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INTRODUCTION

The advent of Chat Generative Pre-trained Transformer 
(ChatGPT), a powerful tool developed by OpenAI, has 
garnered interest in various generative artificial intelligence 
(AI) models in the field of medicine. Generative AI, which 
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includes Generative Adversarial Networks (GANs) [1,2], 
diffusion models [3-5], and Large Language Models (LLMs) 
[6-10], has shown tremendous potential for a wide range of 
medical applications.

Medical imaging has emerged as a prominent area 
that can be explored using generative models. GANs and 
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Overview of Common Generative AI Models: 
VAE, GAN, Diffusion Models, LLMs, and VLMs

In contrast to deterministic models, such as regression 
models and classifiers, wherein the outcome is 
completely determined by the parameter and initial input 
values, generative models incorporate randomness or 
unpredictability while predicting the answers. Consequently, 
generative models are referred to as probabilistic or 
stochastic models. Probabilistic models incorporate 
probability (chance) to address uncertainty and consider 
the likelihood of obtaining different outcomes during the 
prediction process. Stochastic models inherently involve 
randomness or unpredictability in their prediction processes. 
These generative models can be categorized according to 
the type of data process (i.e., vision, language, or both) 
or the manner in which they train and generate samples 
(i.e., explicit and implicit models). Explicit models are 
probabilistic generative models that define the probability 
distribution of the modeled data. In contrast, implicit 
models generate data directly via stochastic or random 
processes without explicitly defining the probability 
distribution. Figure 1 illustrates the categories of commonly 
used generative AI models.

Vision generative models, such as VAEs [12], GANs [1,2,13], 
and diffusion models [3-5], are defined as models that only 
process images. Figure 2 depicts the typical architecture of 

diffusion models have been used in studies focusing on 
image reconstruction and quality enhancement [11]. The 
paramount importance of maintaining privacy in medical 
research has also led to the use of synthetic data. Owing 
to their ability to produce synthetic medical data that 
mirror real-world characteristics, generative models offer 
innovative solutions for data privacy, thereby enabling 
researchers to conduct studies without compromising 
patient confidentiality.

The vision-language model (VLM) and LLMs, such as 
ChatGPT, have accelerated the developmental pace and 
facilitated the development of numerous applications in 
the medical field that were previously unimaginable. The 
increase in the use of AI-driven models in the medical 
field has necessitated a comprehensive understanding of 
generative AI models among researchers and practitioners, 
including general radiologists seeking to leverage these 
advancements. 

Therefore, this review aims to provide a concise overview 
of the fundamental principles and applications of generative 
AI models, with a particular focus on medical imaging. This 
review explores the introduction of basic models, such as 
variational autoencoders (VAEs), GANs, diffusion models, and 
their variants, and the underlying mechanisms that drive 
their generative capabilities. Furthermore, this review also 
showcases how these models combine their capabilities with 
the power of LLMs to understand images. 

Fig. 1. Categories and examples of generative AIs. AI = artificial intelligence, VLM = vision-language model, VAE = variational auto-
encoder, GPT = generative pre-trained transformer, CLIP = contrastive language-image pretraining, PaLM = pathways language model, 
LLaVA = large language and vision assistant, LLaMA = large language model Meta AI, GAN = generative adversarial network
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vision-generative models. Remarkable progress in natural 
language processing (NLP) has facilitated the processing 
and generation of a massive amount of data by language-
generative models, such as ChatGPT, BARD, pathways 
language model (PaLM) [14], and large language model Meta 
AI (LLaMA) [15]. Recent advances in multimodal processing 
in deep learning have also facilitated the processing of 
natural language and computer vision data by large models. 
Consequently, AI models can generate language from images, 
images from language, or both. Examples of VLMs include 

GPT-4 [16], DALL-E [17,18], and large language and vision 
assistant (LLaVA) [19]. 

Variational Auto-Encoder (VAE)

VAEs are generative models that employ an encoder-
decoder architecture with a prior distribution (existing 
distribution). The encoder maps each input image onto a 
latent space. The encoded latent feature is subsequently 
used by the decoder to generate an image. VAEs are 

Fig. 2. Typical architectures of generative models for medical images. A: Variational auto-encoder. B: Generative adversarial network. 
C: Diffusion model. x = input image, z = latent space, N = normal distribution, ε = noise, x’ = reconstructed image, T = timestep

A

B

C
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trained by approximating the distribution of the encoded 
latent features to a known distribution (e.g., a normal 
distribution) and reconstructing the image to resemble 
the given input. An auto-encoder [20] possesses a similar 
architecture; however, it focuses on the efficient learning of 
latent representations rather than image generation. 

