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Despite the improvements in clinical outcomes for DLBCL, a significant proportion of patients still face challenges with refractory/
relapsed (R/R) disease after receiving first-line R-CHOP treatment. To further elucidate the underlying mechanism of R/R disease and
to develop methods for identifying patients at risk of early disease progression, we integrated clinical, genetic and transcriptomic
data derived from 2805 R-CHOP-treated patients from seven independent cohorts. Among these, 887 patients exhibited R/R disease
within two years (poor outcome), and 1918 patients remained in remission at two years (good outcome). Our analysis identified
four preferentially mutated genes (TP53, MYD88, SPEN, MYC) in the untreated (diagnostic) tumor samples from patients with poor
outcomes. Furthermore, transcriptomic analysis revealed a distinct gene expression pattern linked to poor outcomes, affecting
pathways involved in cell adhesion/migration, T-cell activation/regulation, PI3K, and NF-kB signaling. Moreover, we developed and
validated a 24-gene expression score as an independent prognostic predictor for treatment outcomes. This score also
demonstrated efficacy in further stratifying high-risk patients when integrated with existing genetic or cell-of-origin subtypes,
including the unclassified cases in these models. Finally, based on these findings, we developed an online analysis tool (https://

lymphprog.serve.scilifelab.se/app/lymphprog) that can be used for prognostic prediction for DLBCL patients.
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INTRODUCTION

DLBCL is one of the most common and aggressive types of
lymphoid malignancies, accounting for approximately 30% of all
non-Hodgkin lymphomas. Despite its aggressiveness, the disease
can be cured, with most patients achieving long-term remission
following standard R-CHOP or similar regimens [1, 2]. Never-
theless, approximately one-third of patients experience refractory
or relapsed (R/R) disease, and most relapses occur within the first
few years [2, 3]. Salvage treatment followed by high-dose
chemotherapy and autologous stem cell transplantation has been
established as second-line treatment for younger patients with R/R
disease, but only a minority of these patients achieve long-term
remission [3-6]. Recently, CD19 CAR-T-cell therapy was approved
in the US as a second-line treatment in DLBCL patients with R/R

disease and as a third-line treatment in several other countries
[7, 8]. Other agents also showed promising results, including
bispecific antibodies, anti-PD1 antibodies, anti-CD19 antibodies
and antibody-drug conjugates [9-11]. Methods for identifying
patients who are likely to develop R/R disease within the first few
years after diagnosis might benefit from these new therapies and
thus are urgently needed to further improve the overall outcomes
of DLBCL patients.

Clinically, the International Prognostic Index (IPl) is commonly
used to predict disease risk [12, 13]. However, there has been a
growing interest in developing more advanced prognostic tools
that account for a range of clinical parameters, biomarkers, and
gene expression profiling, incorporating immunohistochemical or
molecular techniques [14-17]. Twenty years ago, two major
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subtypes of DLBCL based on cell-of-origin (COO), germinal center
B-cell-like (GCB) DLBCL and activated B-cell-like (ABC) DLBCL, were
identified by gene expression profiling, with the association of poor
outcomes in ABC-DLBCL [18]. In addition, DLBCL patients with a
dual rearrangement of MYC and BCL2, “double/triple-hit” lym-
phoma, were recognized as a high-grade category with a poor
prognosis in the latest WHO and ICC classification [19, 20]. Recently,
several studies have identified molecular subtypes associated with
different patient outcomes based on genetic alterations (mutations,
copy number variation (CNV) and selected translocations) [21-24].
Additionally, direct sequencing of R/R tumors has shown that
mutations in several genes (TP53, KMT2D, CREBBP, NFKBIE, FOXO1,
MS4AT) might be associated with therapeutic resistance [25].
However, the prognostic value of these genetic changes remains
to be proven. Finally, gene expression signatures [26-29] or tumor
cell states and ecosystems [30] based on transcriptomic analysis
have been developed and used to predict overall survival (OS) in
DLBCL patients. However, to date, there is still a lack of studies that
compare or integrate genetic and transcriptomic features when
evaluating patient outcomes.

