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Abstract

Proteins are the key molecular machines that orchestrate all bio-
logical processes of the cell. Most proteins fold into three-
dimensional shapes that are critical for their function. Studying
the 3D shape of proteins can inform us of the mechanisms that
underlie biological processes in living cells and can have practical
applications in the study of disease mutations or the discovery of
novel drug treatments. Here, we review the progress made in
sequence-based prediction of protein structures with a focus on
applications that go beyond the prediction of single monomer
structures. This includes the application of deep learning methods
for the prediction of structures of protein complexes, different
conformations, the evolution of protein structures and the appli-
cation of these methods to protein design. These developments
create new opportunities for research that will have impact across
many areas of biomedical research.
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Introduction

Predicting protein structure from sequence information has been a
long-standing challenge in the field of molecular biology. The
ability to accurately predict protein structure from sequence
information alone would have far-reaching implications for our
understanding of biological processes as well as disease and for
developing new drugs and therapies.

Historically, one approach to predicting protein structure from
sequence information has been homology modeling (Browne et al,
1969). This method relies on the assumption that proteins with
similar sequences will have similar structures. By identifying a
known protein structure that shares sequence similarity with the
target protein, a model of the target protein’s structure can be built.
In addition to homology modeling, researchers have also explored
the use of co-evolutionary information to predict protein structure.
This approach is based on the observation that residues in a protein
that are in close spatial proximity often co-evolve (Göbel et al,

1994; Benner and Gerloff, 1991). By analyzing patterns of co-
evolution in multiple sequence alignments, it is possible to infer
residue-residue contacts and use this information to predict protein
structure. The development of prediction methods has progressed
steadily over the years including improvements in obtaining residue
distance constraints from multiple sequence alignments (Thomas
et al, 2008; Dunn et al, 2008; Bartlett and Taylor, 2008; Wang et al,
2017) and in using this information for the prediction of 3D
structures (Senior et al, 2020; Xu, 2019; AlQuraishi, 2019). These
advances and their historical perspective have been reviewed
elsewhere (AlQuraishi, 2021; Laine et al, 2021; Elofsson, 2023) and
can be summarized by an increase in usage of neural network
models along key parts of the protein structure prediction problem.
These developments have led to the notable advance demonstrated
by AlphaFold2 that has achieved very high accuracy in sequence-
based structure prediction.

In this Review, we will discuss the recent developments and
applications of deep learning-based methods for protein structure
prediction and design.

Artificial Intelligence for sequence-based
structure prediction

DeepMind showcased the results of AlphaFold2 in the 14th CASP
conference in December of 2020. This led to a flurry of activity
from different research groups resulting in several end-to-end deep
learning models for sequence-based protein structure predictions.
These are split into two main groups: alignment-based predictors—
e.g., AlphaFold2 (Jumper et al, 2021), RoseTTAFold (Baek et al,
2021), and OpenFold (Ahdritz et al, 2022)—and protein language
model-based predictors—including RGN2 (Chowdhury et al,
2022), ESMfold (Lin et al, 2023), OmegaFold (Wu et al, 2022),
and EMBER2 (Weissenow et al, 2022). AlphaFold2 takes as inputs a
multiple sequence alignment (MSA) and an initial set of pairwise
distance measurements that could be optionally initialized via a
structural template from a homologous sequence. The architecture
is composed of two stages. The first stage processes the MSA and
pairwise distances through repeated layers of a transformer-based
neural network block dubbed Evoformer. The second stage is a so-
called structure module that represents the rotation and translation
for each protein residue. Each residue is represented as a triangle of
the 3 backbone atoms (nitrogen, alpha-carbon, carbon) and
the neural network has learned to move these triangles to the
correct place in 3D space to form the predicted structures. The
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improvements derived from this and other architectures have been
reviewed elsewhere (AlQuraishi, 2021) but one critical point is that
these models are able to learn how best to extract co-evolution
information from a multiple sequence alignment in order to predict
distances between residues and the final structure. Removing the
possibility of using structural templates has a minimal impact on
model performance (Jumper et al, 2021).

