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ABSTRACT
◥

Preclinicalmurine data indicate that fragment crystallizable (Fc)-
dependent depletion of intratumoral regulatory T cells (Treg) is a
major mechanism of action of anti–CTLA-4. However, the two
main antibodies administered to patients (ipilimumab and treme-
limumab) do not recapitulate these effects. Here, we investigate the
underlying mechanisms responsible for the limited Treg depletion
observed with these therapies. Using an immunocompetent murine
model humanized for CTLA-4 and Fcg receptors (FcgR), we show
that ipilimumab and tremelimumab exhibit limited Treg depletion
in tumors. Immune profiling of the tumor microenvironment
(TME) in both humanized mice and humans revealed high expres-

sion of the inhibitory Fc receptor, FcgRIIB, which limits antibody-
dependent cellular cytotoxicity/phagocytosis. Blocking FcgRIIB in
humanizedmice rescued theTreg-depleting capacity and antitumor
activity of ipilimumab. Furthermore, Fc engineering of antibodies
targeting Treg-associated targets (CTLA-4 or CCR8) to minimize
FcgRIIB binding significantly enhanced Treg depletion, resulting in
increased antitumor activity across various tumor models. Our
results define the inhibitory FcgRIIB as an immune checkpoint
limiting antibody-mediated Treg depletion in the TME, and dem-
onstrate Fc engineering as an effective strategy to overcome this
limitation and improve the efficacy of Treg-targeting antibodies.

Introduction
Cancer immunotherapy has revolutionized the treatment of various

malignancies. However, factors leading to treatment response and
resistance remain poorly defined (1), and the fundamental mechan-
isms of these treatments are still incompletely understood (2). For
anti–CTLA-4 immunotherapy, several mechanisms of action have
been identified. Because CTLA-4 competes with the costimulatory
receptor CD28 for the B7 ligands B7-1 (CD80) and B7-2 (CD86) to
dampen T-cell activation, removal of CTLA-4–mediated negative
costimulation has been accepted as the pivotal mechanism of action
of anti–CTLA-4 (3). However, several murine studies have pointed
toward a second mechanism of action involving the depletion of
regulatory T cells (Treg) within the tumor microenviroment (TME;
refs. 4–11). Tregs express high levels of CTLA-4 in the TME and their
depletion is achieved through the fragment crystallizable (Fc) domain
of anti–CTLA-4, resulting in reduced tumor immunosuppression and

expansion of effector T cells. However, there is a lack of concrete
evidence supporting Fc-mediated Treg depletion in patients receiving
human anti–CTLA-4, and recent studies have demonstrated that both
ipilimumab and tremelimumab fail to deplete intratumoral Tregs in
patients (12). Finally, an Fc-dependent, but Treg depletion–indepen-
dent, mechanism of action was recently proposed whereby anti–
CTLA-4 stimulate myeloid cells that in turn activate effector T
cells (13, 14).

A large proportion of the research aiming at establishing whether
human anti–CTLA-4 deplete Tregs in vivo has relied on mouse
models (5–11). However, these models present several limitations,
including the differential structure, function, and expression of mouse
and human Fcg receptors (FcgR), which constitute important con-
founding factors (15, 16). Vargas and colleagues recently used a
humanized mouse system recapitulating human FcgR structural and
functional diversity to determine the contribution of the Fc domain to
the in vivo activity of anti–CTLA-4 (8). While this study described the
ability of human IgG1 antibodies to deplete Tregs in humanized
models, they relied on chimeric anti–CTLA-4 [mouse fragment anti-
gen-binding (Fab) with human Fc domain], which cannot fully
recapitulate the activity of the human anti–CTLA-4 used in patients.
In addition, while these studies also revealed that a combination of the
FcgRIIIA high-affinity polymorphism (FcgRIIIAV158F) and high
tumor mutational burden could predict favorable outcomes for
patients undergoing treatment with ipilimumab, these variables do
not represent the majority of patients receiving anti–CTLA-4 therapy.

The inhibitory Fc receptor, FcgRIIB, is an important regulator
of antibody-dependent cellular cytotoxicity/phagocytosis (ADCC/
ADCP; ref. 15), which has important implications for antibody-
based cancer treatments (17, 18). Therapeutic blockade of FcgRIIB
has been shown to enhanceADCPof anti-CD20 in a lymphomamouse
model (19). In this setting, FcgRIIB exerts its inhibitory activity by
competingwith activating FcgRs for the binding of IgG antibodies, and
its blockade improves the efficacy of antibody-mediated cell depletion
therapy (20). Furthermore, FcgRIIB expression is induced by IL4 and
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hypoxia-inducible factors (21, 22), both of which are abundantly
present in the TME (23–25), suggesting a potential role for this
receptor in the resistance to antibody-based therapies.

Because of the dicrepancies betweenmurinemodels and patients on
the mechanisms of action of anti–CTLA-4, in particular concerning
the Fc-dependent depletion of intratumoral Tregs, as well as the
important structural, functional, and genetic differences of FcgRs
between mice and humans, we developed a murine model humanized
for CTLA-4 and FcgRs to study the capacity of fully human anti–
CTLA-4 to deplete Tregs in tumors. Using this model system, we
investigated whether the inhibitory activity of FcgRIIB could poten-
tially explain the poor Treg-depleting capacity of ipilimumab. We
found that FcgRIIB was highly expressed in both murine and human
solid tumors and demonstrated that FcgRIIB acts as an important
checkpoint limiting the activity of Treg-targeting antibodies in the
TME.