To further understand the mechanism underlying drug resistance
and disease progression, and to develop a molecular tool for
identifying patients at risk for early R/R disease, here, we performed
comprehensive genomic and transcriptomic analyses on diagnostic
(untreated) tumors from 2805 R-CHOP-treated DLBCL patients. This
included our own study cohort and other six published cohorts with
clinical, DNA mutation, and/or gene expression data available
[21-24, 31-33]. We characterized the clinical characteristics,
mutation profile and gene expression pattern in 887 patients who
developed R/R disease within two years and compared these data
with those from 1918 patients who remained in remission at two
years. Furthermore, we sought to establish a risk classifier capable of
effectively predicting the treatment outcomes of DLBCL patients,
especially those with early R/R disease.

METHODS

Clinical and genetic data

This study included analyses of clinical and genetic data from seven DLBCL
cohorts. The first cohort (our cohort) included 161 R-CHOP-treated DLBCL
patients diagnosed in Sweden or China during 2001-2015 (Table S1A). The
Swedish patients (n=73) were diagnosed at Karolinska/Stockholm
Country and Uppsala University Hospitals, and their samples were newly
sequenced in this study. The Chinese patients (n=288) have been
described previously [34-37] and the data were reanalyzed here. DLBCL
samples from patients with chronic hepatitis B virus infection were
excluded from the current study due to the potential genetic differences
observed in these tumors [35]. The performance of various sequencing
platforms is summarized in Table S1B, and details of the data analysis,
especially on somatic mutation calling and gene expression analysis are
provided in the Supplemental Methods. The study was approved by the
Institutional Review Boards of Tianjin Medical University Cancer Institute,
Uppsala University and Karolinska Institutet.

Six published DLBCL cohorts with available clinical/ DNA mutation/gene
expression data were also included in the analysis (Table S2A, B)
[21-24, 31-33]. Clinical data were collected from the original deposits,
and information on LymphGen subtypes was available in five cohorts
[21-24, 32, 33]. For the two remaining cohorts (our cohort/GSE117556),
LymphGen subtypes were predicted using the LymphGen tool (https://
lImpp.nih.gov/lymphgen/index.php).

Meta-analysis of DLBCL patients with poor and good
outcomes treated with R-CHOP

Several criteria were used to enroll samples for meta-analysis: (1) DLBCL
patients were treated with R-CHOP and key clinical data were available;
(2) Sufficient PFS data were available to define two-year outcomes; (3) Either
DNA mutation or gene expression data were available. Subsequently,
individuals who experienced R/R disease within two years were character-
ized as having poor outcomes, whereas those who remained in remission at
two years were considered to have good outcomes.
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Differentially expressed genes (DEGs) and gene set
enrichment analysis (GSEA)

The RNAseq datasets (our cohort, n = 108; Schmitz et al. [23], n =219) and
microarray datasets (GSE117556, n=723; GSE181063, n=326) [21, 31]
were separately combined using the R package Limma to remove batch
effects between datasets [38], generating an RNAseqg-based dataset and a
microarray-based dataset. DEGs between DLBCLs with poor and good
outcomes were identified based on criteria of FDR q < 0.1 and fold change
>1.2. Further details on data analysis and GSEA are provided in the
Supplemental Methods.

Establishment and validation of a risk signature to predict R/R
disease within two years

The above RNAseq and microarray datasets were further merged into a
larger cohort (n=1376), using the quantile normalization approach
described previously to normalize cross-platform datasets [39]. Univariate
Cox regression was performed to assess the association of PFS and gene
expression levels in the entire cohort, identifying prognostic genes
(p <0.01). Subsequently, we randomly assigned samples to a discovery
cohort (70%, n = 964) and a validation cohort (30%, n = 412). The LASSO
algorithm was used to extract gene-expression risk signatures, using the
gene expression levels of overlapping genes between the prognostic
genes and the DEGs between the poor and good outcome groups as the
input variable and the two-year outcome of each patient as the outcome
variable (Fig. S1). In this process, the discovery cohort was further divided
into a training cohort (80%, n = 772) and a test cohort (20%, n = 192). One
thousand risk models were constructed by employing various random
seeds in the discovery cohort. Subsequently, their performance was
evaluated in the test cohort, selecting the model with the highest area
under the curve (AUC) value and accuracy for predicting two-year
outcomes as the optimal risk model. The validation cohort was then
utilized to demonstrate the performance of the risk model. Furthermore,
another two independent datasets were used to test the established risk
model: validation cohort-2 (RNAseq, n =49) [40], and validation cohort-3
(microarray, remaining sample of GSE181063, n = 484). Further details on
data computing, risk score calculation, optimal threshold, and risk
classification are provided in the Supplemental Methods.

