficient to replace 

ERT[61**].

1.2. Central nervous system delivery of AAV-derived gene therapy—While 

intravenous administration of AAV leads to widespread gene transfer in the neonatal 

CNS, this approach is not easily translatable to LOPD since it would require high 

vector doses to treat the CNS manifestations[63, 64]. Intrathecal, intra-cisterna (ICM), and 

intracerebroventricular (ICV) routes are considered to treat these manifestations[65].

A single intrathecal dose of AAV9-CAG-hGAA or AAVrh10-CAG-hGAA to Gaa−/− mice 

led to low glycogen levels in the CNS and partial improvement of muscle strength but no 

changes in muscle glycogen. Furthermore, AAV9 treatment restored cardiac GAA levels and 

improved cardiomyopathy[66]. Intrathecal administration of AAV5-GAA at the C3-C4 level 
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in Gaa−/− mice to target the phrenic nerve nucleus area decreased intraneuronal glycogen 

content and improved ventilation, even without enzymatic activity in the diaphragm[67].

1.3. Other AAV-derived gene therapy approaches—Intrapleural rAAV9-GAA to 

Gaa−/− mice resulted in improvement of ejection fraction in cardiac magnetic resonance, 

greater relative inspiratory burst amplitude during baseline conditions, and increased 

efferent phrenic burst amplitude. The effects were achieved by retrograde transport to 

motoneurons[42].

Intra-diaphragmatic administration of rAAV1-CMV-hGAA in nine IOPD subjects at two 

different doses (1.0×1012 and 5.0×1012vg) demonstrated no adverse events related to the 

product. Anti-capsid and anti-transgene antibody response was observed in all, except 

for those who received concomitant immunomodulation with sirolimus and rituximab[34]. 

Subjects from this cohort participated in inspiratory muscle conditioning demonstrating 

benefits to diaphragmatic function, particularly in subjects with higher neuromuscular 

function[68].

Recently, an AAV9 product encoding an excitatory Designer receptor exclusively activated 

by designer drugs (DREADD) (AAV9-hSyn-hM3D(gq)-mCherry) was injected to the 

posterior tongue of GAA−/− mice. Lingual electromyography (EMG) showed significant 

increases in tonic and phasic inspiratory activity after DREADD administration. mCherry 

expression was confirmed in hypoglossal motoneurons in all mice, confirming retrograde 

movement of AAV9. This approach could address dysphagia, dysarthria and sleep 

disordered breathing in patients with Pompe disease[69*].

Figure 1 lists the most relevant ERT and AAV clinical trials to date.

2. Lentiviral vectors in Pompe disease

Hematopoietic stem and progenitor cell (HSPC) mediated lentiviral gene therapy (HSPC-

LVGT) is an attractive approach for the treatment of Pompe disease. The method involves 

transplantation of ex-vivo gene-modified autologous HSPCs to overexpress the needed 

transgene[70–73]. HSPC-LVGT has been used in other disorders, including B-thalassemia, 

Wiskott-Aldrich syndrome, and adrenoleukodystrophy[74–76].

HSPC-LVGT demonstrated long-term engraftment and continuous supply of GAA after one 

intervention in Gaa−/− mice with improvement of cardiac and motor function. However, it 

did not achieve glycogen reduction to normal levels and required a high vector copy number 

(VCN), which can increase the genotoxicity risk as previously seen with early design 

gammaretroviral vectors[77, 78]. Currently, third generation self-inactivating LV vectors are 

used to decrease these risks[79]. Attention has been drawn to the modification of the LV 

vector to improve receptor affinity, like in the case of IGF2[80]. Liang et al. created a vector 

that contains a codon-optimized GAA sequence fused to codon-optimized human IGF2 (LV-

IGF2.GAAco) leading to correction of glycogen accumulation, autophagy, motor function 

and brain glycogen content at a much lower VCN[80*]. A similar approach has been used 

in other preclinical studies to create engineered GAA coding sequences, distinct peptide 

tags and codon optimizations. The use of LVGT with glycosylation-independent lysosomal 
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targeting tags increased secretion and reduced glycogen, myofiber and CNS vacuolation in 

tissues, but maintained low GAA enzyme activity[81**].

Moreover, HSPC-LVGT can limit immunoglobin G (IgG) responses through tolerance 

induction against the transgene product—one of the key benefits of this technique[71]. It 

can also allow for complementary ERT, resulting in enhanced glycogen elimination from 

skeletal and cardiac muscles. In this approach, the existence of GAA-expressing HSPC-

derived cells in the thymus indicated the establishment of central immune tolerance[82].

Figure 2 summarizes the AAV and LV-derived products based on tissue tropism.

Challenges and potential solutions in gene therapy

1. Vector production: rAAV production methods are distinguished by cell line type, 

substrate for cell growth and precursor materials, however, these are often not suitable for 

large scale production. Chemical transient transfection is popular due to simplicity and 

availability of raw materials but has limited yield per cell and requires good manufacturing 

process (GMP) grade plasmids[83–85]. New technology has emerged to scale transient 

transfections, including packed bed reactors[86–88], conversion to suspension HEK293 

lines[89], AAV process intensification[90*, 91*] and the use of novel chemical additives as 

transfection reagents [84, 89, 92-96*]. Non-plasmid DNA sources such as doggybone DNA 

and novel transfection reagents could facilitate manufacturing significantly, along with the 

use of certain chemical additives to boost rAAV production[95, 97–99].