Materials and Methods
Mouse strains

All mice were bred and housed at Rockefeller University Compar-
ative Bioscience Center under specific pathogen-free conditions. All
experiments were performed in compliance with institutional guide-
lines and were approved by the Rockefeller University Institutional
Animal Care and Use Committee (IACUC). C57BL/6J [wild-type
(WT)] mice were purchased from The Jackson Laboratory (stock no.
000664). Humanized CTLA-4 mice (C57BL/6 background) were
obtained from James P. Allison (MD Anderson Cancer Center) and
were described previously (4). In brief, transgenic mice expressing
human CTLA-4 (chimeric construct containing upstream regulatory
sequences required for CTLA-4 expression and in which the extra-
cellular coding domain ofmouse CTLA-4 is replaced by that of human
CTLA-4) were backcrossed intoCtla4�/�mice.Humanized FcgRmice
(C57BL/6 background) were previously generated in our lab and
extensively characterized in previous studies (26). In brief, transgenic
mice expressing human FCGR1A, FCGR2AR131, FCGR2BI232,
FCGR3AF158, and FCGR3B (under the control of their human regu-
latory elements) were individually crossed together to create a mouse
line expressing the full repertoire of human FcgRs. These human FcgR
transgenic mice were then backcrossed into FcRa�/� (deleted for
Fcgr2b, Fcgr3, andFcgr4) andFcgr1�/�mice that lack allmurine FcgRs.
Humanized CTLA-4 mice were mated with humanized FcgR mice to
obtain the humanized CTLA-4 and FcgR mice (referred to herein as
“humanized CTLA-4/FcgRmice”). All mice used were 7–12 weeks old
at time of experiment. All experiments used a mix of male and female
mice.

Cell lines
MC38 cells were obtained from Kerafast (ENH204-FP; RRID:

CVCL_B288), B16 cells were obtained from ATCC (CRL-6475;
RRID:CVCL_0159) and MB49 and MCA-205 cells were obtained
from Sigma-Aldrich (SCC148; RRID:CVCL_7076, and SCC173;
RRID: CVCL_VR90). All cells were cultured inside tissue culture
treated flasks with DMEM (#11995065, Thermo Fisher Scientific)
with 10% FBS (#F2442, Sigma-Aldrich) and 1X penicillin-
streptomycin (#15140122, Thermo Fisher Scientific) at 37�C and
5%CO2. Cells were split twice per week and cell viability wasmeasured
using trypan blue staining in the Countess II automated cell counter
(Thermo Fisher Scientific). All cells were used within 5–10 passages of
thawing. Cell lines were tested for Mycoplasma and have not been
reauthenticated.

Antibody production and Fc engineering
The variable heavy and light regions of ipilimumab (clone 10D1)

and tremelimumab (clone 1121) were synthesized on the basis of their
published sequences (https://drugs.ncats.io; Supplementary Table S1).
The variable heavy and light regions of the anti-mouse CD4 (clone
GK1.5) were synthesized on the basis of their published sequences
(NCBI GenBank AAA51349.1 and AAA51350.1 for VH and VL
sequences, respectively; Supplementary Table S1). The variable heavy
and light regions of the anti-mouseCCR8 (clone SA214G2, BioLegend;
RRID: AB_2566246) were determined by mass spectrometry (Bioin-
formatics Solutions Inc; Supplementary Table S1). The anti-human
FcgRIIB (clone 2B6) was previously generated in our lab (Rockefeller
University, NewYork, NY; ref. 27), andwas produced by theMemorial
Sloan Kettering Cancer Center Hybridoma Facility. The variable
region sequences of the parental antibodies were cloned and inserted
into AbVec2.0-IGHG1 expression vectors (#80795, Addgene). For the
generation of human IgG1 N297A, GRLR (G236R/L328R), and GAA-
LIE (G236A/A330L/I332E) Fc variants, site-directed mutagenesis
using specific primers (Supplementary Table S2) was performed with
QuickChange site-directed mutagenesis Kit II (#200523, Agilent
Technologies) according to the manufacturer’s instructions. Mutated
plasmid sequences were validated by Sanger sequencing (Genewiz,
Azenta Life Sciences). Antibodies were produced by transient cotrans-
fection of Expi293F suspension cells (#A14635, Thermo Fisher Sci-
entific) with heavy and light chain expression vectors. Expi293F cells
were cultured in serum-free Expi293 Expression Medium (#A14635,
Thermo Fisher Scientific), and transfected using ExpiFectamine 293
transfection reagent (#A14635, Thermo Fisher Scientific) according to
themanufacturer’s instructions. For the generation of the human IgG1
afucosylated Fc variant, 2-Deoxy-2-fluoro-L-fucose at 200 mmol/L (#
MD06089, Biosynth Carbosynth) was added 1 day after transfection.
In some experiments, afucosylated antibodies were produced by
transfecting antibody heavy and light chain expression vectors into
Expi293F Fut8�/� cells. These cells were generated in the lab and
described in previous studies (28). Supernatants were collected 7 days
after transfection, centrifuged and filtered (0.22 mmol/L). Antibodies
were purified from clarified supernatants using Protein G Sepharose 4
Fast Flow (#17061801, Cytiva) according to the manufacturer’s
instructions. Purified antibodies were dialyzed in PBS and sterile
filtered (0.22 mmol/L). Purity was assessed by SDS-PAGE and Coo-
massie staining, and endotoxin levels were determined (#C1500-5,
Associates of CapeCod Inc). The percentage of afucosylated formswas
assessed by mass spectrometry or Luminex as described previous-
ly (28). The Fc variants used in the study do not impact antibody serum
half-life as assessed previously (29, 30).

ELISA
Binding specificity, affinity, and blocking activity of human anti–

CTLA-4 were determined by ELISA using recombinant human B7.1
(#10698-HCCH, Sino Biological), recombinant human CTLA-4
(#11159-HNAH, Sino Biological), and recombinant human FcgRs
(human FCGR2A #10374-H08H, human FCGR2B #10259-H08H,
human FCGR3A #10389-H08H, Sino Biological). Ninety-six–well
ELISA Half Area High Binding plates (#675061, Greiner Bio-One)
were coated overnight at 4�Cwith CTLA-4 (1mg/mL), B7.1 (1 mg/mL),
or human FcgRs (2 mg/mL). All sequential steps were performed at
room temperature. After washing, the plates were blocked for 1 hour
with 1�PBS containing 2% BSA (for CTLA-4 and B7.1) or 10% BSA
(for human FcgRs), and were subsequently incubated for 2 hours with
serially diluted IgGs (dilutions are indicated in the figures and were
prepared in the relevant blocking solution). After washing, plates were
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incubated for 1 hour with horseradish peroxidase (HRP)-conjugated
anti-human IgG (#109-035-088, Jackson ImmunoResearch; RRID:
AB_2337584). For the inhibition assay, after blocking nonspecific
sites, plates were incubated for 1 hour with serially diluted IgGs
and with 1 mg/mL of human CTLA-4-Biotin (Sino Biological,
#11159-H08H-B) in 1�PBS with 2% BSA. After washing, plates
were incubated for 1 hour with HRP-labeled streptavidin (#405210,
BioLegend). Detection was performed using TMB (5120-0047,
SeraCare Life Sciences), and reactions stopped with the addition
of 0.18 mol/L sulphuric acid. Absorbance at 450 nm was imme-
diately recorded using a SpectraMax Plus spectrophotometer
(Molecular Devices), and background absorbance from negative
control samples was subtracted.