Variants of VAE Models
VAEs, which are a class of generative models based 

on the principles of variational inference, have several 
variants. Conditional VAEs (CVAEs) [21] are an extension of 
VAEs wherein the encoder and decoder are conditioned on 
additional information, such as labels or other data. VAEs 
are particularly useful for tasks such as conditional image 
generation (e.g., generating images of a particular class). 
VAEs with arbitrary conditioning (VAEACs) [22] enable 
flexible conditioning (i.e., conditioning on arbitrary subsets 
of observed variables). Consequently, VAEACs have been 
used for various tasks such as inpainting, denoising, or 
feature prediction. Disentagled VAE (beta-total correlation 
VAE, β-TCVAE) [23] introduces an additional term in the 
loss function that facilitates the learning of disentangled 
representations by minimizing the total correlation between 
different latent variables. Hierarchical VAEs [24] are 
characterized by a hierarchy of latent variables, with each 
level capturing a different level of abstraction in the data. 
Hierarchical VAEs can model complex data distributions more 
effectively and capture abstract representations at higher 
levels of hierarchy. Sequential VAEs, such as deep recurrent 
attentive writers (DRAW) [25] and variational recurrent 
neural networks (VRNN) [26], can handle sequential data, 
such as text or time series. 

Generative Adversarial Network (GAN)

GANs comprise two competing networks: a generator, 
which forges a realistic fake image from a given latent 
feature, and a discriminator, which distinguishes fake 
images from real images. The generator attempts to 
deceive the discriminator via adversarial training, thereby 
improving image generation. Mode collapse, a phenomenon 
characterized by the production of a limited variety of 
samples by the generator, and training instability are the 
primary limitations of standard GANs. 

Variants of GAN Models
Different variants of GANs, such as deep convolutional 

GAN (DCGAN), conditional GAN (cGAN), progressive 
growing GAN (PGGAN), style based GANs (StyleGAN), cycle-
consistent GAN (CycleGAN), and StarGAN, are characterized 
by unique characteristics and applications. 

DCGANs integrate convolutional neural networks 
(CNNs) into the architecture of GANs [27]. Transposed 
convolutional layers are used by the generator to produce 
images, and common convolutional layers are used by the 
discriminator to distinguish between the real and generated 
images. This marks a significant step forward, as most GANs 
developed prior to DCGANs were based on fully connected 
layers. Compared with standard GANs, DCGANs yield a 
significant improvement in the stability of training GANs 
and facilitate the generation of higher-quality images. 

In contrast to standard GANs that generate data from 
random noise, cGANs [28] generate data conditioned on 
additional information, such as class labels, data from other 
modalities, or text descriptions. This conditionality enables 
the generation of targeted types of images, such as images 
of a specific class. 

PGGANs [29] progressively train generator and 
discriminator networks, starting from low-resolution 
images and gradually increasing to higher resolutions. 
This approach enables the networks to learn large-scale 
structures initially and then learn finer details progressively 
as the training progresses. PGGANs achieve more stable 
training compared with that of a high-resolution GAN from 
the beginning by focusing on lower resolutions initially and 
then gradually increasing the complexity. 

StyleGANs [2,30,31] introduce a novel architecture, such 
as a style-based generator, that facilitates unprecedented 
control over the style and content of the generated images. 
This key innovation in StyleGANs facilitates separate control 
over high-level attributes (such as the contour and shape 
of the brain) and stochastic variations (such as brain sulci) 
in the generated images. StyleGANs [2] can also introduce 
a mapping network that transforms a latent code (random 
input) into an intermediate latent space. This intermediate 
space can capture the ‘style’ of the generated image. In 
addition to style, noise inputs can be added at various layers 
to introduce stochastic variations that are not controlled by 
the latent code. Improved versions, such as StyleGAN2 [30] 
and StyleGAN3 [31], have been developed in addition to the 
original StyleGAN. 