RoseTTAFold (Baek et al, 2021) was an explicit attempt to design a
model inspired by DeepMind’s presentation of AlphaFold2 at
CASP14, at a point when it was unclear if the details of the model
were going to be publicly released. The model had a three-track neural
network that processes MSA, pairwise distance, and 3D coordinate
information simultaneously to produce structure predictions with
accuracies that were approaching those of AlphaFold2. A more recent
implementation of RoseTTaFold brings its accuracy closer to
AlphaFold2 and extends its capabilities to the prediction of RNA
and DNA structures (Baek et al, 2024). Finally, OpenFold (Ahdritz
et al, 2022) is a reimplementation of AlphaFold2 that has the same
architecture but having the code available as well as the data required
for re-training. The OpenFold implementation also contains some
technical improvements that improve speed and memory usage
efficiency. The possibility to retrain this model has already been
important to gain insight into what the model has learned and to adapt
it for specific applications (as discussed in further detail below). Even
though most of these approaches work by integrating co-evolutionary
information and structure, there are still differences in their
performance. Additional research will determine which specific design
decisions are critical for performance.

The major input signal for the models described above is the
multiple sequence alignment with the depth of the alignment
impacting on the accuracy of the models. However, there are several
proteins for which an MSA will not be available. Among others, these
include proteins that: have been recently evolved; are rapidly evolving,
are designed, or those with rearrangements. Protein language model-
based predictors have been developed that aim to replace the need for
an MSA with high-dimensional representations of protein sequences
that are learned from the protein sequence universe. Protein language
models (e.g., epiBERTope (Park et al, 2022), ESM (Rives et al, 2021),
ProtTrans (Elnaggar et al, 2022), or ProteinBERT (Brandes et al,
2022)) are neural network models that are trained on predicting
masked amino-acids from a very large number of protein sequences.
As observed with large language models that have been popularized by
chat bots, the simple task of learning masked words has led to models
that read and write the language. Similarly, these protein language
models capture a representation of protein sequence space that can be
passed on to neural network models capable of using this representa-
tion to predict protein structure. RGN2, ESMfold, OmegaFold, and
EMBER2 are examples of such models that vary in the protein
language model used and how these protein sequence representations
feed into the structure prediction. All of these models have in common
that, in comparison to AlphaFold2, they have a simplified architecture,
can run much faster but do not reach the same level of performance
when an MSA is available (Elofsson, 2023). These different models
have yet to be compared directly on extensive benchmarks but given
their speed, they offer the possibility of being applied on a larger scale.
As an example, the ESMfold has been used to make predictions for
over 700 million proteins (Lin et al, 2023).

Choosing which model to use will depend on the user’s
application. For predicting individual structures, the user is better

off using AlphaFold2 and putting a larger effort on improving the
multiple sequence alignment. For most cases, ColabFold (Mirdita
et al, 2022) has modified AlphaFold2 and other methods to run at
reduced computational cost with minimal loss in accuracy. Further,
ColabFold can fold sequences of up to 1000 residues on Google
Colaboratory, without any computational requirements for the
user. For individual examples where other approaches are
unsuccessful, aggressive sampling as implemented in AFSample
(Wallner, 2023) would have the highest chance of success at the
expense of significantly more computational resources. Finally, in
the absence of an MSA or for very large scale applications, one of
the protein language models is likely better suited to the task.

Opening the black box: what have these
models learned

Deep learning methods are complex models with a very large
number of parameters which are often described as “black box”
models given the difficulty in studying how the models make their
predictions and what they have learned. During the training
process, the OpenFold team has studied what information their
model captured at intermediate steps of the training process
(Ahdritz et al, 2022). Independent training runs tended to follow a
similar progression where, within the initial steps, the model
learned a 1D representation of the structure, followed by 2D and
3D phases of learning that reached reasonably accurate backbone
representations. Only then are the representations of the secondary
structural elements fully learned, despite the fact that local
secondary structure can be predicted even from sequence alone.
One of the questions initially raised by the release of AlphaFold2
was the degree of generalization to unseen parts of the protein
structural universe. OpenFold addressed this question by training
the model on very distinct types of structures, leaving out different
protein families or even training on structures composed of single
secondary structure elements. Encouragingly, training on these
subsets revealed that this architecture is quite robust and can
generalize to structures of unseen protein families.

