Received: 14 November 2023

Revised: 5 February 2024

Accepted: 19 February 2024

DOI: 10.14814/phy2.15964

REVIEW

T gl sl PHYSIOLOGICAL REPORTS 8

physiological
Society Sodiety

w

Sepsis-associated encephalopathy: Autophagy and miRNAs
regulate microglial activation

Nannan Qin | Yanmei Miao | Leiyu Xie | Xinglong Ma | Peng Xie

Department of Critical Care Medicine
of the Third Affiliated Hospital (The
First People's Hospital of Zunyi), Zunyi
Medical University, Zunyi, China

Correspondence

Peng Xie, Department of Critical Care
Medicine, the Third Affiliated Hospital
(The First People's Hospital of Zunyi),
Zunyi Medical University, Feng Huang
Road 98, Huichuan Distric, Zunyi,
Guizhou Province, China.

Email: pxie@zmu.edu.cn

Funding information

National Natural Science Foundation
of China, Grant/Award Number:
82060359;82360382; Guizhou
Province Social Development
Project, Grant/Award Number:
Qiankehe[2021]General088; Key
Project of Guizhou Natural Science
Foundation, Grant/Award Number:
QiankeheFundamentalsZK[2022]
Key049; Guizhou Province Excellent
Youth Science and Technology Talent
Project, Grant/Award Number:
QiankehePlatformTalent[2021]
No.5648; Zunyi Excellent Youth
Science and Technology Talent
Project, Grant/Award Number:
ZunyouQingke(2020)No.2; Zunyi
City Joint Foundation, Grant/Award
Number: ZunshiKeheH8Zi(2020)
No.144; Research and Experimental
Development Project of the First
People's Hospital of Zunyi, Grant/
Award Number: YuanKeZi(2020)No.13

Abstract

Sepsis-associated encephalopathy (SAE) describes diffuse or multifocal cerebral
dysfunction caused by the systemic inflammatory response to sepsis. SAE is a
common neurological complication in patients in the middle and late stages of
sepsis in the intensive care unit. Microglia, resident macrophages of the central
nervous system, phagocytose small numbers of neuronal cells and apoptotic cells,
among other cells, to maintain the dynamic balance of the brain's internal envi-
ronment. The neuroinflammatory response induced by activated microglia plays
a central role in the pathogenesis of various central nervous system diseases. In
this paper, we systematically describe the functions and phenotypes of microglia,
summarize how microglia mediate neuroinflammation and contribute to the oc-
currence and development of SAE, and discuss recent progress in autophagy- and
microRNA-mediated regulation of microglial activation to provide a theoretical
basis for the prevention and treatment of SAE and identify related therapeutic
targets.
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1 | INTRODUCTION

Sepsis refers to life-threatening organ dysfunction caused
by dysregulation of the host response to infection by
various pathogens and is one of the main causes of in-
creased mortality in intensive care units (Hollenberg &
Singer, 2021). Sepsis-associated encephalopathy (SAE)
describes diffuse or multifocal cerebral dysfunction of the
brain caused by sepsis in the absence of clinical and labora-
tory evidence of direct infection, structural brain damage,
or other types of encephalopathy (Gofton & Young, 2012;
Ren et al., 2020). SAE is one of the main diseases that
increases the mortality rate of patients in intensive care
units, especially elderly patients; the mortality rate of SAE
increases with severity and can even reach 70% (Catarina
et al., 2021; Iwashyna et al., 2010). Therefore, early diag-
nosis and treatment of SAE are particularly important for
reducing mortality rates.

Currently, the underlying molecular mechanisms of
SAE are unclear, but they may be related to microglial
hyperactivation, neuroinflammation, blood-brain barrier
disruption, oxidative stress, neurotransmitter dysregula-
tion, ischemic hypoxic injury, synaptic dysfunction, and
abnormal blood flow regulation. Neuroinflammation
induced by microglial hyperactivation is the core mech-
anism underlying the pathogenesis of SAE and is likely
one of the main causes of sepsis-associated brain dys-
function (Gao et al., 2022; Mazeraud et al., 2018; Moraes
et al., 2021). Currently, there are no clear diagnostic crite-
ria for SAE; moreover, while inflammation and SAE symp-
toms can be alleviated, there are no specific treatments for
SAE. Therefore, the pathogenesis of SAE needs to be fur-
ther explored, and effective treatment options need to be
developed.