Surface plasmon resonance
All experiments were performed with a Biacore T100 SPR system

(GE Healthcare) at 25�C in HBS-EP buffer [10 mmol/L HEPES, pH
7.4, 150mmol/L NaCl, 3.4mmol/L edetic acid, 0.005% (v/v) surfactant
P20]. Recombinant IgG antibodies were immobilized on Series S CM5
chips (GE Healthcare) and soluble ectodomains of recombinant
human CTLA-4 were injected to the flow cells at different concentra-
tions. Background binding to blank immobilized flow cells was sub-
tracted and affinity constants were calculated using BIAcore T100
evaluation software (GE Healthcare) using the 1:1 Langmuir binding
model.

Tumor transplantation and in vivo treatments
MC38,MCA-205, MB49, and B16 cells were detached using trypsin

digestion from tissue culture flasks and assessed for viability (>95%).
Cells were washed thrice with PBS andwere resuspended in sterile cold
PBS.Mice were injected in their lower abdominal flanks with 100mL of
this mixture, corresponding to 2 � 105 cells (for MB49 and B16), 5 �
105 cells (for MCA-205), or 2 � 106 cells (for MC38). Tumors were
measured two to three times per week using an electronic caliper.
Volume was calculated using the formula (L1

2� L2)/2, where L1 is the
longest dimension. Mice were randomized into treatment groups
when tumors were approximately 5 to 6 mm in diameter. Mice
received treatment as described in the legend of each experiment.
Humanized CTLA-4/FcgR mice were treated with 200 mg of anti–
CTLA-4 or isotype control (intraperitoneal injection), and in some
experiments, with 50 mg of anti-human FcgRIIB or control PBS
(intratumoral injection). Humanized FcgR mice were treated with
200 mg of anti-CCR8 antibodies or isotype control (intraperitoneal
injection). The human IgG1 isotype control antibody used in our
studies was obtained from BioXCell (#BE0297; RRID: AB_2687817).
For experiments assessing antitumor activity, mice were treated on
days 0, 3, and 6 following randomization and were sacrificed when
tumor reached the Rockefeller University IACUC limit (maximal
tumor volume of 2,000 mm3). For flow cytometry experiments, mice
were treated on days 0 and 3 following randomization and were
sacrificed 24 hours after the last injection for analysis.

Processing of mouse tissues
Tumors were dissected, cut into small pieces and transferred to

gentleMACS C tubes (Miltenyi Biotec) containing enzyme mix for
tough tumors (#130-096-730m, Miltenyi Biotec) in DMEM. Tumor
fragments were then dissociated using the gentleMACS OctoDisso-
ciator with heaters (gentleMACS Program 37Cm_TDK_2, Miltenyi
Biotec). Cell were finally filtered through a 70-mm cell strainer. Lymph
nodes and spleens were removed frommice using forceps and pressed
on a 40-mm cell strainer using the flat end of a syringe plunger. For

spleens, red blood cell lysis was performed using Red BloodCell Lysing
Buffer (#R7757, Sigma-Aldrich).

Flow cytometry
Cells were stained for viability using eBioscience Fixable Viability

Dye (#65-0866-14, Thermo Fisher Scientific). After viability staining,
cells were resuspended in FACS buffer (PBS with 0.5% BSA and
2 mmol/L EDTA) and Fc blocked using human TrueStain FcX
(#422304, BioLegend). Cells were incubated for 30 minutes at 4�C
with antibodies to extracellular targets, then washed twice, fixed, and
permeabilized using eBioscience Foxp3 Transcription Factor Staining
Buffer kit (#00-5523-00, Thermo Fisher Scientific) prior to intracel-
lular staining with antibodies to intracellular targets. For staining of
human FcgRs, cells were directly incubated with antibodies to human
FcgRs following viability staining. After 30 minutes incubation at 4�C,
cells were then incubated with the other antibodies and processed
normally.

The following anti-mouse antibodies were used: CD45-AlexaFluor
700 (clone 30-F11, Thermo Fisher Scientific; RRID: AB_891454),
CD45-PerCP (clone 30-F11, BioLegend; RRID: AB_893343), CD3e-
Percp-Cy5.5 (clone 17A2, BioLegend; RRID:AB_1595597), CD3e-PE-
Cy7 (clone 17A2, BioLegend; RRID: AB_1732068), CD4-FITC (clone
GK1.5, BioLegend; RRID: AB_312690), CD4-AlexaFluor 488 (clone
GK1.5, BioLegend; RRID: AB_493520), CD8a-BV786 (clone 53-6.7,
BioLegend; RRID: AB_312750), CD8a-PB (clone 53-6.7, BioLegend;
RRID: AB_493426), FOXP3-PE (clone 150D, BioLegend; RRID:
AB_492981), FOXP3-APC (clone FJK-16s, eBioscience; RRID:
AB_469457), and CTLA-4-BV421 (clone UC10-4B9, BioLegend;
RRID: AB_10901170).

The following anti-human antibodies were used: FcgRI-PE (clone
10.1, BioLegend; RRID: AB_1595539), FcgRIIIA/B-PE-Cy7 (clone
3G8, BioLegend; RRID: AB_314215), FcgRIIA-Dylight 488 (clone
IV.3, produced in-house), FcgRIIB-Dylight 650 (clone 2B6, produced
in-house), and CTLA-4-PE (clone L3D10, BioLegend; RRID:
AB_10645522).