Classical protein structure prediction methods have relied on an
energy function to rank possible solutions by considering different
energy terms such as the contribution of steric clashes, the
formation of hydrogen bonds or electrostatic interactions, etc. To
explore if AlphaFold2 may have learned an energy function, Roney
and Ovchinnikov used it to rank different related template
structures without providing an MSA (Roney and Ovchinnikov,
2022). This analysis indicates that, in the absence of co-evolution
signals, AlphaFold2 can rank which structural templates are a
better fit to a sequence, suggesting that this model has also learned
something akin to an energy function. Additional explorations of
these models will be needed to better understand what aspects of
biophysics may have been incorporated into them and at what stage
of the training process these are acquired.

Protein structure comparisons empowering
evolutionary studies

The development of high-confidence sequence-based structure
predictions opens the door for the prediction of structures for large
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parts of the protein universe. While the unique proteins with solved
structures represented in PDB are on the order 100,000, the protein
sequences available for analysis are on the order of billions.
Currently, the AlphaFold database contains 217 million structures
predicted by AlphaFold2 and the ESMfold Metagenomic Atlas
contains predicted structures for 772 million proteins. This
dramatic increase in the available predicted structures should
empower many studies, including the study of diversity of the
protein structural universe, the evolution of protein sequences,
structures and function, and the potential discovery of novel
enzymes. However, analyzing such large numbers of structures also
requires the development of highly efficient computational
approaches. Even accounting for some high level of redundancy
in the sequence databases, such methods would need to be
applicable to the scale of tens to hundreds of millions of structures.
Examples in this context include the development of efficient
methods for pocket comparison (Simonovsky and Meyers, 2020),
comparison of protein structures (van Kempen et al, 2023; Durairaj
et al, 2020), clustering of protein structures (Barrio-Hernandez
et al, 2023) and compression of structural data files (Kim et al,
2023).

The 365,000 structures that were first released in the AlphaFold2
database led to initial attempts of clustering and characterization. A
proof-of-principle analysis showed that clustering of these struc-
tures based on the similarity of their structural elements could be
used to recover groups of known protein families, supporting the
use of such approaches for evolutionary studies (Akdel et al, 2022).
A protein family analysis of these same structures suggested that
around 92% of the predicted domains within this set matched
already known superfamilies (Bordin et al, 2023). Recently, an
efficient clustering method was used to cluster the 217 million
structures in AlphaFold DB, leading to the identification of 2.27 M
non-singleton clusters (Barrio-Hernandez et al, 2023). While 31%
of these clusters were deemed to represent likely novel structures,
these clusters lacking annotations only cover 4% of all proteins in
the database. These observations would suggest that the majority of
protein structures have, at least partial matches to known protein
families. However, the diversity of shapes and functions within each
cluster can still be of interest. In addition, these clusters were used
for evolutionary studies, identifying cases of remote structural
similarity between eukaryotic and prokaryotic structures where
sequence-based methods would not easily identify a link.

Protein complexes and integrative
structural modeling

While AlphaFold2 was trained to predict the structures of
individual proteins, co-evolutionary information has been used to
predict protein-protein interactions since the development of direct
coupling analysis algorithms (Weigt et al, 2009). Earlier deep
learning methods like Raptor-X (Jing et al, 2020) were making use
of protein-interaction contact site predictions for predicting
complex structures and it was therefore not unexpected that
roseTTAFold and AlphaFold2 could also be applied to this
challenge (Mirdita et al, 2022; Akdel et al, 2022; Evans et al,
2021; Ko and Lee, 2021; Bryant et al, 2022a). Multiple independent
reports have benchmarked the capacity of AlphaFold2 to predict
the structures of complexes and attempted to improve its

