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Abstract

Deep generative models (DGMs) have shown great success in the understanding and data-driven 

design of proteins. Variational autoencoders (VAEs) are a popular DGM approach that can learn 

the correlated patterns of amino acid mutations within a multiple sequence alignment (MSA) 

of protein sequences and distill this information into a low-dimensional latent space to expose 

phylogenetic and functional relationships and guide generative protein design. Autoregressive 

(AR) models are another popular DGM approach that typically lacks a low-dimensional latent 

embedding but does not require training sequences to be aligned into an MSA and enable 

the design of variable length proteins. In this work, we propose ProtWave-VAE as a novel 

and lightweight DGM, employing an information maximizing VAE with a dilated convolution 
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encoder and an autoregressive WaveNet decoder. This architecture blends the strengths of the 

VAE and AR paradigms in enabling training over unaligned sequence data and the conditional 

generative design of variable length sequences from an interpretable, low-dimensional learned 

latent space. We evaluated the model’s ability to infer patterns and design rules within alignment-

free homologous protein family sequences and to design novel synthetic proteins in four diverse 

protein families. We show that our model can infer meaningful functional and phylogenetic 

embeddings within latent spaces and make highly accurate predictions within semisupervised 

downstream fitness prediction tasks. In an application to the C-terminal SH3 domain in the 

Sho1 transmembrane osmosensing receptor in baker’s yeast, we subject ProtWave-VAE-designed 

sequences to experimental gene synthesis and select-seq assays for the osmosensing function to 

show that the model enables synthetic protein design, conditional C-terminus diversification, and 

engineering of the osmosensing function into SH3 paralogues.
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INTRODUCTION

A long-standing goal in protein engineering and chemistry has been the design of novel 

synthetic proteins with engineered functions and properties. Natural proteins have evolved 

under genetic drift and natural selection to robustly perform complex functions such as 

ligand binding, molecular recognition, and substrate-specific catalysis. With the exponential 

growth of sequenced protein data sets and the advent of mature deep learning models, 

modern machine learning tools have become ubiquitous in the engineering of novel proteins 

with desired functions.1 In particular, deep generative models (DGMs) offer a powerful 

modeling paradigm to learn sequence-to-function mappings and employ these relations for 

synthetic protein design.2–5 Two primary DGM paradigms have demonstrated substantial 

success in protein engineering: autoregressive (AR) language models6–11 and variational 

autoencoders (VAEs).12–15,15–20 AR models can operate on variable length sequences, 

meaning that they do not require the construction of multiple sequence alignments and 

can be used to learn and generate novel sequences with high variability and diverse 

lengths.7,8 Since protein sequences from nonhomologous families or within homologous 
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families with high variability present challenges in constructing alignments,7 AR generative 

models are well suited for alignment-free training, prediction, and design. AR models have 

been shown to successfully engineer novel nanobodies by designing the complementarity-

determining region (CDR) 3,7 demonstrate competitive performance in mutation and contact 

prediction,21 and have been used to design functional synthetic proteins across diverse 

protein families.8 A limitation of autoregressive models is their typical lack of a low-

dimensional learned latent space that exposes interpretable phylogenetic and functional 

relationships and can be used to guide the conditional generation of synthetic sequences.

In contrast, VAEs naturally infer a latent space that is subsequently used for the conditional 

generation of novel sequences. VAE models have been shown to accurately predict single 

mutant effects,13 infer a homologous family’s phylogeny and fitness within the latent 

space,12 design in vivo signaling of orthologue proteins,14 and diversify synthetic AAV 

capsids.22 While these models are often capable of identifying biological patterns in the 

data corresponding to ancestral history or evolved function, there is a challenge known 

as “posterior collapse”23 wherein the model might not use these patterns effectively, 

thereby hampering its ability to design sequences. This means that when using certain 

techniques like autoregressive decoders, these models can face challenges in producing 

diverse, variable-length synthetic sequences or learning from protein data sets that do not 

rely on sequence alignments.

In this work, we propose ProtWave-VAE as a new DGM architecture integrating the 

desirable features of the AR and VAE paradigms (Figure 1). In summary, this model uses 

a neural network architecture capable of operating on variable-length protein sequences 

and discovering a low-dimensional projection of these sequences. These two features 

enable us to train the model over nonhomologous, unaligned sequence data, to identify 

clusters, gradients, and patterns in the sequence data within the low-dimensional space 

that can be useful in designing novel protein sequences with desirable properties, and to 

generate variable-length synthetic sequences. Full details of the approach are presented 

in Materials and Methods, but for the reader interested in the technical details of the 

architecture, some of the key architectural design choices of our approach are as follows. 

To address the challenges associated with learning VAEs with autoregressive decoders 

and to enhance our models’ design capabilities, we adopted an Information Maximizing 

(InfoMax) approach.24 This differs from traditional methods by adjusting weights and 

introducing mutual information regularization terms, ultimately aiming to improve the 

relationship between input data and the patterns that the model identifies. We used a 

WaveNet decoder25 that is designed to handle data more efficiently and avoids common 

optimization issues by using special techniques like dilated causal convolutions. Previously, 

models have been developed that combine VAEs with dilated causal convolutions as the 

decoder for text generation,26 but this approach has yet to be explored for protein design 

and fitness prediction. These convolutions are much faster than recurrent networks during 

training time, offer superior inference of long-range correlations, and are computationally 

less expensive than large-scale language models. We note that the AR-VAE model can be 

modularly extended to use other powerful and expressive decoders, such as autoregressive 

transformer-based decoders.27
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ProtWave-VAE shares similarities with, but is differentiated from, a number of related 

approaches in the literature. The ProT-VAE model of Sevgen et al.19 uses a VAE 

architecture employing a large-scale pretrained ProtT5 encoder and decoder and has shown 

substantial promise for alignment-free protein design. ProtWave-VAE is distinguished by 

its incorporation of latent conditioning and autoregressive sampling along the decoder path 

and its lightweight architecture comprising ~106–107 trainable parameters relative to ~109 

for ProT-VAE. Prior work using WaveNet autoregressive models demonstrated competitive 

prediction of mutant effects and the design of novel nanobodies,7 but the absence of a latent 

space precluded these approaches from leveraging latent conditioning for controlled protein 

generation by selectively sampling regions within a latent space associated with specific 

protein properties. By virtue of the variational inference of meaningful biological latent 

codes, latent conditioning is available to ProtWave-VAE. Similar to other autoregressive 

models for protein design which leverage a large transformer (e.g., ProGen18) and LSTM 

architecture (e.g., UniRep6), our approach infers a regularized latent space for meaningful 

conditional information for the autoregressive decoder. Hawkins et al.18 have previously 

demonstrated the use of an AR-VAE model for protein design, but our model employs a 

powerful WaveNet decoder instead of a GRU decoder, which was enabled by our use of an 

Information Maximizing VAE loss to prevent posterior collapse.24

We demonstrate and test ProtWave-VAE in applications to both retrospective protein 

function prediction tasks and synthetic protein design, wherein the sequences designed by 

the model are experimentally synthesized and tested. First, we show that our approach can 

infer biologically meaningful latent spaces while incorporating an expressive autoregressive 

generator and learning on alignment-free sequences for four selected protein families.28 To 

assess the generative capacity of our model to synthesize well-folded tertiary structures, 

we sampled novel sequences and predicted their tertiary structures using AlphaFold2.29,30 

Despite not being exposed to any structural information during training, we find that the 

predicted structures of the synthetic sequences recapitulate the native folds corresponding to 

the protein family. Second, we extend the training objective to a semisupervised learning 

paradigm31 for fitness landscape prediction and benchmark our semisupervised model 

variant on four fitness landscape predictions within TAPE and FLIP protein function 

prediction tasks.32,33 Our model predictions are competitive or superior to the current 

state-of-the-art approaches employing models typically using approximately an order of 

magnitude more trainable parameters. Third, using the AroQ chorismate mutase family 

with fitness assay measurements34 as a training set, we demonstrate that our model 

can reshape the latent space to induce functional gradients valuable for the conditional 

generation of novel synthetic proteins with elevated functionality without losing generative 

capabilities. Fourth, we introduce a method to perform C-terminal diversification of natural 

protein sequences by conditioning on a user-specified number of N-terminal residues and 

latent space-conditioning vectors. This enables us to introduce sequence diversity into the 

C-terminal region of the sequence while also engineering the desired phylogeny and/or 

function through latent space conditioning. We demonstrate this approach in applications 

to homologues of the CM protein. Fifth, to experimentally verify our model’s generative 

capacity, we used a high-throughput in vivo select-seq to measure the binding of the Src 

homology 3 (SH3) domain in Saccharomyces cerevisiae (i.e., baker’s yeast) to its cognate 
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pbs2 ligand within an osmosensing pathway that protects the cell from high salt conditions 

by activating a homeostatic response.14,35 Using this assay, we generated novel sequences 

that rescue the osmosensing function and partially diversified natural SH3 homologues that 

maintain or elevate the functionality. In summary, the ProtWave-VAE model presents a 

novel AR-VAE DGM to learn informative and meaningful low-dimensional latent space 

embeddings from unaligned training sequences and permit the conditional autoregressive 

generation of variable-length synthetic sequence with engineered N-terminal residues and/or 

latent vectors informing desired phylogeny and/or function.