Samples were acquired on an Attune NxT flow cytometer (Thermo
Fisher Scientific) and data were analyzed using FlowJo 10 (BD).

Human tumor tissues
Baseline oral squamous cell carcinoma 4mmpunch biopsy samples

were obtained between November 2016 and August 2019 from con-
senting patients planned for standard-of-care surgical resection (the
list of patients is provided in Supplementary Table S3), in accordance
with ethical standards under a Providence Health & Services Institu-
tional Review Board–approved clinical study protocol (IRB #16-042)
at the Earle A. Chiles Research Institute, Providence PortlandMedical
Center, Portland, Oregon. Punch biopsy tumor tissue specimens were
obtained by the surgeon in the ambulatory clinic, placed directly in
formalin, and delivered to pathology for formalin-fixed paraffin-
embedded (FFPE) processing and storage per routine institutional
protocol. Patient consent was obtained as a prerequisite for study
enrollment. Patient consent for publication is not required. The study
was conducted in accordance with the Declaration of Helsinki.

Multiplex immunofluorescence staining
To prepare specimens for multiplex immunofluorescence (mIF)

staining, tissue sections were cut at 4mm from FFPE blocks. All
sections on slides were deparaffinized using the Bond ER2 Leica
Biosystems AR9640, followed by staining with the Leica Bond RX
autostainer. The slides were stained with anti-human CD3 (dilution
1:50, clone SP7, #ab16669, Abcam; RRID: AB_443425), anti-human
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FcgRIIIA/B (dilution 1:50, clone 2H7, #88251S, Cell Signaling Tech-
nology), anti-human FcgRIIB (dilution 1:2,000, clone 110, #NBP2-
89364, Novus Biologicals; RRID: AB_354737), and anti-human CD68
(dilution 1:400, clone PG-M1, #GA61361-2, Dako Agilent). Antibody
binding was visualized using the Opal 7-Color Manual IHC kit
(#NEL811001KT, Akoya), which includes secondary anti-mou-
se/anti-rabbit polymer HRP, TSA-Opal reagents, and DAPI counter-
stain. Tissue slides were coverslipped with VectaShield mounting
media (#H-1000-10, Vector Labs). Control tissue samples were stained
for each marker as positive controls. Whole slide digital images were
captured with the PhenoImager HT platform and analyzed with
QuPath software. Tissue samples from consecutive slides were stained
with hemtoxylin and eosin (H&E), and scanned with the Leica
SCN400F platform. Tumor regions were annotated by an expert
pathologist based on H&E slides in conjunction with Cytokeratin
staining (clone AE1/AE3, Thermo Fisher Scientific; RRID:
AB_1834350). Cells were segmented, phenotyped, and enumerated
using the QuPath object classification algorithm.

Statistical analysis
Data were analyzed using Prism GraphPad software (version 9.3.1).

One-way ANOVA with Tukey post hoc test was used to compare all
groups with three or more treatments. When two groups were
compared, an unpaired two-tailed Student t test was used to determine
statistical significance. When data were not normally distributed,
nonparametric tests were used: Kruskal–Wallis with Dunn post hoc
test for multiple comparisons or Mann–Whitney test when two
groups were compared. All data, unless otherwise indicated, are plot-
ted as mean � SEM. For all statistical tests, �, P < 0.05; ��, P < 0.01;
���, P < 0.001; ����, P < 0.0001, and not significant values are denoted
as ns. Lines associated with asterisks indicate groups compared for
significance.

Data availibility
Data were generated by the authors and are available in the article

and its Supplementary Data files or from the corresponding author
upon reasonable request.

Results
A humanized mouse model to study the Fc effector function of
human anti–CTLA-4

The importance of Fc-dependent mechanisms for the antitumor
activity of therapeutic antibodies has been demonstrated for several
targets in recent years (31–36), resulting in the development and
evaluation of second-generation Fc-engineered antibodies in the
clinic (37, 38). To investigate the role of Fc effector function in the
in vivo activity of fully human anti–CTLA-4 and to identify the
mechanisms controlling the ability of these antibodies to deplete Tregs
in tumors, we developed a mouse model humanized for both human
CTLA-4 and human FcgRs (humanized CTLA-4/FcgRmice; Fig. 1A).
In brief, we used humanCTLA-4 transgenicmice on amouseCtla4�/�

background (4), and we crossed them to our previously described
humanized FcgR mice in which human FcgRs have been inserted as
transgenes in place of murine FcgRs that are deleted (26). We found
that humanized CTLA-4/FcgR mice are viable, and they breed and
develop normally without clinical evidence of any autoimmune phe-
nomenon, suggesting normal function of the CTLA-4 checkpoint.
Phenotypic analysis of tumor-infiltrating CD45þCD3þT cells isolated
from humanized CTLA-4/FcgR mice confirmed expression of human
CTLA-4 in CD8þ T cells, FOXP3– conventional CD4þ T cells (Tconv)

and FOXP3þ Tregs (Fig. 1B and C). In three distinct transplantable
tumor models (MC38, B16, and MCA-205), we found that the
expression profiles of CTLA-4 were similar when comparing T cells
in tumors isolated from WT C57BL/6J (expressing mouse CTLA-4)
and humanized CTLA-4/FcgR mice (expressing human CTLA-4),
with the exception of tumor-infiltrating CD8þT cells, which expressed
more CTLA-4 in humanized CTLA-4/FcgR mice (Fig. 1C; Supple-
mentary Fig. S1A and S1B), consistent with findings observed in
patients with cancer (8). Other than this, the key expression patterns
were conserved, with CTLA-4 expression mainly restricted to
CD4þFOXP3þ Tregs, and a level of expression higher in tumors as
compared with spleen or lymph node (Fig. 1C; Supplementary
Fig. S1A and S1B). Finally, we confirmed that humanized CTLA-
4/FcgR mice expressed the whole set of human FcgRs in both spleens
and tumors (Fig. 1D), fully validating our humanized mouse model.
To leverage this humanized system, we next cloned the variable heavy
and light sequences (Fab) of ipilimumab (clone 10D1) and tremeli-
mumab (clone 1121), the twomain human anti–CTLA-4 approved for
use in the clinic, and expressed them on their respective human IgG1
and IgG2 Fc backbones (Fig. 1E). We assessed their binding to human
CTLA-4 by surface plasmon resonance (Fig. 1F), and we verified their
ability to block the interaction between human CTLA-4 and B7.1 by
competitive ELISA (Fig. 1G).