RESULTS

Clinical characteristics of different DLBCL cohorts

To investigate the characteristics of DLBCL patients with early
R/R disease following R-CHOP treatment, we initially enrolled
161 DLBCL patients (our cohort; Table STA). Of these, 50 (31%)
experienced R/R disease within two years and were classified as
having poor outcomes, whereas the remaining patients who
were still in remission at two years, were categorized as having
good outcomes. As expected, those with poor outcomes
tended to be older, were more likely to have an ABC subtype,
and had presented with more advanced disease at diagnosis
and higher IPI scores than those with good outcomes (Table S3).
To validate these findings, data from six published cohorts were
compiled using the same enrollment criteria, comprising 2644
patients (Fig. 1A, B; Table S2A, B). Approximately 32% (range:
29%~37%) of them experienced R/R disease within two years
(Fig. 1C), and these patients displayed similar high-risk
characteristics, despite variations in individual parameters
among individual cohorts (Table S4). Moreover, the analysis
demonstrated no statistically significant difference in PFS
among all cohorts, as evidenced by the overlapping survival
curves (Fig. 1D). Together, these results suggest that DLBCL
patients with poor outcomes share common high-risk char-
acteristics and exhibit similar clinical outcomes across different
cohorts. Furthermore, this effort resulted in a cohort of 2805
uniformly R-CHOP-treated DLBCL patients, with 887 of them
identified as having poor outcomes within two years. Addition-
ally, we had access to genetic data for 2290 samples and
transcriptomic data for 1376 samples (Fig. 1B; Table S2A), with
861 samples having both data types, enabling comprehensive
integrated genomic and transcriptomic analyses.
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Fig. 1

DLBCL cohorts used to identify patients with poor outcomes within two years following R-CHOP treatment. A The workflow for

identifying patients with poor and good outcomes in different cohorts. B An overview of clinical, DNA mutation, and gene expression data for
patient cohorts included in this study. C The percentage of patients with poor outcomes within each cohort. D Kaplan-Meier survival analysis
illustrating PFS in different cohorts. The p value was calculated by the log-rank test.

Mutation spectrum in DLBCL patients with poor outcomes
To investigate the mutation profiles of the 2290 DLBCL tumors, we
focused on genes that were sequenced in all cohorts and
specifically examined genes that were reported in at least three
cohorts. This approach led to the identification of 99 genes for
further analysis (Table S5A). Among these, 24 were found to be
mutated in at least 10% of DLBCLs, including KMT2D, PIM1, TP53,
BCL2, HISTTH1E, MYD88, CREBBP, and others (Table S5B). Many of
these genes have been previously characterized as significant
mutation targets in DLBCL [21-24, 35]. Moreover, the mutation
frequencies of these 99 genes in the combined cohort exhibited a
strong correlation (Pearson’s correlation coefficients; r value:
0.863-0.963) with those observed in the individual cohorts
(Fig. S2A), indicating the consistency of mutation patterns across
different cohorts. Furthermore, when examining the mutation
frequencies of genes overlapped between the seven cohorts, we
also observed a similar consistency (Fig. S2B; Table S5B).
Subsequently, a focused analysis was performed on the
mutational profiles of DLBCL patients with poor outcomes in the
combined cohort, consisting of 702 patients. We identified 57
genes that were affected by nonsilent mutations in at least 5% of
the samples, with 20 of these being mutated in at least 10% of
cases (Fig. 2A; Table S6). The most frequently mutated genes in
DLBCL with poor outcomes were KMT2D (32.8%), PIM1 (27.4%),
TP53 (26.9%), BCL2 (21.8%), MYD88 (19.9%), TMSB4X (18.2%),
HISTTHTE (18.0%), BTG2 (15.7%), and others. We then compared
the mutational profiles of tumors among patients with poor and
good outcomes, revealing significant enrichment (q<0.1) of
mutations in four genes (TP53, MYD88, SPEN, MYC) and significant
depletion of mutations in eight genes (CD83, BCL6, SGK1, ACTB,
TMEM30A, CARDI11, P2RY8 TNFRSF14) in DLBCLs with poor
outcomes (Fig. 2B). The examination of these genes within the
individual cohorts revealed a largely similar trend in mutation
frequency within the poor outcome group across various cohorts

