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ABSTRACT Achromobacter spp. are opportunistic pathogens of environmental origin 
increasingly isolated in patients with underlying conditions like cystic fibrosis (CF). 
Despite recent advances, their virulence factors remain incompletely studied, and 
siderophore production has not yet been investigated in this genus. The aim of this study 
was to evaluate the production of siderophores in a large collection of Achromobacter 
spp. and evaluate the variability according to the origin of the strain and species. A 
total of 163 strains were studied, including 128 clinical strains (CF and non-CF patients) 
and 35 strains of environmental origin. Siderophores were quantified by the liquid 
chrome azurol-sulphonate assay. Species were identified by nrdA gene-based phylogeny. 
Strains were assigned to 20 species, with Achromobacter xylosoxidans being the most 
represented (51.5% of strains). Siderophore production was observed in 72.4% of the 
strains, with amounts ranging from 10.1% to 90% siderophore units. A significantly 
higher prevalence of siderophore-producing strains and greater production of sidero­
phores were observed for clinical strains compared with strains of environmental origin. 
Highly variable observations were made according to species: A. xylosoxidans presented 
unique characteristics (one of the highest prevalence of producing strains and highest 
amounts produced, particularly by CF strains). Siderophores are important factors for 
bacterial growth commonly produced by members of the Achromobacter genus. The 
significance of the observations made during this study must be further investigated. 
Indeed, the differences observed according to species and the origin of strains suggest 
that siderophores may represent important determinants of the pathophysiology of 
Achromobacter spp. infections and also contribute to the particular epidemiological 
success of A. xylosoxidans in human infections.

IMPORTANCE Achromobacter spp. are recognized as emerging opportunistic pathogens 
in humans with various underlying diseases, including cystic fibrosis (CF). Although 
their pathophysiological traits are increasingly studied, their virulence factors remain 
incompletely described. Particularly, siderophores that represent important factors of 
bacterial growth have not yet been studied in this genus. A population-based study 
was performed to explore the ability of members of the Achromobacter genus to 
produce siderophores, both overall and in relevant subgroups (Achromobacter species; 
strain origin, either clinical—from CF or non-CF patients—or environmental). This study 
provides original data showing that siderophore production is a common trait of 
Achromobacter strains, particularly observed among clinical strains. The major species, 
Achromobacter xylosoxidans, encompassed both one of the highest prevalence of 
siderophore-producing strains and strains producing the largest amounts of sidero­
phores, particularly observed for CF strains. These observations may represent additional 
advantages accounting for the epidemiological success of this species.
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B acteria of the Achromobacter genus are Gram-negative bacilli present in diverse 
environments, including hospital, domestic, and outdoor environments, mostly soil 

and water (1–3). In soil, Achromobacter spp. are recognized as plant-growth-promoting 
rhizobacteria playing critical roles in plant growth and development (4); they are also 
considered as biocontrol agents and remediating microorganisms of polluted soils 
contaminated by oils, heavy metals, polycyclic aromatic hydrocarbons, etc. (5). Achromo­
bacter spp. also act as opportunistic pathogens in humans, including patients with cystic 
fibrosis (CF). In this autosomal recessive genetic disease, dehydration and thickening 
of mucus in the airways result in impaired mucociliary clearance, microbial stasis, and 
repeated microbial infections (6, 7). Besides Pseudomonas aeruginosa, the most frequent 
pathogen of environmental (ENV) origin in this context, Achromobacter spp. have been 
recognized as emerging pathogens with a colonization rate that has increased through­
out the world, like in France where 6.4% of CF patients were colonized in 2021 versus 
3.7% in 2006, until the implementation of CF transmembrane conductance regulator 
corrector and potentiator combinations therapies (8). Achromobacter spp. are also agents 
of healthcare-associated infections and are involved in various infectious processes in 
immunocompromised patients, for example, in onco-hematology patients presenting 
bacteremia and catheter-related infections (9, 10). More rarely, infections have also been 
described in immunocompetent patients (11). These observations have long given the 
Achromobacter spp. their reputation as pathogens of mild virulence. However, more 
recently, clinical studies have provided evidence on the pathogeny and clinical impact 
on the pulmonary function of Achromobacter spp. in CF patients (12–14). On the 
other hand, laboratory studies have shown that Achromobacter strains share important 
pathophysiological characteristics and virulence factors with other major pathogens of 
environmental origin like P. aeruginosa, such as multidrug resistance, biofilm formation, 
and high inflammatory properties (15–17). Despite these advances, some major bacterial 
virulence factors remain largely unexplored in the Achromobacter genus as is the case 
for siderophores. Siderophores are high-affinity, low-molecular-weight molecules that 
bind to extracellular iron and facilitate its acquisition by bacteria (18–20). As iron is an 
essential nutrient for bacterial survival and growth, the ability to produce siderophores 
provides an advantage for pathogenic bacteria by allowing them to acquire the available 
iron in the host’s environment. This makes siderophores key determinants of bacterial 
virulence. Currently, over 500 bacterial siderophores have been characterized (21, 22) 
and classified according to their chemical structure (iron-binding moieties) into the 
families of catecholates, hydroxamates, phenolates, and carboxylates and an additional 
category known as “mixed-type” siderophores (23–26). Among them, catecholates, 
which include, for example, the enterobactin found in Escherichia coli strains (25), have 
been described as having the highest iron affinity (23, 25). Siderophores are produced by 
all the major human pathogens, but so far, the production of siderophores by members 
of the Achromobacter genus has received little attention and has only been reported in 
a few studies, each referring to a single strain, mostly of environmental origin (27–32). 
On another hand, genes encoding siderophores or siderophore receptors have already 
been identified in whole genome sequences of clinical strains (33, 34). However, beyond 
gene content, evaluating the real factors produced by these bacteria is an important 
contribution to elucidating the pathogeny of the bacterium.

