Skip to main content
. 2024 Mar 4;24:54. doi: 10.1186/s12880-024-01232-5

Table 3.

Comparison of the prediction performance of deep learning models and radiomics models in the test set

Model AUC (95%CI) Accuracy Sensitivity Specificity PPV NPV
CT_RS 0.639 (0.529–0.749) 0.652 0.887 0.244 0.670 0.556
CT_TL 0.701 (0.595–0.808) 0.688 0.746 0.585 0.757 0.571
PET_RS 0.661 (0.552–0.769) 0.643 0.676 0.585 0.738 0.511
PET_TL 0.645 (0.534–0.756) 0.589 0.549 0.659 0.736 0.458
DS_RS 0.620 (0.509–0.730) 0.670 0.831 0.390 0.702 0.571
DS_TL 0.722 (0.622–0.822) 0.661 0.676 0.634 0.762 0.531
TS_RS 0.711 (0.613–0.809) 0.616 0.577 0.683 0.759 0.483
TS_TL 0.730 (0.629–0.830) 0.670 0.676 0.659 0.774 0.540

Bold numbers indicate the best results for each evaluation metric

AUC Area under the receiver operating characteristic curve, PPV Positive predictive value, NPV Negative predictive value, CT_RS CT radiomics, CT_TL CT transfer learning, PET_RS PET radiomics, PET_TL PET transfer learning, DS_RS PET/CT radiomics, DS_TL dual-stream transfer learning, TS_RS PET/CT radiomics combined with clinical features, TS_TL three-stream transfer learning