Human anti–CTLA-4 are limited in their capacity to deplete
intratumoral Tregs in humanized CTLA-4/FcgR mice

To evaluate the contributions of the Fab and Fc domains to the
in vivo activity of ipilimumab and tremelimumab, we expressed each of
them as an IgG1 or IgG2 Fc format, which display moderate or weak
binding to FcgRs, respectively (Fig. 2A; ref. 15). We then tested their
in vivo antitumor activity in humanized CTLA-4/FcgR mice bearing
MC38 tumors (Fig. 2B), a tumor model that is associated with
complete response to murine anti–CTLA-4 (6, 39). We identified
signs of antitumor activity for both ipilimumab and tremelimumab,
although the increased tumor control observed following treatment
with ipilimumab was not statistically significant when compared with
the control group (Fig. 2C and D). Ipilimumab and tremelimumab
had similar antitumor activity irrespective of their IgG Fc backbone
(Fig. 2C and D), suggesting no major contribution of the Fc effector
function to the antitumor activity of these antibodies. Neither the IgG1
nor IgG2 Fc format had antitumor activity in the less-immunogenic
B16 tumor model (Fig. 2E). Flow cytometric analysis of T cells
infiltrating MC38 tumors revealed that only ipilimumab-IgG1 led to
a modest decrease of FOXP3þ Tregs whereas both ipilimumab-IgG1
and -IgG2 increased the infiltration of CD8þ T cells (Fig. 2F),
suggesting that CD8þ T-cell activation, rather than Treg depletion,
was responsible for the antitumor activity of recombinant ipilimumab
antibodies in humanized CTLA-4/FcgR mice. Ipilimumab-IgG1 and
-IgG2 did not modulate any T-cell subset in B16 tumors (Fig. 2G), in
line with the absence of antitumor effect in this model (Fig. 2E).
Collectively, these results suggest that ipilimumab and tremelimumab
mainly rely on their checkpoint-blocking activity to control tumors in
humanized CTLA-4/FcgR mice, and their Fc effector function is not
sufficient to provide additional therapeutic benefits, which recapitu-
lates the findings observed in patients (12).

The inhibitory Fc receptor FcgRIIB is highly expressed in
the TME

To verify that the poor depletion of intratumoral Tregs observed
during treatment with ipilimumab was not due to target-specific
factors, we examined the depleting capabilities of a murine anti-CD4
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A humanized mouse model to study the Fc effector function of human anti–CTLA-4. A, Schematic drawing describing the generation of humanized CTLA-4/FcgR
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bearing MC38 tumors. Representative histograms and quantification of the mean fluorescence intensity (MFI)� SEM are shown. Dotted lines indicate Fluorescence
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ipilimumab (left) and tremelimumab (right) antibodies to hCTLA-4 by surface plasmon resonance. The dissociation constant (KD) of each antibody is shown. RU,
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(clone GK1.5) bearing a human IgG1 Fc backbone, similarly to the
composition of ipilimumab-IgG1. In humanized FcgR mice bear-
ing MC38 tumors (Supplementary Fig. S2A), we detected a small
reduction of CD4þ T cells in peripheral blood following treatment
with GK1.5-IgG1 (Supplementary Fig. S2B). However, we did not
observe any reduction of tumor-infiltrating CD4þ T cells (Sup-
plementary Fig. S2C), indicating that lack of effective antibody-
mediated cell depletion was not target dependent, but rather a
feature of the TME.

The ability of effector immune cells to deplete IgG-coated cells
depends on the IgG subclass of the antibody and its binding affinities
for FcgRs and on the balance between the expression of activating
FcgRs and the inhibitory FcgRIIB on the surface of the effector
cells (15, 17). A role for activating FcgRs in the antitumor activity

of ipilimumab, in particular FcgRIIIA, has been described in patients
with metastatic cancer (8, 40, 41). However, the role of the inhibitory
FcgRIIB in this context has been less explored. By flow cytometric
analysis, we found that the activating FcgRIIIA was indeed expressed
by a subset of tumor-infiltrating immune cells in humanized CTLA-
4/FcgR mice (Fig. 3A). Furthermore, we found that FcgRIIB was also
expressed by a substantial portion of tumor-infiltrating immune cells
(Fig. 3A), and the percentage of cells expressing FcgRIIB exceeded the
percentage of cells expressing FcgRIIIA in MC38, MCA-205, and B16
tumors (Fig. 3A–C), revealing a prevalence for the inhibitory FcgRIIB
in the TME. To further define the role of FcgRIIB expression in the
TME, we compared the mean fluorescence intensity (MFI) of FcgRIIB
inmatched tumors and peripheral organs (Fig. 3D), andwe found that
the level of expression was consistently higher in tumors across the
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humanized CTLA-4/FcgR mice treated with ipilimumab. The antibody was evaluated with both a hIgG1 or a hIgG2 Fc backbone and compared with hIgG1 isotype
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three models (Fig. 3D–F), suggesting upregulation of FcgRIIB in the
TME.

To validate our findings in a human setting, we used mIF to
characterize the expression of the activating FcgRIIIA and the inhib-
itory FcgRIIB in baseline tumor specimens from patients with head
and neck squamous cell carcinoma (HNSCC; Fig. 3G; Supplementary
Table S3). We found that FcgRIIIA and FcgRIIB were expressed in all
tested tumors (n¼ 14 patients), indicating that expression of FcgRIIB
in tumor was not specific to murine models. FcgRs were mainly
expressed by CD68þ myeloid cells, while their expression by CD3þ

T cells was very rare (Fig. 3G). Our quantitative analyses revealed that
intratumoral CD68þ myeloid cells similarly expressed FcgRIIIA and
FcgRIIB (Fig. 3H and I), with more than 60% of cells expressing the
inhibitory FcgRIIB. Overall, our results indicate that FcgRIIB is highly
expressed in the TME in both humanizedmice and humans, and could
play a role in limiting IgG Fc-dependent responses in tumors.