CycleGAN [32], which was specifically designed for image-
to-image translation where paired examples are not available, 
uses two-generator networks. Generator GX learns to map 
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from domain X to domain Y, whereas generator GY learns 
reverse mapping from domain Y to domain X. CycleGAN 
also comprises two discriminators, DX and DY (Fig. 3). Cycle 
consistency loss is a crucial component of CycleGAN that 
ensures the translation of an image from domain X to domain 
Y and then back to domain X such that the generated image 

resembles the original image from domain X (and vice versa 
for domain Y). This component acts as a proxy for the paired 
training data. Moreover, its ability to work without paired 
examples facilitates its incorporation into a wide range of 
real-world scenarios where paired training data are scarce or 
difficult to obtain. For instance, CycleGANs can convert the 

Fig. 3. CycleGAN architecture to generate high-dose CT images from low-dose CT using an unpaired dataset. CycleGAN = cycle-consistent 
generative adversarial network, CT = computed tomography, D = discriminator, GA = high-dose CT generator from low-dose CT, GB = low-
dose CT generator from high-dose CT, x = low-dose CT image, y = high-dose CT image, X = domain of low-dose CT, Y = domain of high-dose 
CT, ‘ = generated image from real image, “ = generated image from generated image
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reconstruction kernel of computed tomography (CT) images 
or denoise low-dose CT [33-38]. 

StarGAN [39], a versatile GAN that can perform multiple 
image-to-image translations simultaneously, can handle 
multiple domains when translating between multiple 
medical imaging modalities, such as multi-contrast magnetic 
resonance (MR) images and multi-view echocardiography 
[40,41]. StarGAN is particularly useful in scenarios 
encompassing diverse datasets and imaging equipment.

Diffusion Model

The diffusion model, a newer generative model, uses noise 
distribution and operates in forward and reverse processes 
based on a Markov chain, a discrete time-stochastic process 
with Markov property. This property dictates that the future 
state of the process is determined solely by its current 
state and is independent of its history. The transition 
from one state to another is determined by the probability 
associated with the current state. Owing to this property, a 
Markov chain can efficiently describe the transition between 
two states over time (or steps) by multiplying the initial 
probability by the probabilities of subsequent steps. Thus, it 
is a concise and easy method that can be used to determine 
dynamic changes in the data. Random noise (i.e., Gaussian 
noise) is added to a given image in multiple scheduled steps 
in the forward process of a diffusion process. In contrast, 
the model denoises the given image and predicts the image 
from the previous step in the reverse process. The model is 
trained by predicting “the noise” from the given image, and 
images are generated by denoising a random noise step by 
step (a Markov chain). Figure 4 presents an example of the 
generation of three-dimensional medical images from two-
dimensional slices using the mask inpainting technique of a 
diffusion model sampler.

Variants of Diffusion Models
Variants of diffusion models include score-based generative 

models, denoising diffusion probabilistic models (DDPMs) [3], 
and denoising diffusion implicit models (DDIMs). The “score,” 
which refers to the gradient of the log probability density 
of the data in score-based models [5], serves as a guiding 
factor for the forward (where noise is added to the data) and 
reverse (where the data are recovered from noise) processes 
utilizing stochastic differential equations. 

DDPMs are based on the principle of a diffusion process, 
which is a Markov chain that gradually adds noise to data 

over a series of steps. This process transforms data into a 
simple known distribution (typically Gaussian noise). Forward 
diffusion is a fixed process that is not learned, whereas the 
reverse process is learned by a neural network trained to 
predict the noise added at each step of the forward process. 
The model can reconstruct the original data from noise via 
iterative denoising. 

DDIMs modify the traditional diffusion process to facilitate 
efficient and deterministic generation of samples [4]. In 
contrast to DDPMs, which explicitly model noise at each step 
of the diffusion process, DDIMs use an implicit modeling 
approach. Consequently, DDIMs can define a deterministic 
trajectory for the reverse process (from noise to data) without 
explicitly modeling the noise distribution at each step. The 
deterministic non-Markovian reverse process of DDIMs is 
one of its unique features. The reverse process involves the 
addition of a small amount of random noise at each step in 
DDPMs, making the process inherently stochastic. In contrast, 
DDIMs follow a deterministic path. Consequently, the output 
remains the same, given a starting noise. DDIMs can generate 
samples more rapidly, while ensuring minimal changes in the 
quality of the generated image. This is particularly beneficial 
for reducing computational overhead. 