2 | PHYSIOLOGICAL
CHARACTERISTICS OF MICROGLIA

Microglia are glial cells that make up approximately
5%-12% of all cells in the human brain (Jin et al., 2019).
Microglia originate from myeloid progenitor cells (primi-
tive macrophages) in the embryonic yolk sac and are resi-
dent innate immune cells of the central nervous system
(Ginhoux & Garel, 2018; Nayaket al., 2014; Subhramanyam
et al., 2019). Like peripheral macrophages, microglia can
rapidly and efficiently remove pathogens, dead cells, cel-
lular debris, abnormal proteins and small numbers of neu-
ronal cells through phagocytosis, playing an important
role in maintaining the dynamic balance of the central
nervous system and in disease processes, as well as in nor-
mal development of the brain (Borst et al., 2021; Gaudet
& Fonken, 2018; Kierdorf & Prinz, 2017; Subhramanyam

et al.,, 2019). During normal brain development, micro-
glia contribute to brain development and homeostasis by
interacting with various neuronal and nonneuronal cell
types (Mehl et al., 2022). Microglia-mediated synaptic
pruning involves the maintenance of synaptic turnover,
elimination of unwanted synapses, and establishment
of neuronal circuits that have not previously been found
(Andoh & Koyama, 2021; Paolicelli et al., 2011). Microglia
are involved in regulating the maintenance and regenera-
tion of myelin, the membrane that surrounds neuronal
axons, and is necessary for axonal health and function in
the central nervous system. Myelin sheaths are damaged
with normal aging and in a variety of neurodegenerative
diseases, such as multiple sclerosis and Alzheimer's dis-
ease (Berghoff et al., 2021; Kent & Miron, 2024; Lloyd &
Miron, 2019; Yamanaka et al., 2023). Under physiological
conditions, resting microglia (MO microglia) have rela-
tively long cytoplasmic protrusions and exhibit a branched
morphology; they interact with surrounding neurons and
other cell types, constantly monitor the central nervous
system (CNS) and sense and respond to changes in the
microenvironment, while also coordinating neuroinflam-
mation through the secretion of important immune me-
diators (Jin et al., 2019).

3 | MICROGLIAL ACTIVATION
AND NEUROINFLAMMATION
3.1 | Microglial activation

Microglia shift from a resting state (branched) to an ac-
tivated state (amoeboid) in response to endogenous or
exogenous stimuli such as lipopolysaccharide, cellular
debris, or blood-brain barrier damage. Upon activation,
the secretion pattern of microglia changes, and they
polarize toward the M1 (proinflammatory) or M2 (anti-
inflammatory) phenotype (Gao & Hernandes, 2021;
Kwon & Koh, 2020; Moraes et al., 2021). M1 microglia
release various proinflammatory factors and oxidative
products, such as IL-1f, IL-1a, IL-6, IL-12, IL-17, IL-
23, IFN-y and TNF-a. These proinflammatory factors
promote chronic neuroinflammation, increase phago-
cytosis, produce oxidation products, and contribute
to neurodegeneration, inhibiting neuronal regenera-
tion and increasing brain damage (Moraes et al., 2021;
Orihuela et al., 2016). Oxidation products (e.g., NO and
ROS) generated by proinflammatory factors contribute
to BBB destruction while promoting the inflammatory
response mediated by activated microglia. Moreover,
the production of inflammatory cytokines can further
activate microglia. Finally, immune cells are recruited
from the periphery to the CNS through the release
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of proinflammatory chemokines (e.g., CCL2, CCLS5,
CXCL3, CCL12, and CCL13), which amplify inflamma-
tory signals and create a vicious cycle of neuroinflam-
mation (Errede et al., 2022; Prinz et al., 2019; Quaranta
et al., 2023).