Finally, the members of the Achromobacter genus are divided into 21 species but 
are more usually considered as a whole, with no specific data available for individual 
species accurately identified. Indeed, species identification in this genus is challenging in 
routine practice despite the optimized mass spectrometry database recently proposed 
although not yet widely available (35). Most routine tools are still unable to accurately 
distinguish species. Consequently, molecular tools are required for unquestionable 
species identification, and these are essential for recognizing the specific characteristics 
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of individual species. In studies based on accurate species identification, A. xylosoxidans 
appears to be the most commonly identified species in clinical settings, suggesting that 
some species may have selective advantages in their ability to infect humans (1, 36).

In this context, the aim of this study was to describe siderophore production among 
a large collection of clinically and genetically documented Achromobacter strains to 
evaluate the potential importance of these factors in the pathophysiology of Achro­
mobacter spp. infections. To do so, siderophore production was studied both qualita­
tively (prevalence of producing strains) and quantitatively (amounts of siderophores 
produced). The results obtained for the overall strain collection provide first insights into 
the global ability of Achromobacter spp. to produce iron-chelating molecules. An analysis 
of subgroups of strains made it possible to identify specific characteristics in siderophore 
production according to (i) the species, as identified by nrdA gene sequencing and nrdA 
gene-based phylogeny, and (ii) the origin of the strains, by comparing results obtained 
for strains of environmental origin to those of strains of clinical origin, either from CF or 
non-CF (NCF) patients.

This study was the first to evaluate siderophore production in a large collection of 
Achromobacter strains encompassing different species and isolation sources. It, therefore, 
provides original data on the topic, showing that siderophore production is a com­
mon trait of Achromobacter strains but that variability is observed among species and 
according to the origin of the strain. Siderophores must be added to the panel of 
virulence factors that might be produced by Achromobacter spp. and are probably 
important determinants of the epidemiological success of members of this genus in 
human infections.

RESULTS

Genetic and species diversity within the collection of Achromobacter strains 
studied

A total of 70 alleles of the nrdA gene were found for the 163 strains studied (Table S1) 
and assigned to 20 species by nrdA-gene-based phylogeny (Fig. 1), either to species with 
validly published names (n = 12) or not (n = 5 genogroups) or hitherto uncharacterized 
species (n = 3) (Table 1). A. xylosoxidans was the most widely represented species in the 
collection (51.5%, 84 strains). Twelve species included less than four strains, of which 
eight species comprised a single strain. Heterogeneity in the distribution of the 163 
strains and the 20 species according to the source of their recovery is presented in Table 
1. A. xylosoxidans was one of the four species identified in the three studied groups [CF, 
NCF, and ENV], together with Achromobacter aegrifaciens, Achromobacter animicus, and 
Achromobacter mucicolens; other species being identified in two (n = 6) or only one (n = 
10) of these three study groups (Table 1). However, A. xylosoxidans was the main species 
identified among clinical strains, either from CF or NCF patients. The three subgroups of 
strains, CF, NCF, and ENV, also displayed distinct species diversity, but the greatest species 
diversity was found in the ENV subgroup (13 species, 29 nrdA alleles) despite being the 
smallest (35 strains) compared with the two groups of clinical isolates (CF: 67 strains 
belonging to 11 species, 32 nrdA alleles; NCF: 61 strains belonging to 10 species, 27 nrdA 
alleles).

Siderophore production is common in the Achromobacter genus, mostly 
observed for clinical strains

Among the 163 strains studied, 118 (72.4%) were able to produce siderophores under 
the experimental conditions of the study. Significantly higher proportions of sidero­
phore-producing strains were observed among clinical strains, either from CF patients 
(85.1%, 57/67) or NCF patients (86.9%, 53/61) compared with strains of environmental 
origin (22.8%, 8/35) (P-values < 0.0001) (Fig. 2). Looking specifically at the 118 sidero­
phore-producing strains, these were mostly clinical strains with 57 (48.3%) of these 
strains originating from CF patients and 53 from non-CF patients (44.9%), whereas 
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only 8 were of environmental origin (6.7%) (Table S2). Based on these results, all 35 
strains of environmental origin were tested again for siderophore production in the 
same conditions except for the growth temperature that was lowered to 30°C. Similar 
results were obtained with a mean difference of 0.7 percent siderophore unit (psu) 
(0–2.9) between both growth conditions (37°C or 30°C), which did not affect the strain 
categorization as siderophore producer or non-siderophore producer (P-value > 0.5) 
(Table S3). Among the eight strains of environmental origin that produced siderophores, 
six were recovered from the domestic environment of patients with CF (13 other 
strains from the domestic environment of patients with CF were considered non-produc­
ers), and the two remaining strains were isolated from wastewater and soil samples, 
respectively (Table S3).