Large Language Model (LLM)

LLMs, such as ChatGPT and GPT-4 [16], are based on 
transformer architecture [42]. The transformer, the core 
component of LLMs, enables these models to understand 
and generate human-like text. Words are processed 
simultaneously in the transformer, rather than one after the 
other, which makes it a great tool for understanding the 
context of a language. Transformers use a mechanism known 
as “attention” to weigh the relevance of different words 
when generating responses or predictions. LLMs train on 
vast amounts of text data and scale the model architecture 
to a larger size.

GPT is an LLM that uses a transformer decoder, a specific 
part of the transformer architecture. As it comprises a 
decoder-only architecture, it resembles an expert chef who 
does not have to learn a specific recipe (encoder) since they 
have already learned hundreds of recipes. Consequently, 
GPT-based LLMs [6-8,16], such as ChatGPT and GPT-4, can 
effectively generate human-like text by combining the power 
of the transformer decoder with the broad knowledge learned 
from extensive training data. GPT can generate texts based 
on a description or a single or few examples. Figure 5 presents 



230

Kim et al.

https://doi.org/10.3348/kjr.2023.0818 kjronline.org

zero-shot, one-shot, and few-shot generation examples of GPT. 
Bidirectional Encoder Representations from Transformers 

(BERTs) [10] are pre-trained models that use the bidirectional 
encoder of the transformer architecture, which facilitates the 
consideration of the left and right contexts during training. 
BERT is trained on a process known as the masked language 
model, which masks random words in a sentence. The model 

predicts the masked words based on the context provided 
by the surrounding sentences and words. This process has 
enabled BERT to capture deep contextual representations, 
resulting in superior performance in various NLP tasks. BERT is 
a powerful tool for NLP tasks, such as language understanding, 
sentiment analysis, and question-answering systems, owing to 
its ability to understand context.

Fig. 4. 2D slice-wise generation of 3D CT volume using the mask inpainting technique of the denoising diffusion probabilistic model 
sampler. A: Training 3D diffusion model. B: 3D slice generation using diffusion sampling. D = dimensional, CT = computed tomography, st = 
tth slice of CT image, Mask for st = empty mask for generative inpainting to generate st slice

A

B
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GPT and BERT are built on the transformer architecture and 
utilize attention mechanisms, which significantly improve 
NLP tasks. These models have facilitated the completion of 
more accurate and context-aware language-modeling tasks, 
making them valuable assets in the domain of NLP. The 
capabilities of these models have given rise to new avenues 
for various applications, from the generation of coherent text 
to understanding and processing languages in a meaningful 
and contextually relevant manner. LLMs can help create 
a patient-friendly language for reports and discussions, 
improve communication with patients, and enhance the 
understanding of medical conditions and imaging results 
among patients [43-45].

Large Language Model to Vision-Language Model 
VLM [46] has been introduced as an AI model that 

combines the power of natural language understanding 
with images or visual understanding in recent years. VLMs 
function by learning from a large amount of text and image 

data in a manner similar to that of a student learning by 
reading books and text accompanied by pictures. Owing 
to their ability to quickly analyze medical reports and 
images simultaneously, these models can be used as aids by 
radiologists.

The tasks performed in the field of VLM, which is a 
multidisciplinary field that combines computer vision and 
NLP, can be classified into two main categories: generation 
and perception.

Generation tasks can be grouped into four categories: 
visual question answering (VQA), visual reasoning, visual 
captioning, and visual generation. Figure 6A presents the 
generation tasks in VLM. AI models are presented with a 
visual input (an image or video) and a question related 
to the input in VQA [47]. The AI model provides correct 
responses based on its understanding of the questions and 
visual input. Visual reasoning requires the deduction of 
cognitive insights or commonsense knowledge from images 
by the AI models [48]. AI models create relevant and 

Fig. 5. Description of zero-shot, one-shot, and few-shot generation and prompting. A: Description of zero-shot, one-shot, and few-shot 
generation. B: Prompting examples.

A

B
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descriptive captions for the visual inputs provided in visual 
captioning [49]. Visual generation involves the generation 
of visual output from a given textual input [50].