M2 microglia are neuroprotective and release vari-
ous anti-inflammatory factors, such as IL-4, IL-10, IL-13
and TGF-f, to reduce inflammation, and phagocytose
age-damaged organelles (i.e., cellular debris), misfolded
proteins and metabolic fragments, and release neuro-
trophic factors to promote neuronal healing and neu-
rological function recovery (Cherry et al., 2014; Wolf
et al., 2017; Zhang et al., 2017). After brain damage, mi-
croglia tend to polarize toward the M1 phenotype, with
only a few transient M2 microglia exhibiting disruption of
the dynamic equilibrium between proinflammatory and
anti-inflammatory conditions, leading to chronic neuroin-
flammation and subsequent damage to the brain, which
causes brain dysfunction (David & Kroner, 2011).

3.2 | Neuroinflammation
Neuroinflammation is the immune response of the brain
to stimuli such as infection, traumatic brain injury, auto-
immunity, or metabolic toxins in the CNS and involves
the activation of different types of cells within the CNS,
such as astrocytes and microglia (Ebert et al.,, 2019;
Teleanu et al., 2022). During sepsis, neurons can be
damaged through a variety of mechanisms; specifically,
inflammatory factors and inflammatory signals reach
different regions of the brain to induce neuroinflamma-
tion through various means, such as the humoral and
neural pathways (Castro et al., 2022). Numerous studies
have shown that neuroinflammation plays a central role
in the pathogenesis of SAE and that an uncontrolled in-
flammatory response is the main manifestation of sepsis.
Neuroinflammation is one of the major causes of brain
dysfunction and brain cell death (Schwalm et al., 2014).
Various pathological mechanisms in the brain can trigger
a neuroinflammatory response, which can ultimately con-
tribute to the dysfunction of various processes.
Hyperactivation of microglia, which are innate im-
mune cells, is a major player in neuroinflammation (Leng
& Edison, 2021) and induces a variety of neuropatho-
logical disorders, such as SAE, Alzheimer's disease, spi-
nal cord injury, Parkinson's disease and subarachnoid
hemorrhage (Jiang et al., 2020; Leng & Edison, 2021; Liu
et al., 2022; Shen et al., 2021; Tian et al., 2022). Classically
activated (M1) microglia directly or indirectly induce neu-
ropathological changes, such as astrocyte activation, brain
endothelial damage, inflammation, synaptic dysfunc-
tion, neuronal damage and cell death (Chen et al., 2021;
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Karunia et al., 2021), through the release of proinflam-
matory factors, oxidative products, chemokines and com-
plement factors (Yan et al., 2022; Ye et al., 2019), In SAE,
microglia activate and subsequently phagocytose neu-
rons, including those in the neuronal cytosol, synapses
(Chung et al., 2023; Wu et al., 2023) and myelin sheaths,
leading to structural or functional abnormalities in the
brain (Jansen et al., 2022; Karunia et al., 2021), which can
cause cognitive dysfunction and acute neurological defi-
cits. Therefore, modulation of microglial activation and
polarization, which tends to be beneficial, is important
for improving the prognosis of a variety of inflammation-
associated neurological disorders, such as SAE.

In summary, the induction of neuroinflammatory re-
sponses by the release of inflammatory factors, chemok-
ines, complement factors and oxidative stress products,
resulting in damage to the brain parenchyma after the
activation and polarization of microglia by endogenous
or exogenous stimuli (the transformation of many M0 mi-
croglia to M1 microglia), may be a key factor in the devel-
opment of SAE (Figure 1).

4 | HOW CAN MICROGLIAL
ACTIVATION BE MODULATED TO
ALLEVIATE SAE?