Limiting FcgRIIB engagement improves the Treg-depleting
potency of human anti–CTLA-4

We hypothesized that FcgRIIB is a checkpoint limiting the Fc-
dependent activity of IgG antibodies in tumors, and that interfering
with its binding and activity could increase the capacity of human anti–
CTLA-4 to deplete Tregs in tumors. To test this hypothesis, we
employed two complementary strategies: (i) Administration of a
blocking anti-human FcgRIIB (clone 2B6; ref. 27) in combination
with ipilimumab; and (ii) Fc engineering to compare anti–CTLA-4
with distinct binding affinities for activating FcgRs and the inhibitory
FcgRIIB (Fig. 4A). In brief, we generated antibodies incapable of
interacting with FcgRs (Fc null N297A or GRLR; refs. 30, 42), afu-
cosylated antibodies, which had increased binding for the activating
FcgRIIIA while retaining similar binding to FcgRIIB (Supplementary
Fig. S3A; ref. 30), and GAALIE Fc-engineered antibodies, which have
increased binding for activating FcgRs and reduced binding for the
inhibitory FcgRIIB (29, 30). When testing these various treatment
conditions in the MC38 tumor model (Fig. 4B), we found that
blocking FcgRIIB significantly increased the capacity of ipilimumab
to deplete Tregs in tumors (Fig. 4C), indicating that FcgRIIB is
functional in the TME, and limits the Fc effector function of ipilimu-
mab. In addition, both ipilimumab-afucosylated and ipilimumab-
GAALIE signicantly reduced Tregs in tumors, while ipilimumab-Fc
null did not have any impact (Fig. 4C), showing that favoring
ipilimumab interactions with activating FcgRs through Fc engineering
can overcome FcgRIIB inhibition. In addition, directly limiting bind-
ing to FcgRIIB, either via antibody blocking or via Fc engineering using
the GAALIE Fc variant, significantly enhanced the antitumor activity
of ipilimumab in theMC38model (Fig. 4D). There was also a trend for
increased tumor control with ipilimumab-afucosylated (Fig. 4D), but
this effect did not reach statistical significance in our grouped analysis,
showing that ipilimumab-GAALIE was more effective in the MC38
tumor model. This improved efficacy was further demonstrated by an
increased percentage of mice showing complete response to treatment
(Supplementary Fig. S3B and S3C), with a 100% response rate in the
combined ipilimumab and anti-FcgRIIB group.

On the basis of our results, we propose that FcgRIIB blocking
represents a promising avenue to increase the Fc effector function of
human anti–CTLA-4 in patients. However, administering a systemic
FcgRIIB-blocking antibody may not be feasible due to the presence of
FcgRIIB on circulating immune cells, and the potential side effects
triggered by FcgRIIB-expressing B cells, which could lead to IgG-
mediated inflammation and toxicity (15). Therefore, we focused our
subsequent studies on the Fc-engineered ipilimumab-GAALIE and

evaluated its efficacy in two other models (Fig. 4B). Ipilimumab-
GAALIE significantly improved the control of tumors in the MB49
model (Fig. 4E), and also in the B16 model (Fig. 4F), which we
previously identified as insensitive to original ipilimumab (Fig. 2E). In
addition, we found that blocking FcgRIIB in combination with ipili-
mumab-GAALIE could not further improve antitumor efficacy in the
B16 tumor model (Supplementary Fig. S3D and S3E), suggesting that
antibody binding to FcgRIIB is optimally reduced with the GAALIE Fc
variant. Finally, we found that tremelimumab-GAALIE also had
robust antitumor efficacy in the MC38 tumor model (Fig. 4G),
confirming the potency of the GAALIE Fc variant with a second
human anti–CTLA-4. Overall, our results indicate that FcgRIIB
represents a checkpoint limiting the ability of human anti–CTLA-4
to deplete Tregs in tumors, and that optimizing the Fc domain of
human anti–CTLA-4 can overcome this limitation.

Potent depletion of tumor-infiltrating Tregswith Fc-engineered
anti-CCR8

While CTLA-4 is upregulated on Tregs, it is also expressed on non-
Treg subsets, both on their cell surface and in intracellular stores that
can be mobilized following T-cell activation (4). Blockade of CTLA-4
on effector T cells is thought to be a primary driver of immune-related
adverse events (irAE) that occur in a substantial proportion of patients
receiving anti–CTLA-4 immunotherapy (1). Antibody-based target-
ing of other Treg-associated markers such as CC motif chemokine
receptor 4 (CCR4) and CD25 have been investigated in patients (43),
but these approaches have shown limited clinical benefit, which is also
due to the expression of CCR4 and CD25 on non-Treg immune cell
populations. In contrast, CC motif chemokine receptor 8 (CCR8) has
been recently identified as a specific marker of tumor-infiltrating
Tregs (44, 45), with minimal expression on tumor-infiltrating effector
CD4þ and CD8þ T cells, and peripheral Tregs. As a result, CCR8-
targeting antibodies represent an exciting approach to selectively
deplete Tregs in the TME (46–48).