RESULTS AND DISCUSSION

Alignment-Free Learning of Latent Space Embeddings.

Our first test of the model was to assess the degree to which the latent space can expose 

biologically meaningful representations of phylogenetic and functional patterns in unaligned 

homologous protein data sets. Identifying these “design rules” (i.e., correlated patterns of 

amino acid mutations underpinning phylogeny and function) is a prerequisite to the tailored 

design of synthetic functional proteins.15 To do so, we trained independent ProtWave-

VAE models over four protein families:28 G-protein (GTPase, Ras-like; PFAM PF00071), 

dihydrofolate reductase (DHFR; PFAM PF00186), beta-lactamase (PFAM PF13354), and 

S1A serine protease.36 Full details of the model training and hyperparameter optimization, 

including latent space dimensionality, are provided in Materials and Methods. For visual 

clarity and consistency, irrespective of the latent space dimensionality, we present 2D latent 

space projections into the top two principal components identified by principal component 

analysis (PCA). By annotating the PCA projections of the latent embeddings with the known 

phylogenetic and functional information for the natural homologues, we find that in all four 

cases ProtWave-VAE learns to disentangle the training sequences into their phylogenetic 

groups and functional subclasses (Figures 2A and S2A). For G-protein, the model inferred 

disentangled representations in terms of functional subclasses (Ras, Rab, Rac, and Rho) 

and phylogeny (Metazoa, Amoebozoa, Viridiplantae, Fungi, and Alveolata (Figure 2A–i)). 

For DHFR, the latent embeddings show well-defined clusters annotated by phylogenic 

groups: eukaryota, firmicutes, and actinobacteria (Figure 2A-ii). Similarly, for the lactamase 

family, the PCA projections of the latent space show disentangled phylogenic groups (Figure 

S2A-ii). Interestingly, for the S1A family, the model can infer meaningful representations 

in terms of functional specificity, trypsin versus chymotrypsin, and homologues by their 

corresponding species information, vertebrate or invertebrate species and warm or cold 

environment species (Figure S2A-i).

Our computational results suggest that combining an autoregressive decoder with a latent-

based inference model exposes meaningful biological representations within a learned low-

dimensional latent space. While ProtWave-VAE is not the only method capable of inferring 

meaningful protein representations in low-dimensional latent spaces—the elegant work of 

Ding, Zou, and Brooks12 demonstrates that simple VAE models are capable of learning 

latent spaces exposing functional and phylogenetic clusters and relationships—our model 

achieves this while being trained on unaligned sequences and employing autoregressive 

sampling for decoding. This method of inferring representations from unaligned sequences 
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sets our model apart from position weight matrices (PWMs), which typically require aligned 

sequences. This distinction underscores the unique approach of our inference in comparison 

to those of these techniques. However, can our approach still generate novel samples 

indistinguishable from the training data distribution? To test the generated alignment-free 

sequences, we used AlphaFold2 with MMSeqs2 (i.e., ColabFold29,30) to predict the tertiary 

structure of the generated sequences and determine whether the predictions recapitulate 

the tertiary structure of the natural homologues. To showcase our model’s ability to infer 

meaningful representations from protein families, we randomly sampled 100 latent vectors 

from an isotropic Gaussian distribution and used the trained ProtWave-VAE WaveNet-based 

autoregressive decoder to generate novel sequences for each protein family. To measure the 

novelty of the generated sequences, we computed the minimum Levenshtein distance from 

any homologue in the training data set normalized by the length of the longer sequence 

within the pair. Additionally, we sought to assess whether the generated sequences were 

predicted to adopt a tertiary fold consistent with the homologous family. We compared 

the predicted tertiary structure of each ProtWave-VAE-designed sequence to a prototypical 

member of the homologous family with a known crystal structure available within the 

Protein Data Bank:38 5P21 for G-protein, 1XR2 for DHFR, 3TGI for S1A serine protease, 

and 1FQG for beta-lactamase. To quantify the similarity of the folds, we computed 

the TMscores and heavy-atom root-mean-squared distances (RMSDs) using the TMalign 

algorithm.39 We present scatterplots of TMscore against sequence novelty and RMSD 

against sequence novelty for the 100 designed proteins in Figure 2B. Our results show that 

the artificial proteins possess TMscores in the range 0.2–1.040 and RMSDs in the range 0–6 

Å, with TMscores having a strong positive correlation with sequence similarity and RMSDs 

having a strong negative correlation with sequence similarity.

Furthermore, we demonstrate the model’s ability to generate sequences with tertiary 

structures similar to the native fold without being exposed to any structural information 

during training. In Figures 2C and S2B, we show the AlphaFold-predicted tertiary 

structures of three representative synthetic sequences with maximum, median, and minimum 

TMscores. The similarity of the synthetic sequence tertiary structures to the native folds, 

as quantified by high TMscores and low RMSDs for all four protein families, supports that 

the correlated patterns of amino acid mutations learned by the model within the unaligned 

sequence data are sufficient to generate tertiary structures representative of the homologous 

family’s native fold.

In addition to analyzing the generative performance of ProtWave-VAE, we also compared 

the generative performance against the WaveNet decoder by Shin et al.,7 which is an 

autoregressive generative model, and the ProteinGAN by Repecka et al.,37 which is a 

latent-only Generative Adversarial Network that was experimentally shown to be able to 

design novel functional sequences (Figure 2B). In terms of the comparison between the three 

generative models, the WaveNet decoder performs better than both the ProteinGAN and 

ProtWave-VAE models in terms of TMscores and RMSD values; however, ProteinGAN and 

ProtWave-VAE perform better in terms of sampling novel sequences defined by sequence 

similarity (Figure 2D and Table S1). ProtWave-VAE outperforms ProteinGAN on sequence 

similarity (median) for G-protein, lactamase, and S1A protease family while maintaining 

good TMscore values. ProtWave-VAE achieves 0.91, 0.93, 0.84, and 0.86 median TMscore 
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values for G-protein, DHFR, lactamase, and S1 protease protein family design, which are 

significantly greater than a TMscore of 0.5, which is regarded as a threshold to classify a 

protein pair as belonging to the same fold.40 In addition, the metric of sequence novelty for 

protein design plays the role of a proxy for the model’s ability to sample further out in an 

unexplored sequence space and has direct real-world value in applications where sequence 

diversity is a priority such as the diversification of viral capsid designs,22 diversification 

of complementarity-determining regions in nanobodies or antibodies,7 and in generating 

sequence-divergent libraries of catalytic enzymes.14

In summary, the ProtWave-VAE model demonstrates the capability to infer meaningful 

biological representations and generate novel sequences possessing tertiary structures with 

native-like folds on par with the performance of leading generative protein models.

Fitness Landscape Benchmarking Using Semisupervised Learning.