performance at this task either by improving the correct species
pairing of sequences for both proteins in the MSA (Bryant et al,
2022a) or by explicitly training the models on structures of protein
complexes (Evans et al, 2021). When comparing against experi-
mental structures, these methods have reported correct predictions
of the interface running between 50 to 70% of the cases. In
addition, the size of the predicted interface and the confidence
estimate for the residues at the interface can be used to rank the
predicted models according to an estimated accuracy (Bryant et al,
2022a). It is important to note that this estimated accuracy only
relates to cases when it is known that two proteins interact via a
direct interface. The prediction accuracy for protein pairs that may
or may not include direct interfaces will be lower than the accuracy
described above. This can be somewhat circumvented by using the
estimated confidence values from the predicted models but should
be considered even when deciding what protein pairs to attempt to
model. These methods have been applied on a larger scale to
predict the structures for previously known protein interactions for
S. cerevisiae, B. subtilis, and human (Humphreys et al, 2021;
O’Reilly et al, 2023; Burke et al, 2023), showcasing how these can be
applied for example to predict the impact of mutations at protein
interfaces. Given the combinatorial nature of protein interactions,
using these methods on all known or predicted protein interactions
in a species remains resource intensive. The faster protein
language-based models, once adapted to this problem, may serve
as a useful screening method that could be applied on a very
large scale.

The prediction of complexes containing larger numbers of
proteins remains challenging due to computer memory limitations
in these methods. Given these limitations, an approach (see Fig. 1A)
has been to predict models for pairs or triplets of proteins in the
same complex and develop a strategy to assemble them by
superimposition (Burke et al, 2023; Bryant et al, 2022b). These
studies have pointed out some limitations, including the need of
prior knowledge on the stoichiometry of subunits within the
complex and the higher error rates for correct placement of
paralogous subunits within the same complex.

The availability of predicted structures for monomers and
complexes can also be used as part of pipelines for integrative
structural modeling. In integrative modeling of protein complexes,
different data modalities are used as restraints in order to score the
possible conformations of represented molecules of interest (see
review (Ziemianowicz and Kosinski, 2022)). In this application,
even the predicted monomer structures are of high interest since
they can be used to fit predicted atomic structures for specific
proteins in lower-resolution experimental data of larger assemblies.
A notable recent example of this was the combination of
AlphaFold2-based predictions with cryo-electron tomography data
to solve a 70-megadalton model of the human Nuclear Pore
Complex (NPC) (Mosalaganti et al, 2022).

From single structures to ensembles

Proteins are dynamic and can exist in different conformations.
Despite this, AlphaFold2 and related methods have been trained to
produce a single structural representation for a given protein
sequence. Early studies suggested that AlphaFold2 could not
predict the structural changes of mutated sequences (Buel and
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Walters, 2022) or different conformation of proteins that are
known to change in structure when bound to a small molecule
(Saldaño et al, 2022). However, this was based on multiple runs
with the same parameters. Several independent groups then
reported success in predicting different conformations by provid-
ing, in different runs, an MSA with a smaller set of random
sequences from the full alignment (Del Alamo et al, 2022b) (see
Fig. 1B). Presumably, such random down-sampling of the
alignment may expose co-evolution signals that predispose the
prediction towards different conformations. In addition to uniform
down-sampling of the alignment, other strategies include the
mutation of residues in the alignment that correspond to positions

of contact within the structure (Stein and Mchaourab, 2022) or
down-sampling of the alignment after clustering the sequences
(Wayment-Steele et al, 2024). Down-sampling the MSA by
selecting them from a sequence clustering method was shown to
substantially improve the prediction of known alternative con-
formations when compared to uniform random down-sampling.
In all cases, the methodology follows a similar strategy: generating a
large number of predictions with different perturbations of
the alignment; grouping predictions by structural similarity to
identify high-confidence predictions that are different from each
other; comparing with existing structures or external sources
of data.