4.1 | Autophagy regulates microglial
activation

Autophagy is an important intracellular degradation pro-
cess (Morishita & Mizushima, 2019) and a highly con-
served cellular self-renewal process in eukaryotes. Cellular
autophagy is widespread in eukaryotes and is an impor-
tant mechanism for maintaining homeostasis and cell sur-
vival (Gatica et al., 2018). Many studies have confirmed
that autophagy is an important regulator of the inflam-
matory response (Shadab et al., 2020; Shao et al., 2021,
2022), but the role of autophagy in the inflammatory re-
sponse in the brain is poorly understood. Several studies
have reported that autophagy may be involved in regulat-
ing microglial activation or phenotypic transformation,
thereby modulating neuroinflammation and neuronal cell
death (Hu et al., 2021; Pi et al., 2021). Autophagy plays
a key role in regulating microglial activation, and insuf-
ficient autophagy may induce microglial hyperactivation
and polarization and increase neuroinflammation (Shen
et al., 2021).

In neurological disorders, autophagy has been shown
to affect microglial phagocytosis by interfering with mi-
croglial activation (Li et al., 2021). Inhibition of microg-
lial autophagy promotes the conversion of microglia from
the M1 phenotype to the M2 phenotype, counteracts
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FIGURE 1 Microglia are polarized toward the M1 and M2 phenotypes by endogenous or exogenous stimuli. M1 microglia releases

proinflammatory factors, proinflammatory chemokines, oxidative products, etc., to exacerbate neuroinflammation; inflammatory cytokines

and oxidative products in turn further activate microglia and promote blood-brain barrier disruption. M2 microglia exert neuroprotective

effects and phagocytose cell debris and misfolded proteins while releasing anti-inflammatory factors and neurotrophic factors to promote

neuronal healing and neurological function recovery.

neuroinflammatory responses and thereby reverses
brain damage and alleviates cognitive dysfunction (Feng
et al., 2022). In another study in which the expression lev-
els of autophagy markers such as microtubule-associated
protein-light chain 3p (LC3-II) and autophagy-associated
protein 7 (Atg7) were assessed in microglia, increased
microglial autophagy was shown to exert an anti-
neuroinflammatory effect (Lee et al., 2021). Deletion of
autophagy-associated protein 5 (Atg5) in microglia, i.e.,
insufficient microglial autophagy, promotes microglial ac-
tivation to induce neurotoxicity and neuroinflammation
through activation of the NLRP3 inflammasome via the
PDE10A-cAMP pathway, leading to neurological deficits
(Cheng et al., 2020). Thus, increasing microglial autoph-
agy ameliorates cognitive dysfunction and reverses mem-
ory deficits.

In recent years, researchers have begun to focus on
the effect of autophagy on the polarization of microglia.
A study further confirmed that autophagy is inhibited in
activated microglia and that this change promotes brain
injury-induced neuroinflammatory responses (Hegdekar
et al., 2023). Inhibition of autophagy attenuates microg-
lial phagocytosis, resulting in the accumulation of dam-
aged neurons and an inflammatory response (Beccari
et al., 2023). Microglial autophagy may regulate microglial

activation through multiple pathways, but these pathways
require further exploration.