Perception tasks can be grouped into three categories: 
image recognition, visual grounding, and visual retrieval. 
Figure 6B presents the perception tasks in VLM. contrastive 
language-image pretraining (CLIP) [51] and a large-
scale image and noisy-text embedding (ALIGN) [52] have 
transformed traditional image recognition tasks into 
language-vision tasks via image recognition, thereby enabling 
the recognition of unseen concepts by AI. Visual grounding 
involves the prediction of the bounding box that corresponds 
to a text query within an image [53,54]. Image-text retrieval 
involves the retrieval of the most relevant text or image from 
a large corpus based on the query provided [55].

General segmentation with prompting uses textual prompts 
to guide the AI in the identification and outlining of specific 
parts of an image. The Segment Anything Model (SAM) 
developed by Meta [56] has exhibited notable performance in 
this area. This approach can also be applied to the domain of 
medical imaging [57-61], making it a promising avenue for 
future research.

Outlook of Foundation Models in Radiology
A foundation model is a large model that is pre-trained 

on a vast amount of data. Foundation models can be used 
for diverse downstream tasks via fine-tuning or zero-shot 
methods [62]. Representative language foundation models 
include BERT [10] and the GPT series [6-8]. Several multi-
modal foundation models of VLM, such as DALL-E [17,18], 

A

B

Fig. 6. Generation and perception tasks of language-vision models. A: Generation language-vision models. B: Perception language-vision 
models. CXR = chest radiograph
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Flamingo [63], and Florence [64], have also been introduced.
A research team from Microsoft recently reported a 

significant breakthrough in the biomedical domain with 
the introduction of LLaVA for BioMedicine (LLaVA-Med), 
a VLM [65]. A research team from Google introduced its 
counterpart, Med-PaLM, around the same time [66]. These 
foundation medical VLMs leverage the ability to understand 
images and interpret text to perform various tasks in the 
domain of biomedical imaging. The primary objective of 
these models is to assist in answering open-ended research 
questions related to biomedical images. To this end, the 
models learned from a vast biomedical figure-caption dataset 
extracted from PubMed Central, a large biomedical literature 
database. The training of LLaVA-Med was performed using 
a curriculum learning method, wherein learning tasks 
are presented in a sequence of increasing difficulty, in a 
manner similar to how humans learn, starting with simple 
concepts and progressing to more complex ones. The model 
initially focused on aligning biomedical vocabulary using 
figure-caption pairs. Subsequently, the model learned to 
understand open-ended conversational semantics using the 
data generated by GPT-4, another powerful AI language 
model. This training process enabled the model to acquire 
biomedical knowledge gradually, in a manner similar to how 
a layperson learns. This led to the development of an AI 
system capable of answering inquiries regarding biomedical 
images and open-ended research questions. These foundation 
models of VLMs perform well on standard biomedical VQA 
datasets [65,66]. The advantage of this system lies in its 
multimodal approach, as it can comprehend textual and 
visual information. 

Attempts have been made to construct such foundation 
models in the field of radiology. One group of researchers 
trained a vision foundation model on 100 million medical 
images, including radiographs, CT images, MR images, and 
ultrasound images [67]. Another group of researchers trained 
a self-supervised network on 4.8 million chest radiographs 
[68]. However, the networks were not scalable despite these 
studies training their networks on a vast amount of data and 
demonstrating their diverse utility. A foundation VLM was 
implemented in the field of radiology in a recent study [69].

Potential and Application of Generative Models 
in Clinical Imaging Research

Generative models have demonstrated versatility in 
numerous tasks, such as denoising, image reconstruction, 

and vital image analysis. Moreover, they have also been 
utilized in a technique called “inversion” to transform real 
data, such as images, into a latent space representation. 
These models have emerged as a promising approach that 
can address multiple challenges in medical research by 
generating medical data.

Denoising, Image Reconstruction, Inter-Modality 
Synthesis, and Imaging Analysis Tasks

Promising applications of GAN in the field of radiology 
include image quality improvement via post-processing 
and faster image acquisition. Radiation exposure and 
the increased risk of developing cancer associated with 
CT image acquisition are obstacles faced in the field of 
radiology. Deep learning-based image reconstruction, 
particularly using GANs, may be a potential solution to 
overcome this obstacle. Successful applications of GANs 
include CT denoising [70,71], artifact reduction [72], 
and improving the accuracy of radiation therapy planning 
[73,74]. MRI modalities often require long acquisition 
times. Deep learning techniques, including GANs, have 
been used to enable high-quality image reconstruction from 
undersampled k-space data [75-77], effectively speeding up 
MRI acquisition and improving image quality. In addition, 
GANs have also been utilized to convert low-magnetic-field 
MR images into high-magnetic-field MR images [78].