Siderophore production is differentially observed according to species

Overall, the ability to produce siderophores was observed for strains belonging to 15 
out of the 20 species identified in this study since siderophore production was not 
detected for strains assigned to Achromobacter kerstersii, genogroup 3, genogroup 9, 
genogroup 24, or to new species 3. However, this observation is likely to be biased 
by the single strain analyzed for each of these five species. By contrast, siderophore 
production was observed for species represented by single strains like those belonging 

FIG 1 Maximum-likelihood tree based on nrdA partial sequence (765 bp) indicating the relative placement of the 163 

Achromobacter spp. strains according to their siderophore production and origin (CF, NCF, and ENV). Branches are colored 

according to species affiliation. The outer ring depicts the strains’ origins: CF clinical strains (yellow), NCF clinical strains (pink), 

and strains of environmental origin (green). The inner ring represents siderophore production by a color gradient from white 

(no or low production) to red (high production) according to percent siderophore unit (psu) measured by the liquid chrome 

azurol-sulphonate assay (0–90 psu). The scale bar indicates the number of substitutions per nucleotide position. Blue circles at 

the nodes are support values estimated with 100 bootstrap replicates. The figure was constructed using iTOL.
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to Achromobacter dolens, Achromobacter pulmonis, and genogroup 19, or very few strains 
(<4) like the three clinical strains of new species 2, which were all siderophore producers 
(Fig. 2). Regarding the eight species represented by four strains or more, the prevalence 
of siderophore producers varied from 25% for Achromobacter spanius to 91.7% for 
Achromobacter insuavis strains. In addition to being the most highly represented species, 
A. xylosoxidans also displayed a high proportion of 85.7% (72/84) siderophore-producing 
strains, significantly higher than for A. mucicolens, new species 1, A. aegrifaciens (P-value 
< 0.05), A. spanius (P-value < 0.01), and A. marplatensis (P-value < 0.001) (Fig. 2). The 
species A. insuavis also included a high proportion of siderophore-producing strains, 
which was significantly higher than for A. marplatensis and A. spanius (P-values < 0.01), 
and A. animicus (P-value < 0.05).

When looking at the proportion of siderophore-producing strains according to strain 
origin within each species, several differences were observed according to the clinical 
or environmental origin of the strains or the CF or NCF origin within clinical strains 
(Fig. 3). For most cases, strain numbers were too low to test statistical significance 
and draw robust conclusions, but for A. xylosoxidans and new species 1, percentages 
of siderophore-producing strains were significantly higher among clinical strains than 
among strains of environmental origin (P-values < 0.0001 and < 0.01, respectively) (Fig. 
3).

Amounts of siderophore produced are variable according to strain origin and 
species

The 118 strains able to produce siderophores generated an average amount (±standard 
deviation) of 33.4 ± 21 psu (range: 10.1–91) (Table S2). Variability in results obtained for 
each strain (inferred from the psu of two biological replicates each consisting of two 

TABLE 1 Distribution of the 163 Achromobacter spp. strains of this study according to species identified by 
nrdA gene-based phylogeny and origin

Achromobacter species (n = 20)a Clinical strains
(n = 128)

Strains of
environmental origin

Total

CF NCF

A. xylosoxidans 42 38 4 84
A. insuavis 9 3 – 12
A. mucicolens 2 5 5 12
New species 1 – 7 5 12
A. aegrifaciens 3 1 5 9
A. marplatensis – 3 5 8
A. insolitus 3 1 – 4
A. spanius – – 4 4
A. animicus 1 1 1 3
New species 2 2 1 – 3
A. ruhlandii 2 – – 2
Genogroup 21 1 – 1 2
A. dolens 1 – – 1
A. kerstersii – – 1 1
A. pulmonis – – 1 1
Genogroup 3 – 1 – 1
Genogroup 9 – – 1 1
Genogroup 19 1 – – 1
Genogroup 24 – – 1 1
New species 3 – – 1 1
Total 67 61 35 163
aSpecies are presented in descending order according to the total number of strains. CF, strain(s) from patient(s) 
with cystic fibrosis. NCF, strain(s) from other patient(s) not suffering from cystic fibrosis, –, no isolate of this species 
or from this origin.
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technical replicates) did not exceed 5.3 psu, indicating good reproducibility, as observed 
for strain Pa IV33 used as the positive control that produced 84.04 ± 2.5 psu (calculated 
from 54 measurements).