Figure 1. Example applications of AlphaFold2 beyond single protein structure prediction.

(A) Alphafold2 has shown to be capable of predicting structures for binary protein complexes but predicting structures for larger assemblies remains challenging. A
suggested procedure has been to predict the structures for possible sub-complexes and then combine them using superimposition of common subunits (see main text).
(B) While AlphaFold2 is trained to predict a single conformation, it has been shown that subsampling of the alignment that serves as the main input, can result in the
prediction of different conformations that sometimes resemble known conformations.
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The prediction of different conformations has now been
successfully applied in a number of different systems (see review
(Sala et al, 2023)), including transporters and GPCRs (Del Alamo
et al, 2022b), different “metamorphic” proteins (KaiB, RfaH, Mad2)
(Wayment-Steele et al, 2024), small molecule binding proteins
(adenylate cyclase, ribose binding protein, tryptophan synthase)
(Casadevall et al, 2022; Stein and Mchaourab, 2022), and proteins
with pockets that open in specific conformations (i.e cryptic
pockets) (Meller et al, 2023). In one case, the analysis and
perturbations of the alignments were used to predict specific
mutations that could result in a change of the preferred
conformation (Wayment-Steele et al, 2024). Not all attempts at
predicting known alternative conformations were successful and it
is unclear how the success rate depends on the representation of the
different conformation in the training data. Nevertheless, these
results indicate that AlphaFold2 and related methods might have
the capacity to predict different conformations and can be
combined with orthogonal sources data (del Alamo et al, 2022a).
However, it is likely that better methodology may be developed,
using deep learning models that are specifically trained for the
purpose of predicting alternative conformations.

In related efforts, the distributions of inter-residue confidence
estimates predicted by AlphaFold2 have been used to construct
structural ensembles of intrinsically disordered proteins (Faidon
Brotzakis et al, 2023). Alternatively, AlphaFold2 confidence scores
have been combined with elastic networks to generate structural
ensembles (Jussupow and Kaila, 2023).

Advances in deep learning methods
for protein design

Protein design aims to generate proteins with a pre-determined
shape and/or function with great potential for the rational design of
enzymes, scaffolds, high-affinity binders, and other functions of
biotechnological or therapeutic value. Rational protein design can
be seen as the inverse problem of sequence-based protein structure
prediction where the objective is to predict a sequence that will
have a pre-determined structure or function. Traditionally, this has
been achieved by computational protocols that can search through
favorable sequences that are ranked according to a physics inspired
energy function (review in (Kuhlman and Bradley, 2019)). As for
protein structure prediction, deep learning neural network models
have been recently applied to dramatically improve on the capacity
to design proteins with diverse characteristics (Anand et al, 2022;
Strokach et al, 2020; Huang et al, 2022; Anishchenko et al, 2021;
Madani et al, 2023; Verkuil et al, 2022; Watson et al, 2023). Recent
approaches have adapted similar architectures used for protein
structure predictions for the generative task of protein design
leading to order-of-magnitude increases in success rates. High
experimentally confirmed rates have been reported on the design of
proteins with pre-defined backbones (67% success rate measured as
solubility and monomeric state) (Verkuil et al, 2022), novel
sequences for an existing enzyme family (73%) (Madani et al,
2023), pre-defined oligomerization states with novel proteins
(11.5%), novel ion binding proteins (40%) and binders to specific
target proteins (18%) (Watson et al, 2023). Importantly, the
controllability of the designs has also improved substantially
(Watson et al, 2023; Hie et al, 2022) whereby the target protein

can be steered by easy to implement user defined constraints. These
can, in principle, be tuned to any function for which the target
sequence and/or structure can be measured against. It is important
to note that these success rates are not strictly comparable due to
the differences in defining success for different design tasks and
that it remains to be seen if these success rates can be easily
replicated in different labs.