We subsequently evaluated the capabilities of the ProtWave-VAE model in semisupervised 

downstream fitness prediction tasks and compared its performance against a number of 

leading methodologies. The primary rationale behind semisupervised learning approaches is 

that latent representations z become more informative for predicting downstream functional 

properties y when they are also employed for reconstructing sequences x.31,41 In a similar 

vein, it is plausible to suggest that unlabeled protein sequences contain considerable 

information about their structure and function.42,43 In addition, semisupervised learning 

is beneficial when labels are scarce, and unlabeled data are abundant, which is generally 

the case for protein design applications where only a small fraction of entries within 

large sequence databases is annotated with functional assays. One advantage of the AR-

VAE architecture of ProtWave-VAE is that it can employ semisupervised learning via its 

learned latent space in a straightforward manner that can be more difficult to achieve 

for standalone AR approaches. We benchmark our model on four popular semisupervised 

downstream function and fitness prediction tasks from two popular community benchmarks: 

Task Assessing Protein Embeddings (TAPE)33 and Fitness Landscape Inference for Protein 

(FLIP)32 baselines. The four semisupervised prediction tasks are (1) the highly epistatic 

mutational landscape of GB1 (FLIP),44 (2) mutational screening of the fitness landscape of 

VP-1 AAV (FLIP),45,46 (3) stability landscape prediction (TAPE),47 and (4) epistatic green 

fluorescent protein (GFP) landscape prediction (TAPE).48

Our benchmark evaluations show that ProtWave-VAE either rivals or surpasses a number 

of state-of-the-art (SOTA) models, including large language models (ESM-1b and 

ESM-1v),49,50 transformer-based models (TAPE Transformer),33,51 and masked dilated 

convolution-based architectures (CARP-640 M)52 (Table 1). In the GB1 task, ProtWave-

VAE exceeds SOTA models in random split and 3-vs-rest split, while remaining competitive 

in the 1-vs-rest and 2-vs-rest splits based on the Spearman ρ rank correlation. These findings 

imply strong extrapolation capabilities in the genotype space for the model. Nonetheless, it 

underperforms on the low-versus-high split in the GB1 data set, suggesting effective learning 

from the low-fitness mode (training samples) but more limited accuracy in extrapolating and 

capturing the high-fitness mode (test samples). In the AAV task, where the model aims to 

predict the fitness measurements of AAV capsid mutants, ProtWave-VAE surpasses SOTA 
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models in random splits, design mutant split, and 1-vs-rest, while competing effectively on 

mutant-design split and 2-vs-rest against large language models using either transformer or 

dilated convolution architectures. Only in the stability task does our model underperform in 

stability regression predictions based on the Spearman ρ correlation and again remains on 

par with SOTA models when it comes to fluorescence regression prediction in the GFP task.

We also performed an ablation analysis of our ProtWave-VAE model by selectively 

removing or replacing certain model components and subsequently benchmarking on the 

FLIP and TAPE tasks. Maintaining the same hyperparameters and model architecture, we 

(i) replaced the InfoMax loss with the standard ELBO objective, (ii) substituted the dilated 

convolutions in the encoder and generator decoder with simpler convolutions, and (iii) 

omitted the gated convolutions, a component that has proven to be highly effective in 

generative Gated PixelCNNs and WaveNets.25,53,54 These ablations were designed to expose 

the role of these three model components on the overall performance. A key observation 

from this analysis is the consistent underperformance of the model when the InfoMax 

loss was replaced with the standard ELBO objective [ProtWave-VAE (ΔInfoMax)]. For 

instance, in the GB1 task, the 2-vs-rest score dropped from 0.70 to 0.56, and similar 

trends were observed across other tasks. In the AAV task, the ProtWave-VAE (ΔInfoMax) 

model achieved a 1-vs-rest score of 0.70 compared to the score of 0.73 achieved by our 

original model. Similarly, in the GFP and stability tasks, the performance of the ProtWave-

VAE (ΔInfoMax) model was consistently lower than that of the original ProtWave-VAE 

model. These findings underscore the importance of the InfoMax loss in our model’s 

performance and highlight its importance over the standard ELBO objective in the context 

of our model architecture. In the architecture modification study, where we replaced dilated 

convolutions with simple convolutions [ProtWave-VAE (Δdilations)] or eliminated gated 

signals [ProtWave-VAE (Δgates)], we observed a notable decrease in performance on GB1 

2-vs-rest and AAV 1-vs-rest tasks. On the other hand, for tasks such as GB1 1-vs-rest and 

GFP, the performance metrics remained more or less stable. Even though there was a minor 

boost in the model performance on the stability task, it still lagged considerably behind the 

state-of-the-art benchmarks. In summary, features such as dilated convolutions and gated 

architecture contribute positively to leading-edge performance on certain tasks but are not 

consistently as important as using InfoMax loss over the ELBO objective.

Overall, these results demonstrate that the ProtWave-VAE model performs well on 

semisupervised downstream functional and fitness prediction at a level competitive with the 

state-of-the-art models such as ESM and CARP-640M. This demonstrates that ProtWave-

VAE is learning internal latent space representations that expose the ancestral and functional 

relationships necessary to both generatively design novel synthetic sequences and accurately 

predict their functional properties. Furthermore, we observe that the ProtWave-VAE model 

is much more lightweight than typical SOTA models, containing 100-fold fewer trainable 

parameters than the most lightweight transformer model (ESM49,50) considered in the 

benchmark suite, conveying advantages and savings in terms of cost and time for model 

training and deployment.
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Generative Modeling with Semisupervised Learning for the Chorismate Mutase Family.

We next sought to explore the potential impact of incorporating experimental knowledge 

into generative learning tasks by employing semisupervised learning to reshape the 

latent space based on functional measurements.55 The goal of many protein engineering 

campaigns is to design proteins with elevated functions along one or more dimensions. 

We hypothesized that the incorporation of functional measurements into the training 

of the ProtWave-VAE model within a semisupervised paradigm could induce functional 

gradients within the learned latent space and partially disentangle the latent representation 

to foreground the functional property of interest. We further hypothesized that this reshaped 

latent space would support the superior conditioning and generative decoding of synthetic 

mutants with elevated function.

To test these hypotheses, we compared unsupervised and semisupervised learning for the 

chorismate mutase (CM) protein family.34 We found that semisupervised learning infers 

a gradient in fitness, whereas unsupervised learning does not (Figure 3A), indicating 

that information from experimental assays can be leveraged to sculpt the latent space 

to induce gradients in the properties of interest. To test whether the introduction of 

the second decoder for the semisupervised regression task harms the model’s generative 

capacity, we generatively designed 100 sequences for both unsupervised and semisupervised 

trained models by randomly sampling 100 latent vectors z for each protein family 

from a normal distribution N(0,I) corresponding to the latent prior and computing the 

TMscore and RMSD scores between predicted structures and natural Escherichia coli 
crystal structures (PDB: 1ECM) using ColabFold (Figure 3B,C). Our results demonstrate 

no performance degradation in terms of TMscore or RMSD values between unsupervised 

and semisupervised models and show that the predicted structures of the designed sequences 

accurately recapitulate the native fold. This result demonstrates that semisupervised learning 

can reshape the latent space to induce a gradient in the property of interest while maintaining 

the generative capabilities of the ProtWave-VAE model. Determining whether the designed 

synthetic CM sequences do indeed possess elevated functions as one advances up and 

extrapolates beyond the induced functional gradient can, of course, only be ascertained by 

experimental gene synthesis and functional assays.

To discern the comparative benefits of semisupervised learning over unsupervised learning 

in predicting protein function, we utilized a k-nearest neighbor (KNN) classifier employing 

k = 5 neighbors. The model was trained on training latent embeddings of 1130 natural 

CM homologues, and the relative enrichment (r.e.) scores determined experimentally by 

Russ et al. as a measure of biological function34 were reconfigured into classification 

labels defining active r.e. (≥ 0.5) and inactive r.e. (< 0.5). The hold-out set incorporated 

the 1618 CM sequences originally devised by Russ et al.34 Following the evaluation of 

our classification results, recall, precision, F1 score, and accuracy, it was observed that 

semisupervised learning produced a marked enhancement in predictive capacity compared to 

unsupervised learning (Figure 3D).
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Introducing Novel Latent-Based Autoregression for Sequence Diversification.

The integrated AR-VAE architecture of the ProtWave-VAE model enables a potentially 

useful form of synthetic protein generative design that we refer to as C-terminal 

diversification with latent conditioning. By combining latent inference, conditioning, and 

autoregressive amino acid generation, our model allows us to condition on both the latent 

vector within the VAE latent space and an arbitrary number of N-terminal residues in the 

generated protein to diversify the C-terminal region. Simple latent-based generative models 

such as standard VAEs allow for generating a whole sequence by conditioning on latent 

embeddings but typically cannot also condition on amino acids from a known natural protein 

of interest and then diversify (i.e., “inpaint”) the missing region of interest. In contrast, 

AR generative models generate sequences by predicting subsequent amino acids while 

conditioning on previously predicted amino acids but cannot conduct latent inference and 

use those latent embeddings to control the design of synthetic sequences. Autoregressive 

generation in this manner has proven to be a successful strategy and valuable tool in, 

for example, nanobody design, by diversifying the complementarity-determining region 

CDR3 while conditioning on CDR1 and CDR2.7 However, the absence of a biologically 

meaningful latent space to condition latent codes to inpaint missing regions means that the 

generation process cannot be readily guided to introduce particular ancestral or functional 

characteristics. We propose that the capability of the ProtWave-VAE model to perform 

simultaneous N-terminal and latent conditioning may prove valuable in applications to 

nanobodies, antibodies, enzymes, signaling domains, linkers, and multimeric proteins, where 

it is desirable to maintain some structural and/or functional properties of the N-terminal 

region and introduce new capabilities by the redesign of the C-terminus. We demonstrate 

this novel generative approach in an application to C-terminal diversification of the E. coli 
CM homologue (PDB: 1ECM).