Depending on the origin of the strain, the average siderophore production was 39.6 
± 24 psu for CF strains (range: 10.1–89.6), 29.4 ± 16.5 psu for NCF strains (range: 10.1–
91), and 15.8 ± 9.6 psu for ENV strains (range: 10.2–38.9) (Fig. 4). Differences observed 
between these subgroups of strains were all statistically significant (Fig. 4). Clinical 
strains, either from CF or NCF patients, produced significantly more siderophores than 
environmental strains (P-values < 0.01), and the ENV group of strains was also the least 
heterogeneous in terms of levels of siderophore produced. Among all clinical strains, CF 
strains produced significantly higher amounts of siderophores than NCF strains (P-value 
< 0.05) (Fig. 4).

An interesting observation was made for five clinical strains that produced high levels 
of siderophores of about 90 psu, surpassing that of strain Pa IV33. These five strains 
included four strains isolated from CF patients (three A. xylosoxidans of distinct nrdA 
genotype and one strain assigned to new species 2) and one strain belonging to new 
species 1 and recovered from an implantable device in an NCF patient (Table S3). At 
the species level, the sole representative of A. dolens and genogroup 19 produced high 
amounts of siderophores: 73.2 and 68.7 psu, respectively (Table S2). Species represented 
by more than one strain produced mean amounts of siderophores ranging from 12.3 
psu for the nine A. aegrifaciens strains to 46.5 psu for the three strains belonging to 
new species 2 (Fig. 5). The mean amount of siderophores produced by the major species 
A. xylosoxidans was 37.1 psu (range: 10.1–88.5). This was significantly more than the 
amounts of siderophores produced by A. insuavis (P-value < 0.05), A. aegrifaciens (P-value 
< 0.001), and A. marplatensis (P-value < 0.05). Similarly, members of both new species 

FIG 2 Relative proportion (%) of siderophore-producing Achromobacter strains in the overall population (left), according to 

origin (CF, NCF, and ENV) and species (right). Species are ranked by the number of strains, indicated in brackets. A vertical line 

separates species represented by one or two strains only. Siderophore-producing strains are shown in blue and non-produc­

ing strains in orange. The Chi-squared test was used to compare the prevalence of siderophore-producing strains according 

to origin (CF, NCF, and ENV) or species. Mann-Whitney test was used to compare the prevalence of siderophore-producing 

strains according to the species. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001; and ns: not significant (indicated when 

strain numbers in compared groups were enough to test significance only).
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1 and new species 2 produced significantly more siderophores than A. aegrifaciens 
(P-values < 0.05) (Table S2).

A focus was then made on the amounts of siderophores produced according to the 
origin of strains within each species. Several differences were observed with greater 
amounts of siderophores being produced by clinical strains than by strains of environ­
mental origin for the three species (A. mucicolens, A. aegrifaciens, and A. marplatensis) 
including strains of both origins. However, none of these differences were considered 
significant, either due to too low numbers of strains to test statistical significance (A. 
aegrifaciens and A. marplatensis) or to a non-significant P-value > 0.05 (A. mucicolens). 
Among the clinical strains, distinct levels of siderophores were produced, being either 
higher for CF strains compared with NCF strains (A. xylosoxidans, A. aegrifaciens, A. 
insolitus, and new species 2) or, on the contrary, lower (A. insuavis and A. mucicolens), but 
differences were only statistically significant for A. xylosoxidans (P-value < 0.05) (Fig. 5).

Siderophore production is not correlated to growth differences in iron-deple­
ted minimal medium 9

Because results of siderophore dosage were not normalized according to growth in 
iron-depleted minimal medium 9 (MM9) in this study and therefore might have been 
influenced by the strain’s ability to grow in this minimal medium, we analyzed growth 
curves for a selection of 33 strains representative of strain origin (8 from CF patients, 11 
from NCF patients, and 14 from environmental origins) and species (Table S3). Variable 
growth in MM9 was observed depending on the strain considered (Table S3; Fig. S1). 
However, the Spearman’s correlation run to determine the relationship between the 33 
psu and optical density (OD)600nm values showed that there was no correlation between 

FIG 3 Proportion of siderophore-producing strains depending on Achromobacter species and strain origin. Each species 

containing siderophore-producing strains is represented by a color code. Species that do not contain any siderophore-produc­

ing strain (5/20) or that contain strain(s) of a single origin (5/20) are not included. CF strains are indicated by a horizontal 

striped pattern, NCF strains by a solid dotted color pattern, and ENV strains by a striped pattern with diagonally oriented 

bands; total for each species is represented by a solid color. For species in which siderophore-producing strains originated 

from only two of the three origins (CF, NCF, and ENV) while no strains originating from the third origin produced siderophores, 

comparative results are shown for strains of the three origins, resulting in the absence of some histograms although a number 

of strains are indicated (e.g., none of the four A. xylosoxidans strains of environmental origin produced siderophores). The 

Chi-squared test was used to test for significance. *P < 0.05; **P < 0.01; and ns: not significant (indicated when strain numbers 

in compared groups were enough to test significance only).
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the amount of siderophores produced and the growth in MM9 (r = 0.159 and P = 0.375), 
thereby excluding that differences of growth in MM9 accounted for the differences 
observed in siderophore production in this study (Fig. S1).