Perspective

AlphaFold2 and related methods have made great progress at
predicting structures for well folded single-domains, and made
significant advances in other areas such as protein-protein
interactions. One major aspect of AlphaFold2’s success lies in
combining PDB structures with co-evolutionary signals derived
from large protein sequence databases in an end-to-end differenti-
able way. We think these approaches have the potential to be
extended in several directions.

Several mass-spectrometry (MS) assays, such as cross-linking
(XL-MS), hydrogen deuterium exchange (HDX-MS), limited
proteolysis-coupled mass spectrometry (LiP-MS), can capture
information on regions that are in close contact, freely accessible
to the solvent or that change in accessibility under some conditions.
AlphaFold2 has already been adapted to use in-cell cross-linking
information for improved protein modeling (Stahl et al, 2023) and
this could be further generalized to consider other sources of
constraints that could include the above mentioned MS methods
and also constraints from structural methods such as NMR, x-ray
crystallography and cryo-EM.

In addition to proteins, it is likely that methods related to
AlphaFold may be extendable to other types of molecules.
RoseTTAFold has been adapted to predict protein-nucleic acid
complexes (Baek et al, 2024). RoseTTAFoldNA has already
improved the state of the art despite the low number of available
nucleic acid structures. Here, further improvements could be
obtained by integrating data from high-throughput protein-nucleic
acid profiling experiments. AlphaFold2-related methods cannot yet
predict protein-small molecule interactions and docking small
ligands into the structure is challenging (Holcomb et al, 2023). A
recent method, DiffDock, shows better performance on computa-
tionally folded structures (Corso et al, 2022), although overall
success rates remain low. Databases such as ChEMBL contain
binding information on a non-overlapping set of ligands and
targets (Liu et al, 2015), although without structural information.
Nevertheless, similarly to the co-evolutionary signal from Uniprot,
an end-to-end differentiable pipeline combining PDBbind—a
collection of measured binding affinity data for complexes
deposited in PDB—with small-molecule binding data could
improve protein-small molecule complex predictions.

In addition, the current approaches are limited to predicting a
single structure per input sequence (Lane, 2023). Prediction of
multiple discrete confirmations is possible in some cases, but
complex dynamics such as predicting the exact folding pathways is
beyond the reach of current methods (Outeiral et al, 2022). Here,
trajectories from molecular dynamics simulations could be used as
complementary training input. Early results suggest that this is
possible, and can generalize to systems beyond the training set
(Janson et al, 2023).
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The combination of improvements in experimental and
computational approaches is leading to a revolution in structural
biology whereby structural information is expected to cover the full
proteomes of key species of interest. In Fig. 2, we combine
AlphaFold2 models with experimental structures for proteins in the
early steps of EGF pathway activation. In this example, the
AlphaFold2 models helped in particular in visualizing the long
unstructured regions which give context to those missing
sequences. While this model is likely to contain many errors it
challenges us to think about the complete atomic details of multi-
component cellular processes. While it is clear to us that this
expanded structural view of the cell should open many possible
research questions it is not yet obvious exactly what the most
promising future directions might be. As an example, future
developments in this area may include the ability to derive reaction
parameters directly from protein sequences/structures in order to
model a system of interest. Structural models have always been a
means towards better understanding the mechanisms of life. It is up
to the research community now to take these advances in bold new
directions.
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Figure 2. Proteome-wide structural systems biology.

Structural details for the initial steps of EFG pathway activation. For representation, the AlphaFold2 predicted structures of pathway components were combined with
experimental structures from years of study of this pathway, including PDB ids: 1egf, 1nql, 1m17, 2jwa, 3njp, 2gs6, 1gri, 1xd2, 3ksy, 5p21, 6xi7, 6q0j, 2y4i, 1pme. The
AlphaFold2 models help complete the missing protein sequence information not represented in the experimental results, in particular for the long unstructured regions.
The example is inspired by similar visualization in PDB-101 (https://pdb101.rcsb.org/learn/exploring-the-structural-biology-of-cancer). It may become possible to use the
protein sequences and structures to derive reaction parameters that would allow us to better understand the mechanisms underlying a system of interest.
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