We sampled 100 latent embeddings from a normal distribution  (0,I) over each latent 

space of the unsupervised and semisupervised ProtWave-VAE models (Figure 3). These 

latent codes were then used to perform latent-only conditional synthetic generation of novel 

CM sequences (Algorithm 1), where L represents the maximum sequence length that can 

be generated by the model and x<i corresponds to the sequence of amino acids between the 

N-terminus and positions (i − 1) that have previously been generated by the model. We then 

performed N-terminus plus latent conditional generation of CM sequences using the same 

latent codes, but also fixed the identity of the N-terminal residues 1–40 and inpainted the 

remaining C-terminal residues 41–96 using autoregressive sampling (Algorithm 2) (Figure 

4A). We hypothesized that the sequences generated by the two approaches should possess 

ColabFold-predicted tertiary structures in equally good agreement to the wild-type E. coli 
crystal structure but that the C-terminal region (residues 41–96) should follow a different 

distribution in the two ensembles reflecting the impact of N-terminal conditioning on 

the autoregressive generation process. Specifically, the sequences generated by latent-only 

conditioning should access a more diverse sequence space compared to those additionally 

constrained by N-terminal conditioning on the wild-type sequence.
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As anticipated, the sequences designed by latent-only conditioning were more dissimilar to 

the E. coli wild-type than those produced by N-terminal and latent conditioning (Figure 

4B). Of course, this follows because the N-terminal region comprising residues 1–40 

is identical to the wild-type for all sequences generated by the N-terminal conditioned 

approach, resulting in 100% sequence similarity within the N-terminal region for these 

sequences, whereas the latent-only sequences possess sequence similarities in the range 

of 0–50%. Further, the sequence similarity of the C-terminal region comprising residues 

41–96 is higher for the N-terminal and latent conditioned sequences than the latent-only 

sequences. This is a direct result of the autoregressive nature of the model, wherein the 

fixed N-terminal region conditions the generation of the C-terminal region to remain closer 

to the wild-type for the same latent vector. ColabFold structure predictions and RMSD and 

TMscore evaluation of the generated protein sequences demonstrate the anticipated positive 

correlation between sequence similarity and TMscore and negative correlation between 

sequence similarity and RMSD (Figure 4C). The smaller diversity of the N-terminal and 

latent conditioned sequences means that they exhibit a tighter distribution than those 

produced by latent-only conditioning. Comparison of the ColabFold structure predictions for 

the synthetic sequences with the median TMscore shows that they possess tertiary structures 

visually indistinguishable from the E. coli wild-type crystal structure for both the N-terminal 

and latent conditioning and latent-only conditioning generation processes (Figure 4E).
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We also utilized a WaveNet decoder model7 to train and generate 100 sequences for both 

scenarios—with and without an N-terminus prompt. The WaveNet model outperforms 

ProtWave-VAE in terms of TMscore and RMSD metrics, but ProtWave-VAE excels in 

generating sequences that exhibit greater diversity and novelty (cf. Figure 4D and Table 

S2). This enhanced capacity for novel sequence generation, especially when the sequence 

is conditioned on a wild-type N-terminus prompt, could be attributed to the use of 

latent space conditioning, which may facilitate the exploration of diverse design patterns. 

WaveNet, being an unsupervised autoregressive generative model, provides functionality for 

N-terminal prompting but does not possess the capacity to condition latent space vectors 

associated with different protein properties. By permitting both forms of conditioning, 

ProtWave-VAE can use latent conditioning to introduce superior diversity into the sequences 

resulting from a single N-terminal prompt.

Taken together, these results demonstrate that N-terminal conditioning can be used to 

effectively constrain the degree of C-terminal diversification by providing additional 

conditioning of the autoregressive sequence generation process. The structural similarity of 

the synthetic sequences to the native fold of the protein family, at least for this application, is 

insensitive to whether or not N-terminal conditioning is used in the generation procedure.

Experimental Validation of Latent-Based Autoregression for Synthetic Protein Design and 
Natural Sequence Diversification.

So far, we have demonstrated the ability of the ProtWave-VAE model to infer biologically 

meaningful latent space embeddings, perform downstream functional prediction tasks 

competitive with the state-of-the-art approaches, operate in a semisupervised fashion 

without compromising generative capacity, and perform N-terminal conditioned sequence 

generation. All of these demonstrations have been performed by the retrospective analysis 

of existing data sets and comparison of tertiary structures generated by ColabFold. To 

rigorously validate our ProtWave-VAE capabilities in the functional protein design, it is 

necessary to experimentally synthesize and assay the sequences generatively designed by the 

model. To do so, we trained a ProtWave-VAE model to design synthetic Src homology 3 

(SH3) sequences capable of functioning like natural SH3Sho1 domains by binding its cognate 

pbs2 ligand and effecting the osmosensing mechanism in S. cerevisiae, as assessed by a 

a select-seq assay14,35 (Figure 5A). This assay couples a high-osmolarity challenge with 

next-generation sequencing to measure the relative enrichment (r.e.) of the postselection 

population in a particular mutant relative to a null gene and wild-typeS. cerevisiae.14 The 

r.e. score provides a quantitative measurement of the degree to which our designed SH3 

domains are functional in vivo and capable of activating a homeostatic osmoprotective 

response. The assay shows good reproducibility in independent trials (R2 = 0.94; Figure 

S3). We trained a semisupervised ProtWave-VAE model on an SH3 data set consisting of 

natural SH3 proteins, mostly from the fungal kingdom and synthetic proteins designed using 

our previous generation unsupervised learning VAE models for which we possess functional 

assay measurements.14 The semisupervised nature of the model is observed to induce a 

strong r.e. gradient in the latent space (Figure 5B), allowing us to condition the generative 

sequence design by drawing latent vectors in the functional region of the latent space using 
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our latent-only (Algorithm 1) and N-terminal and latent conditioned (Algorithm 2) strategies 

(Figure 5C).

We employed the trained ProtWave-VAE model to devise sequences using five distinct 

protocols, resulting in five subgroups of designed sequences (I–V). Subgroup (I) utilized 

latent vectors for conditioning the generative design of synthetic sequences. Latent vectors 

were extracted from the ProtWave-VAE latent space by fitting a 6D anisotropic Gaussian 

to the embedding of training sequences with select-seq measurements of r.e. ≥ 0.5 and 

randomly sampling from this distribution (Figure 5C, black points). This ensured that 

the latent vectors originated from a region of latent space containing functional training 

sequences, which in turn conditioned the generation of functional sequences. The other 

four subgroups were designed by using the N-terminal and latent conditioning approach. 

To assess our model’s capability in producing functional designs, we chose four reference 

proteins for N-terminus conditioning, defining subgroups (II) wild-type S. cerevisiae 
Sho1SH3, (III) a weak binding Sho1 orthologue, (IV) a partial rescuing SH3 paralogue 

drawn from the Hof1 paralogue group, and (V) a nonfunctional S. cerevisiae paralogue 

drawn from the actin-binding protein (ABP1) paralogue group. The latent embeddings for 

these conditioning sequences are denoted by blue points in Figure 5C. We observed that 

the nonfunctional SH3 paralogue was situated outside the functional niche, as it could 

not rescue Sho1 functionality. In the latent-only design subgroup (I), we generated 150 

sequences. In each of the four N-terminal and latent conditioned subgroups (II–V), we 

produced 150 (II–IV) and 99 (V) designs subdivided into three equal-sized subcategories 

differentiated by the fraction of the sequence used for N-terminal conditioning: 25%, 50%, 

and 75%. Subgroups (II–V) were intended to assess various protein design goals, including: 

(II) preserving function, (III–IV) enhancing existing function, and (V) gain of function. 

Finally, we included two control subgroups (VI) and (VII), each comprising 150 sequences, 

for the N-terminal and latent conditioning subgroups (III) (N-terminal conditioning on a 

weak binding Sho1 orthologue) and (IV) (N-terminal conditioning on a partial rescuing 

SH3 paralogue), to verify that our model’s capacity to improve the function was not simply 

due to chance. Within these control subgroups, we introduced random mutations in the 

designable C-terminal region until the distribution of the 50 sequences within each subgroup 

subcategory matched the Levenshtein distances to the wild-type S. cerevisiae of the 50 

sequences designed by the ProtWave-VAE (Figure S1).