DISCUSSION

Siderophores are yet little studied among the panel of virulence determi­
nants of Achromobacter spp.

Based on their involvement in various infections in both CF and NCF patients, Achromo­
bacter spp. have received increasing interest with regard to specifying their pathogenic­
ity and deciphering the associated molecular determinants. Laboratory findings have 
progressively described a series of abilities and virulence determinants related to clinical 
observations (16). Achromobacter spp. displayed numerous pathogenic phenotypes 
contributing to host colonization and persistence through adhesion, motility, biofilm 
formation, drug and multidrug resistance, high survival ability in biocides, and the 
secretion of diverse tissue-degrading enzymes and toxins (15, 37–43). They also possess 
secretion systems well-known for contributing to virulence in many pathogens (44–46). 
Pro-inflammatory power was demonstrated both in vitro and in vivo (47–50) showing 
that Achromobacter spp. are capable of inducing inflammation in a similar way to P. 
aeruginosa (48, 50). Genetic and genomic studies support the aforementioned observa­
tions showing that these bacteria have a relatively large genome size (6–7 Mb) and 
are capable of hypermutation and that genetically diversified populations generated 
through adaptation processes are present during persistent colonization. All these 
characteristics represent important traits involved in host adaptation and virulence, all 
contributing to the success of Achromobacter spp. in human infections (9, 16, 37, 51, 52). 
In addition, comparative genomics reveals potential genetic determinants facilitating 
adaptation to a pathogenic lifestyle in humans, as they have been observed in strains 
from CF patients while absent in strains of environmental origin (33). Considering all 
the acquired knowledge on the pathogenicity of Achromobacter spp., they are now 
considered surreptitious opportunistic pathogens (53).

FIG 4 Amounts of siderophores produced by Achromobacter spp. according to the origin of strains. 

Results are expressed as percent siderophore units (psu). Each point represents the mean value of four 

measures for a siderophore-producing strain (n = 118). Orange: strains isolated from patients with CF; 

pink, strains isolated from patients not suffering from CF; and green, strains of environmental origin. 

Mean psu values and standard deviations are indicated for each group. The Mann-Whitney test was used 

to test for significance. *P < 0.05 and **P < 0.01.
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Contrasting with this increasing characterization of virulence determinants, 
siderophores have not been the subject of any specific studies to date in the Achromo­
bacter genus. Strikingly, a recent large-scale genome study on virulence gene content 
of 101 Achromobacter spp. strains did not mention any factors related to iron uptake/
siderophore secretion pathways (36). Scarce data currently available are limited to six 
studies, each referring to a single strain of Achromobacter sp., mostly of environmental 
origin (27–32). However, each provides data on the ability to produce siderophores or on 
gene content consistent with siderophore biosynthesis for the studied strains. Tamariz-
Angeles et al. reported a plant-associated strain (BEP19-Dm) from heavy metal-pollu­
ted rhizospheres in Peru, displaying the ability to produce siderophores, as observed 
by Jana et al. for strain SQU-1 isolated from date palm rhizosphere. Identified as A. 
marplatensis and A. xylosoxidans, respectively, these identifications must, however, be 
regarded with caution as a non-discriminatory method, i.e., 16S rRNA gene sequencing, 
was used (31, 32). Another strain, Achromobacter sp. RZS2, isolated from groundnut 
rhizosphere in India was shown to be able to produce a large amount of siderophores 
(92.61 psu) (28), as observed for some of the clinical strains in the present study. 
Other studies showed that various types of siderophores might be produced in the 
Achromobacter genus. Achromobacter sp. strain MM1 of environmental origin, isolated 
from Fusarium suppressive soil in Italy, was shown to produce a hydroxamate-type 
siderophore (27), while strain KAs 3-5T, representative of a new Achromobacter species 
and isolated from groundwater in Bengal, secreted a carboxylate-type siderophore called 
achromobactin, already identified in Pseudomonas syringae (30, 54). In the latter study, 
the authors gave complementary information on the siderophore pathway in strain 
KAs 3-5T from whole genome sequence analysis. They showed that the strain might 
be able to acquire and store iron through a ferrous transport system similar to that of 
P. aeruginosa (55), including a TonB-dependent siderophore receptor, an ABC-type iron 
transporter, a ferric uptake regulation protein, a ferrichrome iron receptor, a periplasmic 
Fe-binding protein, and putative Fe reductases (30). Another unique study included 
a clinical strain (AXX-A) recovered from a CF patient and identified as belonging to 
A. insuavis although initially reported as an A. xylosoxidans strain (33). Data inferred 
from whole genome sequence analysis of strain AXX-A showed unique genes related 

FIG 5 Amounts of siderophores produced by Achromobacter spp. according to species and origin. Each species containing siderophore-producing strains is 

represented by a color code. Species that do not contain any siderophore-producing strain (5/20) or that contain siderophore-producing strain(s) from a single 

origin (8/20) are not included. CF strains are indicated by a horizontal striped pattern, NCF strains by a solid dotted color pattern, and ENV strains by a striped 

pattern with diagonally oriented bands; total for each species is represented by a solid color. The Mann-Whitney test was used to test for significance. **P < 0.01 

and ns: not significant (indicated when strain numbers in compared groups were enough to test for significance only).
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to iron transport and utilization and a set of nine genes involved in the biosynthe­
sis of a hydroxamate siderophore identical to alcaligin, a high-affinity iron chelating 
agent produced by Alcaligenes denitrificans (now Achromobacter denitrificans), Bordetella 
pertussis, and Bordetella bronchiseptica, suggesting that Achromobacter spp. may be able 
to overcome iron-limited conditions (33, 56, 57).