To determine howTreg depletion by anti-CCR8 could be optimized,
we generated chimeric antibodies composed of a murine anti-CCR8
Fab (clone SA214G2) and various human IgG1 Fc domains with
distinct binding profiles to FcgRs: intact Fc, Fc nullGRLR, afucosylated
Fc andGAALIE Fc.We confirmed that CCR8wasmainly expressed by
tumor-infiltrating Tregs in humanized FcgR mice (Supplementary
Fig. S4A), and assessed the antitumor activity of the different anti-
CCR8 in the MC38 tumor model (Fig. 5A). While both SA214G2-
afucosylated and SA214G2-GAALIE elicited antitumor activity in this
model (Supplementary Fig. S4B and S4C), only SA214G2-GAALIE
showed a significant improvement of tumor control when compared
with the control group (Fig. 5B). In contrast, SA214G2-IgG1 or
SA214G2-Fc null had no antitumor activity (Fig. 5B). Flow cytometric
analysis of tumors confirmed a potent depletion of Tregs following
treatment with SA214G2-GAALIE (Fig. 5C). Interestingly, we noticed
that SA214G2-IgG1 was able to slightly reduce Tregs in tumors
(Fig. 5C), similarly to ipilimumab-IgG1 (Fig. 2F), but this was not
sufficient enough to drive antitumor activity (Fig. 5B; Supplementary
Fig. S4B and S4C), highlighting the importance of optimizing the FcgR
binding profile of anti-CCR8 for maximal depletion of Tregs in the
TME.We confirmed these findings in theMB49 tumormodel (Fig. 5D
and E), and we also observed single-agent activity of SA214G2-
GAALIE in the aggressive B16 tumor model (Fig. 5F). We concluded
that increasing the binding of anti-CCR8 to activating FcgRs (i.e.,
afucosylated antibodies) is sufficient to drive in vivo activity, but
further decreasing their binding to FcgRIIB (i.e., Fc-engineered
GAALIE antibodies) is required for maximal efficacy, showing that
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FcgRIIB limits the Fc effector function of various therapeutic anti-
bodies in the TME.

Discussion
The FDA approvals of antibodies blocking the inhibitory check-

points PD-1 and CTLA-4 on T cells have offered new hope for patients
with cancer, leading to profound and durable responses in a subset of
them. However, despite these encouraging advances, our understand-
ing of how these agents actually target and modulate immune cells in
humans remains incomplete. Prior preclinical studies have demon-

strated that Fc-dependent depletion of tumor-infiltrating Tregs con-
tributes to the efficacy of anti–CTLA-4 immunotherapy (5–11). This
mechanism relies on engagement of the activating FcgRIV on intra-
tumoral myeloid cells that subsequently induce ADCP/ADCC (5). In
patients, initial studies reported that ipilimumab could induce the
depletion of Tregs by CD14þFcgRIIIAþ monocytes ex vivo (40), and
more recent studies have revealed that patients expressing the
FcgRIIIA158V variant, which has increased binding affinity to human
IgG1 (8), or patients having tumor enriched in FcgRIIIA-expressing
macrophages (41), have improved response to ipilimumab, suggesting
that Fc-dependent mechanisms could potentially improve the

0

20

40

60

80

%
FO

XP
3+  

(o
f C

D
4+ )

ns

Human IgG1
Fc variant

Inhibitory Activating

Fc

– – – –

γRIIB FcγRI FcγRIIA FcγRIIIA/B

WT ++ ++++ ++ ++

N297A/GRLR

Afucosylated ++ ++++ ++ +++++

GAALIE + ++++ +++++ +++++

A

C

Day 6

Anti-CTLA-4 mAbs
(200 μg ip.) 

+/- Anti-FcγRIIB
(50 μg it.)

Day 0

1,000

1,000

1,500

2,0001,500

1,000

Day 3

hCTLA-4/hFcγR

Tumor transplantation
sc. MC38/MB49/B16

Post-24 h
Flow

B

D

E Ipilimumab in MB49 Ipilimumab in B16 Tremelimumab in MC38G

Ipilimumab in MC38

MC38

F

Figure 4.

Limiting the binding of human anti–CTLA-4 to FcgRIIB improves Treg depletion and tumor control.A, Schema of experimental design indicating the treatment timing
and dosage of human IgG1 (hIgG1) ipilimumab alone or in combination with a human FcgRIIB–blocking antibody (clone 2B6), as well as various Fc-engineered hIgG1
anti–CTLA-4 (ipilimumab or tremelimumab). B, Binding profiles of distinct hIgG1 Fc variants to human FcgRs. The relative binding affinities presented were defined
based onaffinity constants previously assessedby surface plasmon resonance (29, 30).C,Flowcytometry analysis of FOXP3þTregs inMC38 tumors fromhumanized
CTLA-4/FcgRmice treatedwith indicated treatments (color legend inD). A hIgG1 isotype control antibodywas used for the control group.Data indicatemeans�SEM
and each symbol represents an individual mouse (n¼ 5–14mice/group, three independent experiments). P values were determined by one-way ANOVAwith Tukey
multiple comparison test.D,Average growth� SEMofMC38 tumors in humanized CTLA-4/FcgRmice treatedwith indicated treatments (n¼ 5–20mice/group, four
independent experiments). A hIgG1 isotype control antibodywas used for the control group. P valueswere determined at last timepoint of tumor assessment by one-
wayANOVAwith Tukeymultiple comparison test. Average growth� SEM of MB49 (E), B16 (F), andMC38 (G) tumors in humanized CTLA-4/FcgRmice treatedwith
Fc-engineered hIgG1 GAALIE ipilimumab (E and F) or Fc-engineered hIgG1 GAALIE tremelimumab (G; n¼ 4–6mice/group, one experiment). A hIgG1 isotype control
antibody (E and F) or Fc null hIgG1 (N297A) tremelimumab (G) were used for the control groups. P values were determined at last timepoint of tumor assessment by
Mann–Whitney test. � , P < 0.05; �� , P < 0.01; ��� , P < 0.001; ���� , P < 0.0001; ns, not significant.

Knorr et al.