Figure 6A displays the experimental measurements for sequences belonging to the latent-

only conditioning subgroup (I). Out of the 150 gene designs, 148 were successfully 

assembled and tested experimentally. The first two plots are scatterplots, where each point 

represents a designed sequence, the y-axis denotes the relative enrichment score, and 

the x-axis indicates the sequence similarity relative to the most similar sequence in the 

training data set and to the wild-type SH3Sho1 S. cerevisiae. For the latent-only conditioning 

subgroup (I), the designed sequences exhibit the ability to rescue functionality (i.e., r.e. ≥ 

0.5) while covering a broad spectrum of normalized Levenshtein distances, ranging from 

the sequence similarities of 75–100% and 45–70% relative to the training data set and 

wild-type SH3Sho1. This suggests that the ProtWave-VAE model can produce highly diverse 

sequences that significantly deviate from the wild type yet retain the correlated amino acid 

residue patterns necessary for maintaining the osmosensing function. The final bar graph 
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highlights the superior performance of ProtWave-VAE compared to our previously reported 

InfoVAE and VanillaVAE models when designing sequences using local sampling.14 The 

ProtWave-VAE model outperforms the two VAE models, rescuing functionality at a level of 

51% (76 out of 148) versus 48% and 21%, respectively. In addition to its high performance 

in designing synthetic functional sequences with latent-only conditioning, ProtWave-VAE, 

unlike our previous two VAE approaches, does not require training over a multiple-sequence 

alignment and can readily generate variable-length sequences.

Figure 6B showcases the experimental outcomes for sequences belonging to the N-terminus 

plus latent conditioning for C-terminus diversification of the wild-type SH3Sho1 (subgroup 

(II)) and paralogue SH3 that fails to rescue function (subgroup (V)). Considering first 

the left scatterplot displaying the r.e. measurements and sequence similarities for the 

generatively designed sequences in subgroup (II) that were successfully assembled and 

tested, we find the number of functional sequences for each N-terminus percentage prompt 

to be 1 out of 46 for 25% N-terminal conditioning (red), 5 out of 50 for 50% (green), and 43 

out of 50 for 75% (blue). The bar graph presents the percentage of rescue, which amounts 

to 86%, 10%, and 2.2% for 75%, 50%, and 25% N-terminal conditioning, respectively. 

These results suggest that conditioning on both the N-terminus and the latent vectors 

to inpaint the remaining C-terminus can lead to functional synthetic sequences, but the 

success rates decrease with the increasing degree of C-terminus inpainting and number of 

amino acid positions to diversify. We propose that this decaying success rate may result 

from an incompatibility of the two conditioning goals such that the latent vector seeks 

to generate a C-terminal sequence incompatible with the predefined N-terminal sequence. 

Turning to the right scatterplot presenting the data for the C-terminus diversified paralogue 

designs in subgroup (V), we find that none of the generatively designed sequences that 

were successfully assembled and subjected to experimental testing were capable of rescuing 

function: 0 out of 32 for 25% N-terminal conditioning (red), 0 out of 33 for 50% (green), 

and 0 out of 33 for 75% (blue). Together with the potential incompatibility of the two 

conditioning goals, it is also possible that if any N-terminal residues are indispensable to 

protein function–either directly through binding to the target ligand or indirectly via their 

participation in critical multibody interaction networks with other amino acids–and these are 

conditioned to contain mutant residues via the N-terminal conditioning, then no C-terminal 

inpainting can lead to functional rescue.

Figure 6C displays the experimental outcomes for sequences belonging to the N-terminus 

plus latent conditioning for C-terminal diversification of the weak orthologue SH3Sho1 

(subgroup (III)) and partial paralogue SH3 (subgroup (IV)). The design goal for these 

two subgroups was to enhance functionality by inpainting the C-terminus. As a control 

to demonstrate that the generative model performs better than random mutagenesis, we 

experimentally tested mutants in subgroups (VI) and (VII). The first scatterplot corresponds 

to subgroup (III). Similar to our results for the SH3 paralogue (subgroup (V)), we find 

that none of the designed sequences were able to rescue function: 0 out of 50 for 25% 

N-terminal conditioning (red), 0 out of 50 for 50% (green), and 0 out of 50 for 75% (blue). 

The second scatterplot contains data for the subgroup (VI) control, in which we randomly 

mutated the C-terminal region of the weak orthologue to produce the same distribution 

of Levenshtein distances to the S. cerevisiae wild-type, as generated in the subgroup (III) 
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treatment group. Again, we observe no sequences capable of functional rescue: 0 out of 50 

for 25% N-terminal conditioning (red), 0 out of 50 for 50% (green), and 0 out of 50 for 75% 

(blue). These results indicate that ProtWave-VAE was unable to improve the functionality of 

the weak orthologue using N-terminus and latent conditioning.

The third scatterplot in Figure 6C corresponds to subgroup (IV), in which we considered 

C-terminal diversification of a partial rescuing SH3 paralogue. In this case, we observe 

one success out of the 48 designed sequences with 25% N-terminal conditioning (red) 

that resulted in a boost of the r.e. score from an initial value of 0.35 for the partially 

rescuing paralogue to a value of 0.88, corresponding to a 2.5× enhancement in functionality 

by inpainting the missing C-terminus region. Interestingly, with a sequence similarity of 

just 61% to any training sequence, this C-terminus-diversified design is the most novel 

functional artificial sequence, even when compared to any of the synthetic designs with 

latent-only conditioning in subgroup (I). None of the other generated sequences, 0 out of 

50 for 50% (green), and 0 out of 50 for 75% (blue), were capable of rescue. The control 

subgroup (VII) is presented in the fourth scatterplot, within which no sequences exhibited 

functionality. This result implies that N-terminus plus latent-only conditioning can serve 

as an approach for designing novel sequences by conditioning on distant paralogues and 

inpainting the C-terminus to elevate function, although the overall hit rate of functional 

sequences is relatively low. Again, we conjecture that this may result from an inherent 

incompatibility of the latent vector and N-terminal conditions and that the successful rescue 

resulted from a generative design in which these conditions were mutually compatible.

The experimental results reveal that our proposed model can effectively design synthetic 

proteins with functional properties on par with those of their natural counterparts. 

Additionally, the model is capable of venturing into unexplored regions of sequence 

space that have not been traversed by natural evolution. Our study also presents a novel 

protein engineering technique for diversifying the C-terminus of proteins, contributing to 

the preservation and enhancement of their functionality. Among the findings, the most 

noteworthy is the ability of the ProtWave-VAE model to imbue a weak binding SH3 

paralogue from the Hof1 paralogue group with osmosensing function, resulting in a 2.5× 

increase in relative enrichment and generating the most novel sequence among all synthetic 

designs, sharing only 61% sequence similarity to any training sequence.

CONCLUSIONS

In this work, we introduce ProtWave-VAE as a DGM for data-driven protein design blending 

desirable aspects of VAE and autoregressive (AR) sequence generation. The ProtWave-VAE 

model combines an InfoMax VAE with a dilated convolutional encoder and WaveNet 

autoregressive decoder and optional semisupervised regression decoder. This permits model 

training over unaligned and potentially nonhomologous protein families, learning of a 

meaningful low-dimensional latent space exposing phylogeny and function, reshaping of the 

latent space and induction of gradient values by semisupervised training, and autoregressive 

generation of variable length sequences conditioned on latent vectors and, optionally, N-

terminal residues.
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We demonstrate and test the predictive and generative capabilities of the ProtWave-VAE 

model in five applications: (i) learning of biologically meaningful latent space embeddings 

of four protein families and generative design of novel protein sequences with tertiary 

structures in close agreement with the natural native folds, (ii) accurate prediction of protein 

fitness and function in community TAPE and FLIP benchmarks with competitive or superior 

performance to state-of-the-art architectures, (iii) semisupervised training over annotated 

chorismate mutase training data to disentangle functional gradients within the latent space 

and enable generative design of novel sequences conditioned on high functionality, (iv) C-

terminal diversification of synthetic chorismate mutase proteins using N-terminus and latent 

conditioning, and (v) design and experimental testing of novel SH3 proteins to demonstrate 

the maintenance and elevation of function.