SPRINGER NATURE

(Fig. S3). Moreover, Cox regression analysis demonstrated that
mutations in the four enriched genes were associated with worse
PFS, whereas mutations in the eight depleted genes were
associated with better PFS (Fig. 2C). Combined analysis of
mutations in any of the four enriched genes (TP53 + MYD88 +
SPEN + MYC) showed a slightly higher hazard ratio than that of
individual genes (1.55 vs. 1.26-1.46; Fig. 2C). Finally, approximately
53% of the samples were classified into known LymphGen
subtypes, and the A53 and MCD subtypes were significantly
overrepresented in patients with poor outcomes, while the EZB
and ST2 subtypes were enriched in patients with good outcomes
(Fig. 2D). These findings indicate that a distinct mutation spectrum
was associated with early R/R disease in DLBCL patients.

Gene expression profiles in DLBCLs among patients with poor
outcomes

To compare the gene expression profiles between good and poor
outcome groups, we first conducted analyses of DEGs in the
RNAseq dataset (n=327), encompassing 122 cases with poor
outcomes (Fig. S4A). In this dataset, DEGs associated with poor
outcomes were characterized by a small group of upregulated
genes (n=73) that included BCL2, BLNK, CXorf21, CD72, IGLLS,
CCND2, TNFRSF8, NME1, BTLA and CD52, and a large group of
downregulated genes (n = 1472) that included 49 genes that have
been described to be frequently mutated in lymphoma [35] and
immune checkpoint genes (CTLA4, TIGIT, CD80) (Fig. 3A; Table S7).
Among the DEGs, four genes (SGK1, CD83, BCL6, P2RY8) were
found to be less frequently mutated in DLBCLs with poor
outcomes, whereas one gene (SPEN) was preferentially mutated
in this group. Subsequently, we analyzed DEGs in the microarray-
based dataset (n = 1049, Fig. S4B), including 336 cases with poor
outcomes, and further compared them with those from the
RNAseq-based dataset. This analysis revealed 372 overlapping
genes (Fig. 3B), constituting 24% and 39% of the total DEGs in the
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Fig. 2 Mutation pattern in tumors derived from DLBCL patients with poor outcomes following R-CHOP treatment. A Catalog of the most
frequently mutated genes in DLBCL tumors among patients with poor outcomes. Genes that affected by nonsilent mutations across more
than three cohorts and observed in more than 8% of all patients (n = 702) were included. B Comparison of mutation frequencies between
DLBCLs with poor and good outcomes using Fisher’s exact test, adjusted by the false discovery rate (FDR) q value (q < 0.1 was considered
significant). The presented genes included those most significantly mutated between the two outcome groups and those with mutation
frequencies greater than 10%. Genes with FDR g < 0.1 were indicated as red color. C Forest plots display the association between the mutation
of individual/combined genes and PFS in the combined cohorts. D Donut chart illustrating the distribution of LymphGen DNA subtypes in
patients with poor or good outcomes in the combined cohorts. Fisher’s exact test was used to compute p values. *p < 0.05; NA not available,
UN unknown, HR hazard ratio, Cl confidence interval, UNC unclassified.

respective cohorts. Notably, more than 98% (367) of these then randomly assigned as discovery and validation cohorts (70%
overlapping DEGs showed consistent upregulation or down- and 30% respectively, Fig. S1). Univariate Cox regression was first
regulation in both cohorts (Table S7), suggesting an overall performed to assess PFS and gene expression levels, identifying
consistency across different datasets and patient groups. We then 656 prognostic genes from the entire cohort, with 242 of them
performed GSEA of the overlapping DEGs and identified several overlapping with the 372 DEGs (Fig. 3B; Table S8). Using the

significantly enriched pathways, including cell adhesion/migra- expression levels of these 242 genes, and the two-year outcomes
tion/proliferation, PI3K, T-cell activation, T-cell receptor, NF-kB of each patient as inputs, the LASSO algorithm was subsequently
signaling, and PD-1 expression/checkpoint pathways (Fig. 3C, D). employed to extract risk signatures in the discovery cohort

(n = 964). Among 1000 established combinations, a 24-gene panel
Establishment and validation of a risk signature to predict exhibiting the highest AUC value and accuracy in the test cohort
early R/R disease in predicting two-year outcomes was selected as the optimal risk