Based on the literature reviewed, it appears that siderophore production by members 
of the Achromobacter genus has been little investigated and warrants further studies.

Unique insights into siderophore production by Achromobacter spp. by 
studying a large collection of accurately identified strains from diverse 
origins

In this context, siderophore production was studied in a large collection of Achromo­
bacter strains originating from various sources, either clinical or environmental. As 
routine phenotypic tools and 16S rRNA gene sequencing are inappropriate for accu­
rate species assignation, strains were identified based on a molecular-based method 
previously recognized as being powerful and discriminatory in the Achromobacter genus, 
the nrdA gene sequence analysis (58). This approach also allowed us to describe the 
genetic diversity of both the overall population and the different subgroups considered 
in this study (species and origin). In congruence with previous studies on clinical strains, 
A. xylosoxidans was the most frequently identified species, either in CF or NCF patients 
(41, 59). However, nearly half the patients were colonized by strains of other species, 
currently far less studied than A. xylosoxidans and most of them shared the ability to 
produce siderophores with A. xylosoxidans. By contrast, strains of environmental origin 
were more homogeneously distributed in several species in this study. Few studies 
assessed the relative importance of Achromobacter species in the environment, but a 
recent study including 53 environmental strains from domestic, hospital, and natural 
environments also identified a variety of species although not strictly identical to that 
reported herein (35). Representatives of three new Achromobacter species were present 
in the studied collection, suggesting a high, still under-described, genetic diversity in 
the Achromobacter genus, as previously observed (36). A variable species and genetic 
diversity was observed in the subgroups of strains according to origin in our study, 
the strains of environmental origin being more diverse than clinical strains, either 
from CF or NCF patients, suggesting that not all strains of environmental origin might 
be able to infect humans and, in some cases, persist through adaptation to specific 
anatomical niches. In these cases, the selective advantages that might be presented 
by certain strains are crucial for strain survival under local selective biotic and abio­
tic pressures. Among the numerous pathophysiological traits of Achromobacter spp. 
presented above, the ability to produce siderophores thus appeared an important 
determinant to be studied. Indeed, siderophores not only represent well-established 
factors involved in bacterial virulence but they also might be involved in competitive 
interactions between Achromobacter sp. and other microorganisms and in modulation of 
host cellular pathways (19, 60, 61).

The population-based study conducted here revealed unprecedented findings on 
siderophore production in the Achromobacter genus. First of all, a large majority of 
strains were found to be able to produce siderophores under the conditions of the 
study. However, for certain species, too small numbers of strains prevented any robust 
interpretation, and the results must still be complemented by collecting and studying 
additional strains, particularly for the five species with single strains included and 
no siderophore-producing representatives. On the other hand, several observations 
distinguished strains according to their origin, regarding their capacity to produce 
siderophores. Overall, clinical strains were significantly more likely to produce sidero­
phores than strains of environmental origin, and they also produced significantly higher 
amounts of siderophores. These findings were independent of both the temperature 
used for the growth of strains from environmental origin and the growth in MM9. 
Therefore, the results of this study suggested that clinical strains might have distinct 
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iron requirements than environmental strains. As these results may reflect specific traits 
of strains recovered from human clinical samples or be affected by the distinct relative 
importance of species between study groups, the results obtained for each species 
represented by more than one strain in at least two of the three groups of the study (CF, 
NCF, and ENV) were further examined. A. xylosoxidans, which is the major species in this 
study and is also reported as the major species identified from human clinical samples, 
combined one of the highest proportions of siderophore-producing strains and one of 
the highest amounts of siderophores produced, particularly observed for clinical strains, 
and among clinical strains, for CF strains. Literature remains poor regarding this kind 
of comparative analysis on siderophore production according to species within a genus 
or origin of strain. Including a small number of P. aeruginosa strains, Ali and Vidhale 
showed that clinical strains produced higher amounts of siderophores than strains of 
environmental origin (62). In other distantly related genera, similar observations were 
made for Aeromonas hydrophila by Naidu et al., comparing 19 strains from human 
diarrhea samples and 11 strains from freshwater ponds (63). In their study, siderophore 
production under iron-limiting conditions was significantly influenced by the origin of 
the strains. Indeed, they found that clinical strains consistently produced higher levels 
of siderophores than environmental strains (63). Although most microorganisms are 
thought to secrete siderophores when facing iron stress, another interesting finding 
in this study was that, unlike the environmental strains, most of the clinical strains 
also produced considerable amounts of siderophores under iron-rich conditions, again 
suggesting that clinical strains and their environmental counterparts may have distinct 
iron requirements. Beyond the global amount of siderophores produced, different 
siderophores with various degrees of iron affinity can also be produced by a species; 
for example, P. aeruginosa secretes pyoverdine (a mixed catecholate-type siderophore) 
and pyochelin (a phenolate-type siderophore with lower iron affinity than pyoverdine), 
and these different siderophores might be differentially expressed depending on the 
environmental conditions because of non-redundant function in iron uptake (18, 64, 
65). This was also observed for Vibrio vulnificus for which the catecholate siderophore 
was suggested to be important during human infections, whereas the hydroxamate 
siderophore may be more important in seawater (66), as well as for Burkholderia cepacia 
with strains isolated from the rhizosphere only producing a hydroxamate-like sidero­
phore, while clinical isolates produced pyochelin and salicylate siderophores in addition 
to the hydroxamate-like siderophore (67). Differences in siderophore production were 
also previously reported among clinical strains as observed in the present study. Variable 
abilities in siderophore production were observed among P. aeruginosa clinical strains, 
with strains from patients with urinary tract and respiratory tract infections producing 
the highest levels of siderophores compared to those from patients with wound or burn 
infections (62, 68). In patients with CF, airway concentrations of total iron and ferritin-
bound iron were shown to be higher, and these may enhance the growth of bacteria 
displaying a siderophore pathway leading to iron chelation, uptake, and utilization (69). 
Increased iron in the airways of these patients has also been considered as a factor 
favoring the persistence of bacterial infection (70).