4.2 | miRNAs regulate
microglial activation

MicroRNAs are highly conserved, single-stranded non-
coding RNAs approximately 22 nucleotides in length that
are encoded by endogenous genes; they play a variety of
important regulatory roles in cells and are implicated
in the development of many pathological diseases (Lei
et al., 2022). MicroRNAs (miRNAs) have been found to be
aberrantly expressed in a wide range of human diseases,
such as neurodegenerative diseases, cancers, diabetes,
viral infections, cardiovascular diseases and other dis-
eases. Recently, it was reported that microRNAs are sig-
nificantly aberrantly expressed in sepsis-associated organ
dysfunction and are thus promising biomarkers for this
condition. A review of previous studies revealed at least
122 microRNAs and signaling pathways involved in sepsis-
associated organ dysfunction (Antonakos et al., 2022;
Maiese et al., 2022). However, how aberrant microRNA
expression regulates various pathological mechanisms in
SAE is unclear.
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Recent studies have confirmed that microRNAs may
play a key role in the activation or inhibition of mi-
croglia to regulate microglia-induced inflammatory re-
sponses and autophagy. In SAE, microRNAs are among
the most important regulators of microglial activation,
polarization and autophagy and consequently affect neu-
roinflammation (Figure 2). microRNA-375 has been iden-
tified as a biomarker of acute inflammation in rats, and
microRNA-375 modulates the JAK2-STAT3 pathway to
regulate the expression of microRNA-21, which in turn
controls the development of sepsis (Sheng et al., 2017;
Tang et al., 2021). In a mouse model of Alzheimer's dis-
ease, microRNA-155 was found to be a key regulator of
microglial function and microglia-mediated synaptic
homeostasis (Aloi et al., 2023). Downregulation of mi-
croRNA-210 reduces microglial activation and exerts an
anti-neuroinflammatory effect by inhibiting TET2 ex-
pression (Li et al., 2023). Moreover, downregulation of
microRNA3b-4p was found to activate microglia in the
hippocampus and thus increase neuroinflammation in a
mouse model of poststroke depression (Ke et al., 2023).
Finally, microRNA-124 inhibits microglial activation to
attenuate the inflammatory response (Chen et al., 2023).

MicroRNAs play an important role in autophagy regu-
lation (Akkoc & Gozuacik, 2020). Overexpression of mi-
croRNA-195 promotes microglial activation by inhibiting
autophagy, inducing the release of the proinflammatory
cytokines IL-1f, TNF-a and iNOS and exacerbating neu-
roinflammation and neuropathic pain (Shi et al., 2013). It
was found that microRNA-Let7A is involved in the regu-
lation of microglial autophagy. microRNA-let7A overex-
pression upregulates the expression of Beclin-1, LC3-II
and Atg3 in LPS-treated BV2 microglia (Song et al., 2015).
It was reported that in a neonatal rat model of cerebral
ischemia and hypoxia, miR-210 induces the polarization
of microglia toward the M1 phenotype partly by target-
ing SIRT1, which reduces the deacetylation of the NF-xB

//)

subunit p65 and increases NF-kB signaling (Li et al., 2020).
Finally, upregulation of microRNA-506-3p was shown to
exert neuroprotective and anti-inflammatory effects, and
microRNA-506-3p inhibited microglial activation by tar-
geting the CCL2-CCR2 axis (Jin et al., 2023). In summary,
microRNAs can directly or indirectly regulate the polar-
ization of microglia (e.g., microRNAs can regulate microg-
lial activation by regulating autophagy).

Little is known about how microRNAs regulate mi-
croglial activation in SAs. Recent studies have reported
that downregulation of microRNA-210 can effectively
inhibit activated microglia-mediated neuroinflamma-
tion and significantly alleviate HIE-induced brain injury
(Li et al., 2020). microRNA-146a-5p promotes activated
microglia-induced neuroinflammatory responses in the
brain by activating TLR7 signaling in a mouse model of
multiple microbial sepsis (Zou et al., 2022). MicroRNA-
25-3p overexpression attenuates the activation of microg-
lia in SAE by regulating the NLRP1/IL-18p/IL-4 axis via
TLR3 (Luo et al., 2022). The transcription factor YY1 up-
regulates TREM-2 expression to promote microglial M2
polarization and alleviate neuroinflammation and be-
havioral deficits in SAE by inhibiting microRNA-130a-3p
(Peng et al., 2022). microRNA-494 can further regulate the
activation of microglia in SAE by modulating mitochon-
drial function (He et al., 2022).