To establish a robust risk signature representative of early R/R model/signature (Fig. 4A; Table S9). Notably, several of these
DLBCL, we next employed a quantile normalization approach to genes play roles in relevant cellular processes/pathways, including
integrate RNAseq-based and microarray-based datasets, creating a BCR signaling (RFTNT), protein kinases (SGKT), apoptosis (FAS), cell
large, normalized dataset (Fig. S5; n = 1376). These samples were differentiation markers (CD28, CD3E, ITGAX, LY75, TNFRSF13C/
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Fig. 3 Gene expression pattern in tumors derived from DLBCL patients with poor and good outcomes at two years following R-CHOP
treatment. The analysis of differentially expressed genes (DEGs) was conducted separately in the RNAseq dataset (our cohort/Schmitz et al.
cohort, n = 327) and the microarray dataset (GSE117556/GSE181063; n = 1049). A threshold of FDR q < 0.1 and fold change >1.2 was used to
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the figure. B The numbers of overlapping DEGs between the RNAseq dataset and the microarray dataset. GSEA analysis of the overlapping
DEGs from (B) (C: Gene Ontology biological pathway, (D): Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway).

BAFFR), cytokines and growth factors (PLAU), and transcription
factors (LMO2, EGR1, TCF7). Subsequently, using the 24-gene
expression score calculated in each tumor, we categorized
patients into high- and low-risk groups based on a threshold
that provided an optimal trade-off between sensitivity and
specificity in predicting two-year outcomes (Fig. 4B). High-risk
DLBCL patients assigned by the 24-gene expression score
exhibited significantly worse PFS, and more high-risk patients
experienced poor outcomes within two years than those
assigned to the low-risk group (Fig. 4C, D). Additionally, the
24-gene risk score displayed a positive predictive value (PPV) of
0.61 and a negative predictive value (NPV) of 0.79 in predicting
two-year outcomes, with an overall accuracy of 74%. Multi-
variable analyses revealed that this 24-gene risk score served as
an independent predictor (p<0.001) of two-year prognosis,
even after adjusting for key clinical risk factors (Fig. 4E).
Moreover, ROC curve analysis demonstrated that the 24-gene
scoring stratification outperformed the COO subtype, key clinical
parameters, and various mutational statuses (TP53, MYD8S, etc.),
in predicting two-year outcomes (Fig. 4F). Furthermore, the
inclusion of mutational status of the four preferentially mutated
genes (individually or in combination) identified in the poor
outcome patients did not enhance its predictive efficiency of
early R/R DLBCL (Fig. S6A).
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Consistent with the findings in the discovery cohort, we
observed worse PFS and more patients experiencing poor
outcomes among high-risk patients in the validation cohort
(n=412; Fig. 4G, H). The PPV, NPV and overall accuracy in
predicting two-year outcomes in the validation cohort were 0.55,
0.75 and 70%, respectively, which were slightly lower than those
observed in the discovery cohort. Multivariable analyses and ROC
curves confirmed the independent predictive capability of the 24-
gene risk score, with an AUC value of 0.7 for predicting two-year
outcomes in the validation cohort (Fig. 4l, J). Moreover, combining
mutation status (TP53, MYD88, SPEN, MYC) with the 24-gene risk
score also failed to improve the prediction performance (Fig. S6B).

Subsequent evaluations, especially among samples with avail-
able double-hit and double-expressor status, further confirm its
independent prognostic value (Fig. S7). Furthermore, the compar-
ison of ROC curves with existing gene expression-based classifiers
[27, 28, 41] demonstrated that our 24-gene risk score had the best
performance in predicting two-year outcomes (Fig. S8). In
addition, the results across individual cohorts revealed similar
patterns in 24-gene expression, differences in PFS, and the
distribution of patients in high- and low-risk groups (Fig. S9-10).
Finally, the 24-gene score algorithm was successfully validated on
two additional cohorts derived from different platforms (RNAseq,
n = 49; microarray, n = 484) (Fig. 4K-L). These findings underscore
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Fig. 4 Development and validation of an independent gene-expression signature to predict treatment outcomes in DLBCL patients. The