In total, the results of this study support the fact that siderophores are important 
growth factors for Achromobacter spp., which may be essential to establishing infection 
in the host and surviving and persisting within the host. A. xylosoxidans showed distinct 
abilities in siderophore production, which warrant further investigations as they might 
well be related to the success of this species in human infections, particularly in patients 
with CF.

Conclusion and outlook

This study represents the first ever evaluation of siderophore production by Achromo­
bacter spp. on a large number of strains and accurately identified species. The capability 
of clinical and environmental strains to produce siderophores was demonstrated and 
their different capacities to produce siderophores, depending on the species under 
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consideration and the origin of the strains, were elucidated. However, despite the 
substantial number of strains analyzed, it is still necessary to increase the number of 
isolates for certain rarely encountered species to more precisely evaluate their sidero­
phore-production capacities. Several prospects have been opened up by the results of 
this study, first including a molecular analysis to identify both the type and potential 
diversity of siderophores produced by Achromobacter strains of different species and 
origins. Another question is whether Achromobacter spp. may capture siderophores 
produced by other bacteria (71), as well as the possible occurrence of modifications 
in siderophore production, which might be observed in CF patients throughout the 
length of airway colonization. Relating results with virulence in in vitro or in vivo models 
would also help to decipher the role of siderophore production in the host, as previously 
demonstrated for pyoverdine in P. aeruginosa (72). More broadly speaking, increasing the 
knowledge on the overall siderophore pathways in the Achromobacter genus, includ­
ing biosynthesis, secretion, and uptake, as well as characterizing the factors favoring 
siderophore secretion (physicochemical and environmental factors, such as the effect of 
media composition, incubation time, etc.), is now required (25, 28). All this is particu­
larly reinforced by the current development of research fields and therapeutic options 
aimed at limiting the iron available to the bacterial cell to reduce its multiplication 
and virulence. Indeed, over time, siderophores have not just been considered important 
virulence factors but are increasingly regarded as potential means of fighting against 
bacterial infections, by conjugating siderophores with antibiotics to generate “Trojan 
horse” antibiotics like cefiderocol or siderophore pathway inhibition (25, 26).

MATERIALS AND METHODS

Achromobacter spp. collection upstream of investigations

A total of 163 Achromobacter strains were included as follows: 67 CF strains from 
67 CF patients, 61 NCF strains from 61 NCF patients, and 35 environmental strains 
(Table S3; Table 1). Clinical strains were collected during standard microbiological 
analyses performed as part of patients’ routine care. According to the type of sample 
analyzed, these analyses included a sample culture in blood culture vials or onto agar 
media including enriched media and/or selective medium for Gram-negative species 
like MacConkey agar. Strains isolated from lower respiratory tract samples (sputum, 
bronchoalveolar fluid lavage, distal airway secretions, and endobronchial aspirate) 
formed the majority and included all the 67 strains isolated from CF patients and 27 
strains from NCF patients (44.3%). Other strains from NCF patients were from blood 
cultures and catheter (n = 14), eye and ear-nose-throat samples (n = 8), skin and soft 
tissue samples (n = 8), bone biopsy (n = 3), and rectal carriage (n = 1) (Table S3). Finally, 
35 environmental strains were isolated either during bacteriological investigations in 
the domestic environment of CF patients (water, shower trap, and sink siphon) (n = 19) 
(3) or healthy individual (n = 1), from the hospital environment (water and surfaces) 
(n = 6), exterior locations (soil, rhizosphere, and water) in various countries (n = 8), 
or a nematode of the genus Heterorhabditis (n = 1) (Table S3). Most of them were 
recovered according to the procedure previously described by Dupont et al. (3) including 
a first Achromobacter-specific PCR-based screening step followed by cultivation onto an 
Achromobacter selective agar medium. All strains were stored frozen at −80°C.