These studies demonstrate the capabilities of the ProtWave-VAE model in data-driven 

generative protein design. Its capacity to learn over unaligned sequence data means that 

it eschews the need for multiple sequence alignments that can introduce bias into the 

training data and typically restricts training to homologous protein families. Its capacity 

for N-terminal conditioning enables directed diversification of the C-terminal region of 

proteins guided by latent conditioning to introduce or elevate function. Its capacity 

for semisupervised retraining makes it well suited for multiround protein engineering 

campaigns within virtuous cycles of model training and synthetic sequence design and 

testing.55,56 In future work, rather than limiting ourselves to interpolative sampling from a 

Gaussian distribution that defines the functional cluster, we plan to investigate the potential 

extrapolative sampling by performing gradient ascent up the functional gradients exposed 

by the semisupervised latent space embeddings.55,57,58 Specifically, we intend to explore the 

use of Bayesian optimization or continuous optimization strategies that can inform iterative 

rounds of machine learning-guided directed evolution (MLDE) campaigns.59

ProtWave-VAE exhibits competitive performance in downstream functional prediction 

relative to state-of-the-art networks based on large language models but is much smaller in 

size, possessing approximately 100-fold fewer trainable parameters. This makes ProtWave-

VAE attractive in reducing the cost of training and deployment and accelerating innovation 

via rapid ablation studies, hyperparameter optimization, and development and testing 

cycles. The N-terminal conditioning is anticipated to be valuable in protein engineering 

applications, where it is desired to keep part of the protein sequence fixed (e.g., the 

framework region within an antibody) and generatively design the remainder (e.g., the 

hypervariable region). Another application is to condition on protein tags (e.g., His-tags or 

expression-tags) and leverage iterative exploration in the latent space to improve protein 

expression, stability, or other properties.8 The capacity of ProtWave-VAE to generate highly 

diverse and novel sequences with native-like folds, both with and without N-terminal 

conditioning, makes it particularly well suited to design applications where sequence 

diversification is a priority, including diversifying complementarity-determining regions in 

antibodies or producing sequence-diverse libraries of catalytic enzymes. A deficiency of 

the autoregressive nature of ProtWave-VAE is that the conditioning can only be applied 

unidirectionally, here from the N-terminus to C-terminus. This means it is currently not 

possible to condition on amino acid residues in arbitrary and noncontiguous regions of the 

sequence and allow the model to generatively inpaint the remaining residues. A second 
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deficiency is the potential incompatibility of the latent vector and N-terminal conditions 

in guiding sequence generation. This sets the stage for further innovation to combine 

latent inference and order-agnostic autoregressive generation for novel protein engineering 

and techniques for harmonizing multiple conditioning goals. We would also like to apply 

ProtWave-VAE to the design of larger and more biologically and biomedically relevant 

proteins, including multichain protein complexes with quaternary structure, and also to fields 

beyond protein engineering that may also benefit from alignment-free, latent-conditioned 

generative design, including the design of small molecules, nucleic acids, prose, and music.

MATERIALS AND METHODS

Data Collection and Preparation.

Each protein sequence employed in the protein family task, fitness benchmark task, 

chorismate mutase unsupervised versus semisupervised task, and SH3 design task was 

transformed into one-hot encoded tensors with a length of 21, which includes the 20 

amino acid labels and padded tokens. Additional information regarding data set collection, 

preprocessing, training protocols, and hyperparameter optimization can be found in the 

Supporting Information

Integrating Latent-Based Inference with an Autoregressive Decoder.

To overcome posterior collapse issues and improve variational inference when integrating 

latent-based inference with autoregressive decoding, we implemented an Information 

Maximizing VAE model.24 Our unsupervised loss function for the ProtWave-VAE model 

is

ℒUS = ξEz qϕ(z ∣ x) logpθ(x ∣ z) − (1 − α)
DKL qθ(z ∣ x) p(z) − (α + λ − 1)
DMMD qϕ(z) p(z)

(1)

where pθ(x|z) is the decoder model, KL is the Kullback–Leibler divergence between the 

variational posterior approximation qϕ(z|x) and normal prior distribution p(z). The third term 

MMD is the max-mean discrepancy (MMD) that helps penalize the aggregated posterior 

distribution and improves amortized inference. We introduce an autoregressive decoder 

employing a WaveNet-based architecture, where pθ(x|z) = pθ(x0|z)∏i=1pθ(xi|x<i, z). The 

MMD divergence term becomes

DMMD = Ez, z′ p(z), p(z′) k z, z′ − 2Ez, z′ q(z), p(z′) k z, z′ + Ez, z′ q(z), q(z′) k z, z′

where k(·, ·) is a positive definite kernel and MMD=0 if and only if p(z) = q(z). We 

choose the Gaussian kernel k z, z′ = e z − z′ 2/σ2
 as our characteristic kernel k(·, ·), and σ is 

a hyperparameter defining the bandwidth of our Gaussian kernel. The prefactor loss weights 

ξ, α, and λ scale the contribution of the reconstruction loss, weights the mutual information 

between x and z, and scales the penalization of MMD divergence. The prefactor loss weight 

hyperparameters were optimized using grid search for each protein family task. Full details 
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of the hyperparameter optimization procedure are provided in the Supporting Information. 

To overcome posterior collapse23 and enable the use of expressive AR VAE decoders, we 

incorporated an Information Maximizing (InfoMax) loss objective instead of the common 

ELBO training objective.24 The InfoMax loss is similar to ELBO, but prefactor weights 

and additional max-mean discrepancy regularization terms are introduced to motivate better 

inference and regularization. A mutual information maximization term is introduced to 

encourage high mutual information between the input vectors and latent space embeddings.

In Figure 1, the overall architecture of our model is shown, along with three 

main applications of our approach in protein engineering: alignment-free generation, 

semisupervised learning, and C-terminus diversification. The protein sequences, which need 

not be aligned during either training or deployment, are embedded in a lower-dimensional 

latent space using a gated dilated convolution neural network encoder qϕ(z|x). The 

decoder (i.e., generator) pθ(x|z) is a WaveNet-based architecture (i.e., gated dilated causal 

convolution), which samples from the latent space and predicts amino acid residues while 

conditioning on previous amino acids pθ(x|z) = p(x0|z)∏i=1p(xi|x<i, z). Generally, when 

using a dilated causal convolution, we use teacher forcing, which leverages true previous 

labeled amino acids as the previous conditional information for predicting the following 

amino acid label. In contrast to recurrent neural networks or causal masked transformers 

as the autoregressive decoders, the causal convolutional architectures with teacher forcing 

allows for fast training with time complexity for the forward pass  (1) instead of (L), 

where L is the length of the sequence. Recurrent architectures can be prone to vanishing 

or exploding gradients, whereas this is a deficiency from which convolutional architectures 

typically do not suffer.

Extending ProtWave-VAE to a Semisupervised Learning Paradigm.

The semisupervised training objective is the following

ℒSS = ℒUS + γE(x, y) ∈ DL log pω(y ∣ z)

(2)

where pω(y|z) is a regression decoder comprising a simple fully connected neural network 

parametrized with training parameters ω. In practice, we minimize the mean-squared 

error objective 1
2 |y − y|2, where y and y are the ground truth and predicted regression 

value. (x, y) ∈ L denotes that the samples which are fed through the supervised 

branch are only sequences x with assay measurements y. In the semisupervised paradigm, 

the discriminative and generative losses are learned together. In essence, during fitness 

prediction benchmarking on TAPE and FLIP, or generative evaluation with chorismate 

mutase enzymes, the encoder model infers latent space embeddings of the sequences, 

while the generative decoder and regression head reconstruct sequences and predict fitness. 

Hyperparameters were tailored for each task, with full details in the Supporting Information. 

Compared to unsupervised learning, semisupervision provides the model with functional 

information on a subset of the sequences and helps to shape the latent space to better 

Praljak et al. Page 18

ACS Synth Biol. Author manuscript; available in PMC 2024 March 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



expose functional localization and gradients, thereby enhancing control over the design of 

function-specific synthetic sequences.

Model Architecture, Hyperparameter Optimization, and Training.

The encoder architecture included gated nonlinear activation with dilated convolutions and 

multilayer perceptrons (MLP) to map the encoder logits to latent vectors. The decoder 

utilized an autoregressive WaveNet-based architecture with gated activation and dilated 

causal convolutions. When generating sequences, we first transform the model’s logits 

into probabilities for each amino acid location and then select an amino acid label by 

sampling from the predicted categorical distribution. For certain tasks, such as chorismate 

mutase semisupervised learning and SH3 design, a predictive top model was implemented. 

This model samples the latent vectors and maps them to protein property predictions 

by using a simple MLP architecture. Hyperparameters were optimized using grid search, 

and training was conducted using the stochastic gradient descent optimizer Adam.60 Full 

details regarding the architectures, training, and hyperparameter optimization are provided 

in the Supporting Information, and the source code can be found at: https://github.com/

PraljakReps/ProtWaveVAE.

ColabFold Structure Prediction.

To predict protein structures for each sequence in the ProtWave-VAE data set, we employed 

AlphaFold ColabFold Batch v1.229,30 for AlphaFold2 structure prediction. We generated 

three structures for each sequence in each task, which has been a standard method testing 

protein sequence-based generative model performance.10 We note, however, that relying 

solely on AlphaFold2 for synthetic protein design can be misleading due to certain known 

failure modes. For example, AlphaFold2’s confidence scores often poorly correlate with 

point mutation stability.61,62 As such, it is often also desirable, where possible, to perform 

experimental analysis of the structure or function of the generative protein designs.