RNAseq and microarray datasets were merged into a larger cohort

(n=1376) using a quantile normalization approach. The samples were

subsequently randomly divided into a discovery cohort (70%, n=964; A-F) and a validation cohort (30%, n=412; G-J). A Forest plots
showing the association between the expression levels of the 24 genes and PFS within the discovery cohort. B The distribution of 24-gene
expression scores in each DLBCL patient, and the correlation between PFS and risk groups in the discovery cohort. Patients were assigned to
high- and low-risk groups based on the optimal threshold for the ROC curve, set at —0.521. Each dot represents one patient. C Kaplan-Meier
survival analysis illustrating PFS between high- and low-risk groups in the discovery cohort. The p value was calculated by the log-rank test.
D Bar plots showing the distribution of high- and low-risk patients within poor and good outcome groups in the discovery cohort. Fisher's
exact test was utilized to determine the p value. E Univariate and multivariable Cox regression analyses demonstrating the prognostic
independence of the 24-gene-expression scores in the discovery cohort. Key clinical parameters such as age, subtype, stage, and IPI factors are
included in the analysis. F ROC curves demonstrating the performance of different parameters in identifying DLBCL patients with two-year
poor outcomes in the discovery cohort. AUC values are indicated. G Kaplan-Meier survival analysis illustrating PFS of the high- and low-risk
groups in the validation cohort (n = 412). Patients were classified into high- and low-risk groups using the same threshold established in the
discovery cohort (—0.521). The p value was calculated by the log-rank test. H Bar plots showing the distribution of high- and low-risk patients
within poor and good outcome groups in the validation cohort. Fisher’s exact test was used to determine the p value. | Univariate and
multivariable Cox regression analyses demonstrating the independent prognostic role of the 24-gene expression score in the validation
cohort. J ROC curves demonstrating the performance of different parameters in identifying DLBCL patients with two-year poor outcomes in
the validation cohort. K, L Two additional independent cohorts (RNAseq=49, CNP0001327; microarray=484, remaining samples of the

GSE181063 cohort were only available for OS data) were used to

evaluate the algorithm of the 24-gene risk score. HR hazard ratio, Cl

confidence interval, ROC receiver operating characteristic,c AUC area under the curve, OS overall survival.

the robustness and generalizability of the 24-gene expression
score as an independent prognostic tool for predicting early
disease progression in DLBCL.

The association of the 24-gene expression score and COO
subtypes of DLBCL

We next assessed the correlation between the 24-gene expression
score and the COO subtypes, which are known predictors of
DLBCL patient outcomes. Within the entire cohort (n =1376), a
notably higher proportion of ABC-DLBCL cases were categorized
as high-risk, while a lower percentage of GCB-DLBCL and
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unclassified cases fell into the high-risk group (Fig. 5A). Moreover,
patients classified as high-risk exhibited significantly poorer PFS in
both ABC and GCB subtypes when compared to those in the low-
risk group (Fig. 5B, C). Notably, the 24-gene risk score was also
effective in identifying high-risk patients among the unclassified
COO cases (Fig. 5D). Furthermore, these results were consistent
across the discovery, validation, and individual cohorts, indicating
no significant cohort-related bias in the analysis of combined data
(Fig. S11-12). Together, our findings suggest that the 24-gene
expression score can further stratify high-risk patients among COO
subtypes, including those unclassified cases.

SPRINGER NATURE

615



W. Ren et al.

616
p<0.001
Lty B High-risk
B Low-risk
[72]
(0]
(7]
©
O 50+
(@]
2
0_
N AN O
& & &
<2>(') OQ’ %O
e ) N)
C GCB
100
—— High-risk
g —— Low-risk
P 504
o
p<0.001
0 T T 1

1
0 5 10 15 20
Years

B ABC

100
—— High-risk

= —— Lowe-risk
s
2 50+
o
p<0.001
0 1 1 I 1
0 5 10 15 20
Years
D UNC (COO)
100
—— High-risk
= —— Lowe-risk
S
&2 50+
o
p<0.001
0 1 1 I 1
0 5 10 15 20
Years

Fig. 5 Independent risk stratification by 24-gene expression scores in various COO subtypes of DLBCLs. The analysis was performed on all
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subtypes. Fisher’s exact test was used to determine the p value. Kaplan-Meier survival analysis illustrating PFS between high- and low-risk
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Use the 24-gene expression score to stratify high-risk patients
within LymphGen subtypes