Intermodality synthesis, which has been used extensively 
to optimize imaging processes, involves converting images 
between different modalities or sequences [79]. GANs play a 
crucial role in this process and have been used to synthesize 
CT images from MR images [80,81], thereby reducing 
radiation exposure and diminishing the requirement for 
additional image acquisitions. GANs can also compensate for 
missing MRI sequence data [82] and support training across 
multiple modalities [83], thereby facilitating image analysis 
across various modalities and sequences.

GANs are versatile and effective tools for advancing 
medical imaging and analysis. Moreover, they have 
effectively improved the deep learning performance for 
various radiology tasks, including lesion detection, organ 
segmentation, and the prediction of patient outcomes, via 
data augmentation [84-89]. GANs have also been used in 
image registration to yield more accurate results. They have 
been used successfully in MR-to-transrectal ultrasound image 
registration and image registration of MR and CT images for 
thoracic and abdominal organs [90,91]. Furthermore, GANs 
have also been used to identify abnormal lesions in medical 
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images by learning the data distribution of normal images 
via unsupervised or semi-supervised learning [92-97]. The 
progression of Alzheimer’s disease has been modeled using 
GANs via the utilization of MRI data to predict disease 
changes over longitudinal examinations [98]. 

Diffusion models have been used effectively in various 
CT imaging applications, such as CT denoising [99-102], CT 
kernel conversion [103], and accelerating MRI acquisition 
time [104-106]. Diffusion models have also demonstrated 
potential for intermodality synthesis, notably generating 
synthetic CT images from MR images [107-109]. Moreover, 
these models have been applied to other domains of 
radiology, such as automatic lesion and organ segmentation 
[110-113], image registration [114], and anomaly detection 
[115-119]. 

Inversion of Generative Models 
Certain real data (e.g., images) can be inverted into a 

latent space using a technique known as inverse mapping of 
generative models or inversion of generative models [120]. 
The inverted latent features are manipulated and edited 
subsequently [121-123]. Figure 7 presents an example of the 
manipulation of an inverted latent feature and the editing of 
the images using the generative model inversion technique. 
GANs have been used for inversion in the medical domain. 
Ren et al. [124] used GAN inversion to generate tumor-like 
stimuli with specific shapes, sizes, and realistic textures 
in mammograms in a controlled manner. Fetty et al. [125] 
reported that GAN inversion can be used to manipulate the 
imaging modality (MRI to CT and vice versa) and sex of the 
patient. Lee et al. [126] demonstrated that GAN inversion 
can be used to control the presence and severity of a disease 
by manipulating the latent space. These findings indicate 
that GAN inversion can address important issues of deep 
learning in medical imaging and help develop other deep-
learning networks by providing images of diverse disease 
severities. 

Solving Clinical Research Challenges using Generative 
Model-Based Synthetic Data

Stringent regulations, such as the Health Insurance 
Portability and Accountability Act (HIPAA) in the United 
States and the General Data Protection Regulation (GDPR) in 
Europe, have restricted the sharing of sensitive patient data, 
thereby impeding the creation of comprehensive datasets for 
research [127,128]. Synthetic data sharing has safeguarded 
patient privacy and facilitated research collaboration [129]. 

Imbalances in medical datasets, particularly in datasets of 
underrepresented rare diseases, can skew machine-learning 
predictions. Synthetic data has been used to rectify this 
imbalance using methods such as the synthetic minority 
oversampling technique (SMOTE) by addressing class 
imbalances [130]. Health inequities are amplified by real-
world data bias caused by factors such as age, sex, and 
socioeconomic status. DEbiasing CAusal Fairness (DECAF) 
mitigates this bias by leveraging causal structures to 
synthesize fairer data [131]. Synthetic data, which have 
been used in clinical simulation tests for AI models in 
diverse settings, aid in identifying and rectifying potential 
errors before deployment, thereby minimizing “alert fatigue” 
and bolstering trust in AI models [132]. Synthetic control 
arms utilizing external patient-level data are efficient and 
ethical alternatives that can be used in clinical trials to save 
resources [133,134].