TMalign Prediction.

We utilized the TMalign algorithm39 to calculate the TMscore and heavy-atom root-mean-

squared distance (RMSD) between the predictions of natural homologue and design 

structures. The presented TMscore and RMSD values are the mean values of the three-

ensemble AlphaFold2 ColabFold predictions. The designed sequences with structures that 

aligned most closely with the natural homologues were considered the best structural 

matches based on TMscore. These TMscores have been shown to be a good metric for 

predicting the accuracy of agreement between the experimentally solved structures versus 

AlphaFold2 predictions.29

Sequence Novelty.

The method for calculating the sequence novelty of the designed samples differs depending 

on whether the designed sequences are produced by latent-only conditioning or N-terminal 

and latent conditioning. In the former case, we compute the novelty measurement by 

determining the minimum Levenshtein distance between the design sample and any natural 

training sample and then dividing it by the length of the longer sequence in the pair. In the 
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latter case, since we are diversifying a single natural homologue, we calculate the Hamming 

distance instead of the Levenshtein distance and normalize the Hamming distance by the 

sequence length of the natural homologue to obtain the sequence dissimilarity. The sequence 

similarity is commensurately defined as (1 – sequence dissimilarity).

Gene Construction.

Experimental protocols follow our previous work.14 S. cerevisiae codon-optimized genes 

coding for all synthetic SH3 proteins were amplified from a mixed pool of oligonucleotide 

fragments synthesized on microarray chips (Twist). The oligonucleotides corresponding to 

each gene were designed with primer annealing sites and a padding sequence to make 

them uniform 250 mer. PCR was performed using KAPA-Hifi polymerase with 1X KAPA 

HiFi Buffer (Roche), 0.2 mM dNTPs, and 1.0 μm of each forward (5′-CCGGTTGTACC-

TATCGAGTG-3′) and reverse primers (5′-GACCATGCAAG-GAGAGGTAC-3′) in 25 

μL total volume, with an initial activation (95 °C, 2 min), followed by 14 cycles of 

denaturation (95 °C, 20 s), annealing (65 °C, 10 s), and primer extension (70 °C, 10 s). 

A final extension step (70 °C, 2 min) was subsequently performed. Amplified products 

were column-purified (Zymo Research), digested with EcoR1 and BamH1, ligated into 

the digested PRS316 plasmid with the N-terminal membrane domain of Sho1,35 and 

transformed into Agilent Electro-competent XL1-Blues to yield >250× transformants per 

gene. The entire transformation was cultured in 50 mL of LB media containing 100 μg/mL 

sodium ampicillin (Amp) at 37 °C overnight, after which plasmids were purified and pooled.

Sho1 Osmosensing High-Throughput Select-Seq Assay.

Experimental protocols follow our previous work.14 The haploid S. cerevisiae strain SS101 

was constructed on the W303 background gifted by Wendell Lim (UCSF).35 Genetic 

knockouts of Ssk2 and Ssk22 were created to remove the Sho1-independent branch of 

the osmoresponse pathway.63 The pooled pRS316 plasmids with the SH3 gene library 

were transformed into SS101 cells using the LiAc-PEG high-efficiency transformation 

protocol.64 Plate checks were performed to confirm that at least 50 copies of each gene 

were successfully transformed. Transformed SS101 cells were grown in liquid Sc-Ura media 

for 24 h (20 mL Sc-Ura media for each 108 total transformed cells) at 30 °C and then 

passaged to 250 mL of fresh liquid Sc-Ura media to make OD = 0.05. After another 24 h of 

growth at 30 °C, the Sc-Ura culture can be kept at 4 °C for up to 2 weeks.

All growth was at 30 °C on a shaker. The stock Sc-Ura culture was transferred to YPD 

media for 24 h growth to get the t0 sample. The culture was diluted every 8 h to keep the 

cell density below 0.2 OD600. A small volume of the t0 sample was transferred to YPD 

media supplemented with either (1) no KCl (nonselective) or (2) 1 M KCl (selective), and 

the rest was spun down and mini-prepped to extract plasmids from yeast. Both nonselective 

and selective cultures were grown for 24 h, with OD600 maintained under 0.2 to obtain the 

t24 samples. The two t24 samples were span down and minipreped using the same protocol 

as the t0 sample.

Plasmids purified from both t0 and t24 samples were amplified using two rounds of PCR 

with Q5 polymerase (New England Biolabs) to add adapters and indices for Illumina 
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sequencing. In the first round, the DNA was amplified using primers that add from six 

to nine random bases (Ns) for initial focusing, as well as part of the i5 or i7 Illumina 

adapters. Six cycles were used to minimize the amplification-induced bias, followed by 

AMPure purification before the second round of PCR. In the second round of PCR, the 

remaining adapter sequence and TruSeq indices were added, and 20 cycles were used. The 

final products were gel-purified (Zymo Research), quantified using Qubit (ThermoFisher), 

and sequenced in an Illumina MiSeq system with a paired-end 300 cycle kit. Allele counts 

were obtained by using standard procedures. Paired-end reads were joined using FLASH, 

trimmed to the EcoR1 and BamH1 cloning sites, and translated. Only exact matches to the 

designed genes were counted. Enrichment (en) and relative enrichment (r.e.) values for each 

gene x of the three growth conditions were defined as

en(x) = log10
f24

x (1M)
f24

x (0M)

(3)

and

r. e.(x) = en(x) − en(null)
en(wt) − en(null)

(4)

where f24
x(1M) and f24

x (0M) represent the frequency of observing gene 

x after being subjected to a 24 h exposure to 1 and 0 M, 

respectively, KCl solution. The wild-type (wt) sequence is the Sho1 gene 

of S. cerevisiae, and the null gene is TAGNTAATTTCGGCGTGGGTATGG-

TGGCAGGCCCCGTGGCCGGGACTGTTGGGCGCCATCTCCTTGCATGCAC-

CATTCCTTGCGGCGGCGGTGCTCAACGGCCT-CAACCTACTACTGGGCTGC 

TTCCTAATGCAG-GAGTCGCATAAGGGAGAGCGTCGAGAT, where the stop 

codon TAG produces Sho1 without the C-terminal SH3 domain. A second 

independent selection assay was performed to ensure reproducibility (Figures 5A and S3). 

The average en of the two trials was used to calculate r.e., and the r.e. values of SH3 variants 

with at least five counts in the 0 M at 24 h population in both trials were used for analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS

AR autoregressive

CDR complementarity-determining region

CM chorismate mutase

DGM deep generative model

DHFR dihydrofolate reductase

ELBO evidence lower bound

FLIP Fitness Landscape Inference for Proteins

MSA multiple sequence alignment

PCA principal component analysis

RMSD root-mean-squared distance

SH3 Src homologue 3

TAPE Task Assessing Protein Embeddings

VAE variational autoencoder

wt wild-type
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Figure 1. 
(A) Schematic illustration of the ProtWave-VAE model integrating an InfoMax VAE with 

a convolutional encoder and WaveNet autoregressive decoder. This unsupervised learning 

model may be made semisupervised by incorporating an optional top model comprising a 

discriminative multilayer perception to regress the function on the protein location within 

the latent space embedding. The model architecture employs a gated dilated convolutional 

encoder qφ(z|x), a WaveNet (i.e., gated dilated causal convolution) autoregressive decoder 

pθ(xi|x1, …, xi−1, z), and a supervised neural regression model pω(y|z) to predict the 

functional assay measurements when available. The variable x corresponds to the amino acid 

sequence of the entire protein, z corresponds to the latent space coordinates associated with 

the protein sequence x, and y corresponds to the functional assay associated with protein x. 

The variable xi corresponds to the amino acid identity in position i of the protein sequence. 