The potential relationship between microRNAs and
procalcitonin (PCT) has gradually increased. First, PCT is
an acute soluble protein released by the body in response to
systemic inflammation, especially bacterial infection, and
is an early diagnostic marker of severe bacterial infection
and sepsis (Reinhart et al., 2000; Tosoni et al., 2020). PCT,
a biomarker of sepsis, has shown good diagnostic accuracy
in predicting sepsis in patients with suspected sepsis (Leli
et al., 2016). PCT is also used clinically as a marker for
assessing the severity of sepsis and plays an important role
in guiding antibiotic therapy in SAEs (Carr, 2015; Schuetz
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TABLE 1 MiRNAs may be therapeutic targets in SAE.

miRNA
miRNA-210

miRNA-3b-4b

miRNA-124
miRNA-195

miRNA-Let7A

miRNA-506-3P

miRNA-210

miRNA146a-5P

miRNA-25-3P

miRNA-130a-3P

miRNA-494

Role
Downregulation of MicroRNA-210 reduces microglia activation and acts as an anti-
neuroinflammatory agent by suppressing TET2 expression

Downregulation of microRNA3b-4p activates microglia in the hippocampus to enhance
neuroinflammation

Inhibition of microglia activation by microRNA-124 attenuates inflammatory response

MicroRNA-195 overexpression enhances neuroinflammation by inhibiting autophagy and
further promoting microglia activation

MicroRNA-let7A overexpression upregulates Beclin-1, LC3-II and Atg3 expression levels
in LPS-induced BV2 microglia

Upregulated microRNA-506-3p has neuroprotective and anti-inflammatory functions,
and it inhibits microglia activation by targeting the CCL2-CCR2 axis

Downregulation of microRNA-210 effectively inhibits microglia activation polarization-
mediated neuroinflammation and significantly reduces HIE-induced brain injury

microRNA-146a-5p acts as an activator of TLR7 signaling to promote microglia activation
polarization-induced neuroinflammatory responses in the brain

MicroRNA-25-3p overexpression attenuates activated polarization of microglia in SAE by
regulating the NLRP1/IL-18f/IL-4 axis through TLR3

Inhibition of microRNA-130a-3p to upregulate TREM-2 expression promotes microglia
M2 polarization and alleviates neuroinflammatory and behavioral deficits in SAE

MicroRNA-494 further modulates activation polarization of microglia in SAE by

Reference

Li et al. (2023)

Ke et al. (2023)

Chen et al. (2023)
Shi et al. (2013)

Shi et al. (2013)

Li et al. (2020)

Jin et al. (2023)

Luo et al. (2022)

Luo et al. (2022)

Peng et al. (2022)

He et al. (2022)

regulating mitochondrial function

Abbreviation: SAE, sepsis-associated encephalopathy.

& Miieller, 2016). SAE can develop on the basis of severe
sepsis, and PCT may also play a role in SAE. MicroRNAs
are considered promising biomarkers for SAE and may
also serve as therapeutic targets for SAE. Therefore, PCT
could also be a therapeutic target for SAE, and a study
confirmed that inhibition of microRNA-497-3p downreg-
ulates PCT expression and exacerbates bacterial pneumo-
nia in mice (Wang et al., 2020). MicroRNA-125b has been
shown to downregulate PCT expression in sepsis patients,
ameliorating sepsis (Le et al., 2018; Zhang et al., 2016).
In SAE, we investigated whether microRNAs may also
ameliorate SAE by modulating PCT expression to reduce
microglial activation. Therefore, we hypothesized that
microRNAs may be very important therapeutic targets in
SAE (Table 1).

4.3 | Summary and outlook

SAE is a major threat to the lives of patients with sepsis,
especially elderly patients. The pathological mechanisms
of SAE are not fully understood, but microglia-mediated
neuroinflammation is known to play a central role in
SAE. Despite widespread knowledge about the role of
microglia in neurological disorders, many questions
regarding the role of microglia in SAE have not been

answered. However, further exploration is needed to de-
velop microglia-targeted treatment strategies for SAE. It is
unclear how regulating microglia-mediated neuroinflam-
mation can counteract cognitive deficits and improve the
prognosis in SAE patients. In recent years, autophagy and
microRNAs have been found to regulate microglial activa-
tion to counteract neuroinflammation, and further stud-
ies on the regulation of microglial activation by autophagy
and microRNAs will provide new potential therapeutic
targets for the treatment of neuroinflammation in SAE.
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