To investigate the potential relationship between the 24-gene
expression score and DNA molecular subtypes in DLBCLs, we
examined the performance of the risk scores across LymphGen
subtypes. Among the 1376 samples with transcriptomic data,
LymphGen subtype information was available for 956 samples.
Consistent with previous studies [23, 24], the MCD, N1, and
A53 subtypes in the entire cohort were associated with inferior
survival, whereas the EZB, BN2, and ST2 subtypes had favorable
outcomes (Fig. 6A). The distribution of high- and low-risk
patients in these DNA subtypes is summarized in Fig. 6B and
the 24-gene risk score was significantly effective in further
stratifying high-risk patients across all individual DNA subtypes
(Fig. 6C-H). Since the A53 subtype of LymphGen is mainly
defined by TP53 mutations and CNVs and since CNV data
were not available in three cohorts (our cohort/GSE117556/
GSE181063), we conducted an independent analysis on DLBCLs
with TP53 mutations (n=206). Notably, patients carrying TP53
mutations who were assigned to the high-risk group had
significantly worse PFS than those assigned to the low-risk
group (Fig. 6l). Moreover, in those 284 unclassified cases, where
LymphGen subtypes were not assigned and TP53 were not
mutated (Table S2A), the 24-gene risk score was still able to
effectively stratify high-risk patients (Fig. 6J). Furthermore, the
24-gene risk score also demonstrated its significant capability in
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assigning double-hits and double-expressors into the high-risk
group (Fig. 6K), and further identifying high-risk patients within
each subtype (Fig. 6L-M). Additionally, these analyses were
conducted separately in the discovery and validation cohorts,
and the results revealed relatively consistent results observed in
the combined cohort (Fig. S13). Thus, the utility of the 24-gene
expression score can be extended to risk stratification among
the genetic subtypes.

DISCUSSION

Despite recent advances in the characterization of the genome
and transcriptome of DLBCL [21-24, 32-36, 42-46], including
analysis at the single-cell level [44], our knowledge of patients
with early R/R disease is still limited. Our study integrated data
from seven cohorts comprising 2805 R-CHOP-treated patients,
including 887 cases with poor treatment outcomes within two
years. Our analyses revealed a distinct mutation pattern and gene
expression profile in these patients with poor outcomes.
Additionally, we established a 24-gene expression score as an
independent prognostic predictor for early R/R disease in DLBCL
patients. This risk score also demonstrated its effectiveness in
further stratifying COO and genetic subtypes into high- and low-
risk groups. Overall, our study provides valuable insights into
understanding the molecular mechanisms underlying early R/R
DLBCL and highlights the importance of incorporating gene
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Fig. 6 Individualized risk stratification by 24-gene expression score in LymphGen DNA subtypes. All samples with available gene

expression data and LymphGen DNA subtypes were combined for the analysis (n = 956). A Kaplan-Meier survival analysis showing the PFS in
the individual LymphGen DNA subtypes. B Bar plots showing the distribution of high- and low-risk patients in the different DNA subtypes.
C-J Kaplan-Meier survival analysis showing the PFS of high- and low-risk patients in the indicated DNA subtypes and the unclassified subtype.
K Bar plots showing the distribution of high- and low-risk patients in the double-hits (n = 63) and double-expressors (n =92) of MYC and
BCL2. Among 1376 samples with 24-gene risk scores, 846 cases were evaluated for double-hit status, with 63 identified as double-hit. A total of
270 samples were assessed for double-expressor status, with 92 identified as double-expressors. Fisher’s exact test was used to compute p
values. L, M Kaplan-Meier survival analysis showing the PFS of high- and low-risk patients in the indicated groups. UNC unclassified. For all
Kaplan-Meier survival analyses, the p value was calculated by the log-rank test. Independent analyses in the discovery and validation cohorts

are presented in Fig. S13.

expression profiling into clinical decision-making for DLBCL
patients.