Cancer Immunol Res; 12(3) March 2024 CANCER IMMUNOLOGY RESEARCH330



antitumor activity of ipilimumab in some settings. However, ipilimu-
mab, just like tremelimumab, is not able to deplete tumor-infiltrating
Tregs in the vast majority of patients (12), and themechanisms behind
this observation remained unclear. Here, we developed amousemodel
humanized for CTLA-4 and FcgRs to elucidate the contribution of the
Fc domain to the in vivo activity of human anti–CTLA-4. Similar to
what has been observed in patients, we found that human anti–CTLA-
4 poorly deplete intratumoral Tregs in humanized CTLA-4/FcgR
mice, and this is associated with modest antitumor activity. This
limitation appears to be due to the inhibitory Fc receptor FcgRIIB,
which is abundantly expressed in the TME. Blocking FcgRIIB or
engineering anti–CTLA-4 to have decreased binding to FcgRIIB,
rescues Treg depletion and unleashes antitumor efficacy. These find-
ings were further validated with antibodies targeting CCR8, a chemo-
kine receptor selectively expressed on tumor-infiltrating Tregs. Col-
lectively, these studies identify FcgRIIB as an important immune
checkpoint in the TME and suggest Fc engineering as an effective
strategy to overcome this limitation.

Central to the mechanism of FcgR-mediated depletion of IgG-
coated cells is the observation that engagement of activating FcgRs
(generally FcgRIIIA in humans and FcgRIV in mice) is balanced by
engagement of the inhibitory FcgRIIB, setting a threshold for effector-
cell activation (15, 17, 18). Therefore, the ability of an IgG antibody to
induce ADCC/ADCP is highly influenced by its binding affinities to
the distinct FcgRs. For instance, murine IgG2a displays a very high
affinity for the activating murine FcgRIV while it has a relatively weak

interaction for the inhibitory murine FcgRIIB (17), resulting in an
extremely high activating to inhibitory (A/I) ratio. In contrast, human
IgG1 displays a significantly lower A/I ratio for human FcgRs, which
may explain in part the differences observed in the capacity of murine
IgG2a anti–CTLA-4 and human IgG1 anti–CTLA-4 to deplete tumor-
infiltrating Tregs (6, 12). Moreover, the Fc effector function of IgG
antibodies is governed by the level of expression of FcgRs on immune
effector cells, and tissue-intrinsic factors can modulate the expression
of FcgRs (15). We revealed that the expression of the inhibitory
FcgRIIB is particularly increased within the TME, where it acts as a
checkpoint limiting the Fc effector function of IgG antibodies. These
findings are important becausemost attemps to increase the Fc effector
function of human anti–CTLA-4 have focused on enhancing their
engagement to the activating FcgRIIIA through either afucosylation of
the antibody (e.g., BMS-986218, an afucosylated form of ipilimumab;
NCT03110107) or Fc engineering (e.g., AGEN1181, a human anti–
CTLA-4 bearing the human IgG1 Fc variant SDALIE; NCT03860272).
While our results indicate that increasing the binding of human anti–
CTLA-4 to FcgRIIIA enhances intratumoral Treg depletion and
antitumor activity, they also show that limiting the binding to FcgRIIB
is required to optimally improve antitumor activity. Finally, although
we did not specifically interrogate the role of FcgRIIA in our experi-
ments, previous reports indicate that it could be involved in antibody-
mediated cell depletion in other tumor settings (8, 29), suggesting that
FcgRIIA could also contribute to the activity of Treg-targeting anti-
bodies. Therefore, the human IgG1 Fc variant GAALIE appears to be
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Figure 5.

Targeting tumor-infiltrating Tregs with Fc-engineered anti-CCR8 induces potent antitumor activity. A, Schema of experimental design indicating the treatment
timing and dosage of a human IgG1 (hIgG1) anti-murine CCR8 (clone SA214G2), as well as various Fc-engineered hIgG1 versions of this same antibody. B, Average
growth� SEM of MC38 tumors in humanized FcgRmice treated with indicated treatments (n¼ 4–17 mice/group, three independent experiments). A hIgG1 isotype
control antibody was used for the control group. P values were determined at last time point of tumor assessment by one-way ANOVA with Tukey multiple
comparison test. C and D, Flow cytometry analysis of FOXP3þ Tregs in MC38 tumors from humanized FcgRmice treated with indicated treatments (color legend in
B). Fc null hIgG1 (GRLR) anti-murine CCR8 were used for the control groups. Data indicate means� SEM and each symbol represents an individual mouse (n¼ 7–13
mice/group, two independent experiments). P values were determined by one-way ANOVA with Tukey multiple comparison test. Average growth� SEM of MB49
(E) and B16 (F) tumors in humanized FcgR mice treated with indicated treatments (n¼ 4–11 mice/group, one experiment in E and two independent experiments in
F). Fc null hIgG1 (GRLR) anti-murine CCR8 (E) or a human IgG1 isotype control antibody (F) were used for the control groups. P values were determined at last
timepoint of tumor assessment by one-way ANOVA with Tukey multiple comparison test. � , P < 0.05; �� , P < 0.01; ���� , P < 0.0001; ns, not significant.
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an attractive therapeutic tool as it uniquely combines increased
affinities for the activating FcgRIIA/IIIA and reduced affinity for
FcgRIIB.

Anti–CTLA-4 were the first immune checkpoint inhibitors
approved for the treatment of cancer and have revolutionized our
approach to cancer therapy as a field. However, their utilization in
patients is challenged by toxicities beause of the central role of CTLA-4
in immune tolerance and the expression of CTLA-4 on peripheral T-
cell populations (1, 3). Although irAEs induced by anti–CTLA-4 may
essentially result from their checkpoint-blocking activity (49), these
toxicity issues suggest that CTLA-4might not be the ideal target for the
effective translation of Treg-depleting strategies into the clinic. Thus,
many groups are working to define alternative Treg-associated targets,
among which, CCR8 has been identified as a specific marker of tumor-
infiltrating Tregs (44, 45). We demonstrated that Fc-engineered anti-
CCR8 can overcome the FcgRIIB checkpoint in the TME and lead to
robust antitumor activity in multiple tumor models. These results
support the clinical evaluation of Fc-engineered anti-CCR8 in patients,
and indicate that limiting their binding to FcgRIIB is required to
maximize their efficacy.

In conclusion, our findings demonstrate FcgRIIB as an immune
checkpoint limiting the Fc effector function of IgG antibodies in the
TME, and inform Fc engineering strategies to overcome this limitation
and improve the efficacy of Treg-targeting antibodies in patients.
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