nrdA gene sequence determination, analysis, and phylogeny

nrdA genes were amplified as previously described (58) and sequenced on an ABI 3730xl 
automatic sequencer (Genewiz, France). nrdA sequences (765 bp) were compared to 
the PubMLST database (https:// pubmlst.org/organisms/achromobacter-spp) in order to 
determine the nrdA allele number. Maximum-likelihood (ML) analysis was performed 
using the NGPhylogeny website (https://ngphylogeny.fr/). The general time-reversible 
model was used as a substitution model. ML bootstrap support was computed after 

Research Article Microbiology Spectrum

March 2024  Volume 12  Issue 3 10.1128/spectrum.02953-2312

https://%20pubmlst.org/organisms/achromobacter-spp
https://ngphylogeny.fr/
https://doi.org/10.1128/spectrum.02953-23


100 reiterations. The data set for phylogeny analysis also included all the type strains 
of the Achromobacter species with validly published names and species with not validly 
published names, according to the List of Prokaryotic names with Standing in Nomencla­
ture (https://lpsn.dsmz.de/genus/achromobacter), as well as representative strains of the 
genogroups available on the PubMLST database. The tree was formed by the online tool 
iTOL (https://itol.embl.de). All data generated during this study have been deposited in 
the PubMLST database.

Siderophore quantification

Frozen strains were subcultured onto Trypticase-Soy (TS) agar and incubated at 37°C for 
48 h. Pure culture of each strain was transferred from the agar medium to TS broth and 
allowed to multiply overnight at 37°C under aerobic conditions and shaken at 175 rpm. 
Strains of environmental origin were also tested after growth at 30°C for comparative 
analysis. The bacterial suspensions were adjusted to an optical density of 0.5 at 600 nm, 
corresponding to 2–6 × 108 colony-forming units/mL. Global production of siderophores 
was quantified by the liquid chrome azurol-sulphonate (CAS) assay as described by 
Payne (73). Briefly, 20 µL of the calibrated bacterial suspension was cultured in 2 mL of 
iron-depleted minimal medium 9 for 48 h at 37°C. Culture supernatants were then added 
to a CAS-iron complex generated by adding a solution of iron hexahydrate (1 mM) to the 
CAS reagent (74). Based on the competition for Fe3+ between the CAS-iron complex and 
the bacterial siderophores having a higher affinity for Fe3+, the decomplexation of the 
CAS-iron complex is proportional to the amount of siderophores present in the culture 
supernatant tested and associated with a change in the color of the medium, from blue 
to orange, as measured at 630 nm. Inherent to its principle of siderophore detection 
and quantification, the CAS assay is a universal method that detects siderophores 
independent of their structure (75). Global siderophore production was quantified as 
percent siderophore units using the formula: [(negative control absorbance at 630 nm 
− sample absorbance at 630 nm)/(negative control absorbance)] × 100. According to 
Payne (73), a strain was classified as non-siderophore-producing if the psu value was 
below 10%. A clinical P. aeruginosa strain from a CF patient (Pa strain IV 33) was used as 
a positive control. For each strain, two technical replicates and two biological replicates 
were performed. Each value of siderophore dosage presented in this study is a mean 
value of four measures.

Growth in iron-depleted minimal medium 9

Microtiter (96-well) plates (Nunc, Thermoscientific) containing 200 µL of MM9 were 
inoculated from overnight liquid cultures at an initial optical density at 600 nm 
(OD600nm) of 0.005. Plates were incubated at 37°C for 48 h without agitation in a 
microplate reader (Spark, Tecan). OD600nm was measured every 5 minutes after a brief 
double orbital 2.5 amplitude agitation of 3 seconds for 48 h. Growth was expressed as 
the mean of five replicates.

Statistical analysis

All the statistical tests were performed using GraphPad Prism (GraphPad Software, 
La Jolla, CA, USA). A two-tailed P-value < 0.05 was considered statistically significant 
(*P-value < 0.05, **P-value < 0.01, ***P-value < 0.001, and ****P-value < 0.0001).

A Shapiro-Wilk test was used to determine whether values followed a normal law. 
For variables not following a Gaussian distribution, nonparametric tests were carried out. 
To compare the ordinal qualitative and unpaired values (percentages of siderophore-pro­
ducing strains in the overall population and depending on species and strain origins), 
a Chi-squared test was used. A Mann-Whitney U-test related to quantitative unpaired 
values was performed to compare the values for siderophore amounts in the overall 
population and depending on species and strain origins. Finally, the strength of the 
relationship between paired psu and OD600nm values was statistically tested using the 
non-parametric Spearman’s correlation.
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