(B) By combining latent inference and autoregressive generation, our model enables (i) 

alignment-free inference and variable-length generation, (ii) semisupervised learning, and 

(iii) conditional generation based on N-terminal residues and latent space conditioning 

vectors. The first application allows for training models on protein families that require 

no multiple sequence alignments (MSAs). The second application provides and leverages 
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assay measurements during the generative learning process and reshapes the latent space for 

better control of the functional design of proteins. The third application permits sequence 

diversification by conditioning on an N-terminus sequence motif of a natural homologue and 

conditioning on latent embeddings to generate and inpaint the C-terminus region. This final 

application is not restricted to the C-terminus diversification of natural homologues; rather, it 

can also be utilized by conditioning protein tags (such as expression tags or affinity tags) and 

filling in missing protein sequences through inpainting.
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Figure 2. 
ProtWave-VAE can infer meaningful biological representations of alignment-free protein 

families. (A) Here, we present the principal component analysis (PCA) projections of the 

inferred latent spaces for the (i) G-protein and (ii) DHFR families. For the G-protein 

family, we find that the unsupervised model disentangles homologues within the inferred 

latent space based on functional subclasses and phylogeny. Similarly, with the DHFR 

family, the model learns to disentangle homologues in the inferred space in terms of the 

phylogeny. (B) To test the ProtWave-VAE generative capacity, we randomly sampled 100 

latent vectors z for each protein family from a normal distribution  (0,I), corresponding 

to the latent prior. Then, using a computational structure prediction workflow (ColabFold 

+ TMalign), we predicted each structure of the sample sequences and compared the 

predicted structure against a natural homologue that defines the corresponding protein 

family, retrieving TMscores and root-mean-square distance (RMSD) scores. We computed 

the minimum Levenshtein distance between the sampled novel sequence and training 

sequences normalized by the length of the longer sequence in the pair. We also benchmarked 

ProtWave-VAE’s generative performance against sequences derived from an unconditionally 

sampled WaveNet decoder7 and 100 sequences randomly sampled from the ProteinGAN37 

latent space. (C) Using the G-protein structure predictions of ProtWave-VAE novel design 

sequences (red), we visualize the alignment of maximum, median, and minimum TMscore 

synthetic sequences (gray). Figure S2 illustrates the latent spaces, structure predictions, and 
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TMscores of the remaining protein families. (D) Median scores of the four protein families, 

as generated by the three distinct models in terms of RMSD, TMscore, and sequence 

similarity (seq sim.). In the table, values that are both bold and underlined indicate the best 
scores, while values in bold only signify the second best.

Praljak et al. Page 29

ACS Synth Biol. Author manuscript; available in PMC 2024 March 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Comparison of unsupervised and semisupervised learning for generative design of the 

chorismate mutase (CM) proteins. (A) Semisupervised learning allows us to infer and 

reshape the latent space, so that latent coordinates correlate more strongly with CM fitness, 

as measured by the relative enrichment select-seq assay scores. (B) To verify that reshaping 

the latent space does not lead to a loss of generative capabilities for the model, we used 

the ColabFold plus TMalign algorithm to demonstrate no significant loss of generative 

performance in the RMSD and TMscores of the predicted tertiary structures generated by 

unsupervised and semisupervised ProtWave-VAE models. (C) Superposition of the wild-type 

E. coli crystal structure (PDB: 1ECM) (gray) and the ColabFold predicted structure of the 

ProtWave-VAE design sequence possessing the median TMscore (red), showing excellent 

agreement for both the unsupervised and semisupervised models. (D) Classification metric 

results show that KNN classification improves in predicting functional CM sequences when 

using semisupervised latent representations over unsupervised representations.
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Figure 4. 
Introduction of C-terminus diversification with N-terminus and latent conditioning. (A) 

Tertiary structure of the E. coli CM wild-type protein (PDB: 1ECM) illustrating the N-

terminal region (residues 1–40) used for N-terminal conditioning (blue) and the remaining 

C-terminal region (residues 41–96) subject to generative diversification (red). (B) We 

generated 100 novel latent conditioning vectors by sampling from a  (0,I) prior over each 

of the supervised and semisupervised latent spaces and used each latent vector to generate a 

novel synthetic protein with and without N-terminal conditioning. We compare the sequence 

similarity of the full sequence, N-terminal conditioning, and C-terminal diversification 

regions between the latent-only (green) and N-terminal plus latent (red) conditioned 

generated sequence ensembles. (C) Vanilla WaveNet performs better than ProtWave-VAE 

in terms of TMscore and RMSD values for both no N-terminus and N-terminus prompting; 

however, during N-terminus prompting, ProtWave-VAE generated more diverse and novel 

sequences indicated by the lower sequence similarities while maintaining good TMscores 

and RMSD values. (D) Median statistic computed over the performance metrics (RMSD, 

TMscore, and sequence similarity) to compare the generative ability between the vanilla 

WaveNet model vs ProtWave-VAE model. Bold text indicates best values between the 

WaveNet decoder and ProtWave-VAE model. (E) Structure prediction (red) of the median 

TMscore sequence for ProtWave-VAE latent-only and N-terminal plus latent conditioned 

designs against the E. coli wild-type crystal structure; PDB: 1ECM (gray).
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Figure 5. 
Experimental assessment of ProtWave-VAE generatively designed synthetic Sho1SH3 

domains. (A) Crystal structure (PDB: 2VKN) of the S. cerevisiae wild-type (wt) Sho1SH3 

binding to the pbs2 ligand (blue sticks) is shown along with an illustrative cartoon of the 

select-seq assay and next-gen sequencing platform for measuring relative enrichment (r.e.) 

scores as a measure of fitness. The enrichment en(x) of mutant protein x is the logarithm of 

the ratio f24
x (1M)/f24

x (0M), where f24
x (kM) is the frequency of mutant x in the population after 

being subjected to 24 h of kM KCl solution. The relative enrichment r.e.(x) of mutant x is 

a normalized enrichment score relative to the wild-type protein and a null protein such that 

r.e.(x) = 1 indicates the same functional performance as the wild-type protein, and r.e.(x) 

= 0 indicates the same functional performance as the null gene. (B) Six-dimensional latent 

space spanned by latent vectors z = {z0, z1, z2, z3, z4, z5} of a trained semisupervised 

ProtWave-VAE model exposes clear gradients in the r.e. scores in all 2D projections of this 

space. The high-fitness training sequences (red) are clustered and segregated from the low-

fitness training sequences (blue). (C) We generated synthetic ProtWave-VAE sequences for 

experimental testing by five separate protocols: (I) latent-only conditioning, (II) N-terminal 

and latent conditioning of wild-type Sho1SH3, (III) N-terminal and latent conditioning of a 

weak binding Sho1 orthologue, (IV) N-terminal and latent conditioning of a partial rescuing 

SH3 paralogue, and (V) N-terminal and latent conditioning of a SH3 paralogue that does not 

rescue Sho1 functionality. We illustrate the nonfunctional (gray, r.e. < 0.5) and functional 

(red, r.e.≥ 0.5) sequences within the z0 – z1 projection of the latent space together with the 

sampled latent space embeddings (black) and, if appropriate, the reference sequence used 

for N-terminal conditioning (blue). In all cases, latent vectors were drawn from the region 

of the latent space containing the functional training sequences to guide the generation of 

functional synthetic Sho1SH3 orthologues. We did so by fitting an anisotropic Gaussian to 
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the r.e.≥ 0.5 (red) training points and randomly sampling from this distribution to generate 

the latent conditioning vectors (black).
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Figure 6. 
Experimental outcomes of ProtWave-VAE generated sequences. (A) Subgroup (I)—latent-

only synthetic design. Scatterplots illustrate the sequence similarity measured by normalized 

Levenshtein distance and relative enrichment (r.e.) scores for the synthetic designs. The 

bar graph demonstrates the ProtWave-VAE performance through local sampling compared 

to the synthetic generative designs previously reported for our VAE-based DGM using 

an Info-VAE employing a max-mean discrepancy (MMD) loss and a Vanilla VAE 

employing the standard ELBO loss.14 The ProtWave-VAE generates diverse sequences 

with a high probability of functional rescue. (B) Subgroups (II)—maintaining function 

with C-terminus diversification for SH3 wild-type—and (V)—elevating function of a 

nonfunctional paralogue using C-terminus diversification. Experimental measurements for 

design groups employed 25% (red), 50% (green), and 75% (blue) of the sequence length 

for N-terminal conditioning. The scatterplot on the left displays the r.e. scores for subgroup 

(II) versus sequence similarity to the training data set. The bar graph reveals the rescue 

percentage within the design pool for subgroup (II) at varying N-terminus conditioned 
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percentages. The scatterplot on the right presents r.e. vs sequence similarity to the training 

data set for subgroup (V). None of these sequences rescued the osmosensing function. The 

horizontal dotted line for both scatterplots corresponds to the relative enrichment score of 

the homologue used for N-terminus conditioning. (C) Subgroups (III) and (VI)—elevating 

function of a weak binding Sho1 orthologue using C-terminus diversification and its random 

mutagenized control—and (IV) and (VII)—elevating function of a partial rescuing SH3 

paralogue using C-terminus diversification and its random mutagenized control. The two left 

scatterplots pertaining to subgroups (III) and (VI) failed to show any rescue at any level of 

N-terminal conditioning. The two right scatterplots pertaining to subgroups (IV) and (VII) 

show that one of the generatively designed sequences with 25% N-terminal conditioning did 

rescue function.
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