Various studies have previously utilized NGS technologies to
describe genetic subtypes and prognostic models in DLBCL,
including DNA mutation-based subtypes [21-24] and gene
expression-based risk signatures [26-29] or prognostic tumor
microenvironments [30]. However, the focus has been largely on
OS, rather than specifically addressing features associated with
early disease progression. Some studies have developed risk
models by incorporating OS data from patients treated with CHOP
and R-CHOP [27, 28], whereas some risk signatures were
developed without validation cohorts or based on limited sample
sizes [26, 29]. Moreover, none of these risk models/signatures
attempted to integrate both genetic and transcriptomic data in
their evaluation. Our study benefits from many patients with both
genomic and transcriptomic data and the use of multiple
independent cohorts to validate findings. Moreover, we defined
early R/R disease based on a two-year cutoff, which is associated
with the poorest outcomes [6, 47]. Notably, previous studies
indicated that patients who survived and remained event-free for
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24 months had a similar consecutive OS as the general population
matched for sex and age [6, 48]. Our newly developed 24-gene
classifier is primarily designed to optimize its effectiveness in
predicting two-year outcomes, surpassing the performance of
existing classifiers in this aspect. Moreover, the integration of the
cross-platform normalization approach facilitates the merging of
data from diverse platforms, generating a robust dataset for
establishing a more reliable risk classifier. Finally, in light of our
findings, we created an online analysis tool (accessible at https://
lymphprog.serve.scilifelab.se/app/lymphprog) designed for user-
friendly and efficient risk assessment, which lays the foundation
for developing a practical algorithm with potential applications in
clinical settings.

Four genes were preferentially mutated in DLBCL with poor
outcomes. Of these, TP53, MYC, and MYD88 mutations have been
associated with early R/R disease in DLBCLs in previous studies
[25, 49-52], whereas SPEN is a novel candidate, and plays a role
in negatively regulating NOTCH signaling. Studies have indi-
cated that aberrant NOTCH signaling can contribute to drug
resistance in various cancers [53], including DLBCL [54],
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suggesting that targeting the NOTCH pathway may hold
promise as a therapeutic strategy for patients with early R/R
disease. Conversely, the eight genes preferentially mutated in
DLBCL with good outcomes align with their roles as markers for
genetic subtypes associated with favorable prognosis, including
BN2, ST2, and EZB [23, 24]. Loss-of-function TMEM30A mutations
have been associated with increased B-cell signaling and
enhanced drug uptake in DLBCLs, potentially contributing to a
better treatment response [55]. Notably, the study also identified
genes, such as SGK7 and CD83, where both higher mutation
frequency and higher mRNA expression were linked to better
treatment outcomes in DLBCL patients. This suggests that tumor
cells with such features may exhibit increased sensitivity to
R-CHOP treatment. However, although the identification of these
differentially mutated genes may help to understand the
mechanism underlying early R/R disease, the mutation status
of individual genes appears to provide limited predictive value
when compared to gene expression-based risk signatures.

We further demonstrated that our risk score algorithm shows
superior performance in further stratifying high-risk patients
from COO and DNA molecular subtypes. Importantly, it showed
the capacity to further identify high-risk patients among the
unclassified cases in these subtyping tools. While this 24-gene
risk score may not identify all high-risk patients, possibly due to
the considerable intratumor and intertumor heterogeneity of
the disease, it shows promise in effectively predicting two-year
outcomes in more than 70% of DLBCL patients following
R-CHOP treatment. For high-risk patients identified by this
classifier, intensified immunochemotherapy protocols, such as
incorporating high-dose methotrexate [56], or R-double-CHOP
[57], may be considered while awaiting more definitive
evidence on new immunotherapies or combined therapies
[58]. Moreover, close monitoring of high-risk patients during or
after R-CHOP treatment is necessary. Tools such as monitoring
measurable residual disease through cell-free tumor DNA
analysis may help to track treatment response and disease
status in these high-risk patients [59], facilitating timely
interventions if needed.

In summary, leveraging data from multiple cohorts, our study
identified mutated genes, altered pathways, and gene expression-
based risk signatures associated with poor outcomes in DLBCL
patients. However, despite combining several cohorts to achieve a
relatively homogeneous dataset, considerable heterogeneities
(sample resources, sequencing platforms/methods, variant callers,
thresholds in identifying prognostic genes and DEGs) between
acquired data types from individual cohorts may still introduce
variability. Therefore, these findings may require further validation
in additional cohorts. To further improve the predictive value of
the 24-gene expression score, incorporating additional genetic/
epigenetic features, such as genome-wide mutational signatures
[371, CNVs, noncoding drivers [60], RNA editing [46], and tumor
microenvironment, as well as the application of supplementary
tools, such as proteomic, metabolic, and single-cell studies, may
be considered.
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