Pitfalls and Limitations of Generative AI

Generative AI models have demonstrated impressive 
capabilities in the field of medicine. However, despite their 
notable strengths, these models are associated with several 
limitations and potential drawbacks that warrant careful 
consideration during their application. 

First, mode collapse, a phenomenon wherein the generator 
fails to provide a wide array of outputs, is a primary 
limitation of GANs that often results in repetitive samples 
or a limited set of variations [135-137]. This limitation 
influences the diversity and richness of the generated data. 

Second, the production of high-quality and accurate 
samples that mirror the complexity of medical training data 
remains a challenge. The output may lack coherence or 
exhibit artifacts in some instances, which can undermine 
its reliability and usability in medical applications 
[31,138,139]. 

Third, these models tend to assimilate the biases present 
in the training data, which can lead to overfitting issues 
and a limited ability to generalize to new or unseen medical 
datasets. The assessment of the uncertainty or reliability 
of the generated medical samples is a significant challenge 
that hinders the quantification of predictive confidence and 
impacts their reliability in critical decision-making processes 
in healthcare. 

Fourth, ethical concerns regarding the use of these 
models to generate false or misleading medical information, 
which can compromise authenticity and trustworthiness, 
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have arisen. 
Fifth, the computational demands for training these 

models are substantial and require significant resources 
and time, thereby limiting their accessibility and 
scalability, particularly in resource-constrained healthcare 
environments. 

Sixth, the interpretability and control of these models 
remain challenging, particularly in complex architectures 
such as GANs. The opaque nature of these models impedes 
their fine-tuning, understanding, and decision-making 
processes, which limits their practical applications in 
medical research and clinical settings [11]. Hallucinations, 
characterized by the generation of unrealistic or spurious 
outputs, challenge the credibility and reliability of generated 
content [140,141]. The outputs, while resembling authentic 
data, may contain elements or details that are absent in the 
training data, posing risks to medical decision-making and 
research. 

Lastly, robust generalization of these generative models 

to unseen medical data distributions remains a challenge 
that must be surmounted to enable their reliable and 
ethical use in medical research, diagnosis, and treatment 
planning.

Thus, the adoption of generative AI in clinical practice 
should be monitored by experts who can determine the 
reliability of the generated results. Furthermore, physicians 
and researchers in the medical field should be aware of 
the pitfalls and limitations of generative AI and exercise 
caution while implementing them. Guidelines for the use 
of generative AIs may facilitate a more comprehensive 
understanding of their advantages and pitfalls [142-144].

CONCLUSION

The landscape of generative AI models encompasses 
various categories, including vision models (VAEs, GANs, and 
diffusion models) and language models (LLMs and VLMs). 
Each category comprises variants and applications tailored 

A

B

Fig. 7. Manipulating the inverted latent feature and editing images with the GAN inversion. GAN = generative adversarial network, x = 
dataset consists of real images, x’ = dataset consists of generated images, W = latent space of dataset x mapped by the inversion encoder, 
z = latent feature of the real image, nt = editing parameter of latent feature z, z + nt = edited latent feature z
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for specific tasks, particularly medical imaging and analysis. 
LLMs, such as ChatGPT and GPT-4, built on the transformer 
architecture, excel in human-like text generation. In 
contrast, BERT, which is based on transformers, focuses on 
bidirectional language understanding. Recent advancements 
in VLMs have facilitated the execution of tasks, such as VQA, 
image recognition, and retrieval.

Generative models can significantly enhance image quality 
in clinical research, expedite MRI acquisition, generate 
synthetic data for rare diseases, and alleviate concerns 
regarding patient/data privacy in clinical AI research. 
Furthermore, the inversion of generative models facilitates 
the manipulation and editing of features within the latent 
space, thereby offering insights into latent representations, 
enabling control over data generation, and supporting 
various image manipulation tasks in the field of medicine.

Nevertheless, despite these benefits, generative AI is 
associated with multiple challenges, such as mode collapse, 
bias amplification, interpretability issues, computational 
demands, ethical concerns, and the potential to generate 
unrealistic data (hallucinations). Expert validation and 
awareness of these limitations play a crucial role in ensuring 
its responsible use in the medical context. Striking a 
balance between the potential benefits and disadvantages 
of generative AI is essential for the ethical and effective 
integration of these models into healthcare and research 
practices.
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