Viral infection platforms, using insect baculovirus (rBV) or Human Herpes Simplex Type 

I virus (rHSV1) offer high yields per cell and are used in clinical trials[100, 101]. 

rHSV1 coinfection modifies AAV genome-end recombination, emphasizing the need for 

improvement of rHSV-1 production[102*]. The rBV system’s limitations include loss 

of AAV particle infectivity, insect virus contamination of cell lines, differences in post-

translational modifications of the final product, which produce a negative impact on potency 

[101, 103] Meanwhile, the rHSV system appears more versatile in producing highly 

infectious AAV regardless of serotype[92, 93, 104].

Packaging/producer cell lines (PCL) are unique systems that stably incorporate viral and 

cargo genes into the cell lines prior to GMP manufacturing. Advantages of PCLs include 

scalability to 2,000L, compatibility with existing biologics production infrastructure, and 

consistent batch-to-batch performance[105–107]. However, PCLs require an established 

cell line development effort, and require wild-type Ad propagation as a process-related 

impurity[105–107].

rAAV manufacturing related impurities can result in significant immunogenicity. Research 

is needed to ensure effective development of rAAV vectors, while minimizing process and 

product derived impurities and ensuring safety[91, 93].

2. Immune responses to AAV, and vector re-administration: One major obstacle for 

successful gene therapy is the immunological response to the vector capsid and transgene 
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product affecting safety and duration of effect[108]. These reactions can involve innate, 

cellular and humoral responses[109, 110*].

AAV re-administration has been an important concern especially for IOPD since transgene 

expression is expected to decrease due to somatic growth and vector dilution[111]. Several 

strategies to prevent anti-AAV antibody production and to allow for redosing have been 

proposed including plasmapheresis or antibody cleavage[85, 112]. Only one approach has 

been tested clinically and consisted in the use of sirolimus and rituximab to demonstrate that 

two consecutive intramuscular administrations of AAV vectors is possible (NCT02240407)

[62].

OTHER TREATMENT APPROACHES

Multiple additional approaches have been reported to date[16, 20, 113–119] Recently, 

progress has been made in the following:

1. In-utero ERT:

A fetus with CRIM-negative IOPD received in-utero ERT starting at 24 weeks of gestation, 

postnatal immune tolerance was started and ERT continued. The child had normal cardiac 

and motor function at 13 months of age[120**].

2. Glycogen-synthase-1 inhibitors:

Glycogen production is regulated by glycogen synthase (GYS1), which can be inhibited 

by the phosphorylation of S641 and S645 through the mTORC1 pathway[121, 122]. A 

recent phase I/II clinical trial (NCT05249621) evaluated an oral GYS-inhibitor in healthy 

subjects and showed good tolerance and reduced glycogen in peripheral blood mononuclear 

cells[123].

3. Fusion proteins for targeted delivery of GAA:

These retain enzymatic function and bind to effector proteins that traffic to the 

lysosome. This approach was done using CD63 and Integrin-subunit-alpha 7 (ITGA7). 

α-hCD631IgG:GAA and α-ITGA7IgG:GAA internalized in a CI-M6PR independent 

mechanism with the former being more effective. Similar findings happened when using 

a single-chain fragment variable (scFv) instead of IgG. In a second step, the same study 

used AAV2/8 viruses encoding α-hCD631scFv:GAA driven by a liver-specific promoter 

and showed higher GAA levels compared to AAV-GAA treated mice[124*]. A similar 

strategy was used to create VAL-1221, a fusion protein comprising the Fab portion of a 

cell penetrating-antibody and rhGAA, tested in a 3-month phase I/II study in 12 adults with 

LOPD. The study showed dose dependent improvements but no significant changes in PD 

markers[125].

Figure 3 summarizes all possible strategies in PD treatment
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CONCLUSIONS

ERT significantly improves the outcomes of patients with Pompe disease. ERT targets 

cardiomyopathy and skeletal muscle pathology but has limited effect in other tissues. Gene 

therapy strategies have the potential to treat multiple systems, including the CNS. Newer 

viral vectors allow for enhanced expression, specificity and increased enzyme activity based 

on preclinical and clinical studies. However, gene therapy continues to face major challenges 

related to vector production, immunological response and redosing.
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Key Points

• Gene therapy for Pompe Disease uses primarily Adeno-associated viral 

vectors and lentiviral vectors

• Recombinant viral vector production has multiple challenges

• Redosing of gene therapy in Pompe disease is limited by immunological 

responses
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Figure 1. 
Timeline of the most relevant clinical trials using enzyme replacement therapy (left) and 

Adeno-associated viral vectors (right). IOPD: Infantile-onset Pompe disease. LOPD: Late-

onset Pompe disease. IV: intravenous. IM: Intramuscular. TA: tibialis anterior. vgs: vector 

genomes
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Figure 2. 
Summary of all in-vivo and ex-vivo vectors and promoters reported based on tissue tropism. 

CNS: Central nervous system. HSPC: Hematopoietic stem and progenitor cell
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Figure 3. 
Preclinical and clinical strategies to treat Pompe disease. ERT: enzyme replacement therapy, 

GAA: acid alfa glucosidase. M6P: Mannose-6-Phosphate. GYS 1: Glycogen synthase 1
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