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Abstract

The balance between proliferation and quiescence of stem cells is crucial in maintaining tissue homeostasis. Neural stem cells (NSCs)
in the brain have the ability to be reactivated from a reversible quiescent state to generate new neurons. However, how NSCs transit
between quiescence and reactivation remains largely elusive. Drosophila larval brain NSCs, also known as neuroblasts, have emerged as
an excellent in vivo model to study molecular mechanisms underlying NSC quiescence and reactivation. Here, we discuss our current
understanding of the molecular mechanisms underlying the reactivation of quiescent NSCs in Drosophila. We review the most recent
advances on epigenetic regulations and microtubule cytoskeleton in Drosophila quiescent NSCs and their cross-talk with signaling
pathways that are required in regulating NSC reactivation.
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Neural stem cells (NSCs) are crucial for the devel-
opment, regeneration and repair of the nervous sys-
tem. Most NSCs in the mammalian adult brain exist
in a quiescent or mitotically dormant state [1–3]. Qui-
escent NSCs can re-enter the cell cycle (reactivate) to
generate new neurons in response to various physiolog-
ical stimuli, such as injury, the presence of nutrients
and physical exercise [3–10]. Conversely, stress, anxi-
ety and old age greatly reduce the proliferation capac-
ity of NSCs [11]. Dysregulation of NSC quiescence and
reactivation severely affect tissue homeostasis [12, 13].
NSCs in invertebrates such as Drosophila melanogaster
also switch between a reversible transition between qui-
escence and reactivation [14–17]. Drosophila NSCs, also
known as neuroblasts, in the central brain and thoracic
ventral nerve cord (VNC) enter into quiescence at the
end of embryogenesis and exit quiescence (termed reac-
tivation) largely within 24 hours upon larval hatching in
response to feeding [14–19]. Dietary amino acids stim-
ulate the TOR-kinase pathway in the fat body, which
presumably induces the synthesis of unknown fat-body–
derived signals (FDSs) that are thought to reach the brain
and VNC, stimulating NSC reactivation [20–23].

The Drosophila brain is separated from the blood-like
hemolymph by a functional analogue of blood–brain bar-
rier (BBB) that acts as an insulation barrier to protect the
CNS [24]. Recent work from the Brand lab showed that
in early larval stages, NSCs are not covered by the cortex
glial membrane, allowing direct contact between the BBB
glia and NSCs [25]. Thus, BBB glia provides an important
niche for the regulation of NSC quiescence and reac-
tivation via various signaling pathways. In response to

nutrition, insulin/insulin-like growth factor (IGF) signal-
ing (IIS) controls growth, metabolism and longevity [26].
The function of IIS in regulating growth is evolution-
arily conserved in Drosophila and mammals. Drosophila
contains a single insulin/IGF receptor (dInR) and eight
insulin/IGF-like peptides (dILPs 1–8) [27, 28]. The dILPs
secreted from the BBB glia act locally by directly acti-
vating the InR/phosphatidylinositol 3-kinase (PI3K)/Akt
pathway as well as the TOR pathway in underlying NSCs
[23, 29].

Apart from promoting NSC reactivation, the Drosophila
BBB glia niche also expresses and secretes factors that
maintain NSC quiescence. In the absence of dietary
amino acids, BBB glia express intercellular transmem-
brane proteins Crumbs and Echinoid that activate the
Hippo pathway, keeping NSCs in quiescence [30–34].
Recent studies have identified several regulators of
signalling pathways that are critical for NSC quiescence
and reactivation. One such intrinsic regulator of the
InR pathway is the Heat shock protein 83 (Hsp83), an
Hsp90 family molecular chaperone that promotes NSC
reactivation intrinsically by an association with InR [35].
The Cullin-RING ligase, CRL4Mahjong, an evolutionarily
conserved E3 ubiquitin ligase composed of Cullin4,
DDB1, Roc1 and a substrate receptor named Mahjong,
downregulates the Hippo pathway [36]. STRIPAK complex
members function as an intrinsic molecular switch
coordinating Hippo and InR/PI3K/Akt pathways, first
maintaining NSC quiescence and subsequently trigger-
ing NSC reactivation [37].

How is NSC reactivation coupled with nutrient
requirements? During the embryonic to larval transition,

https://creativecommons.org/licenses/by/4.0/


2 | Oxford Open Neuroscience, 2022, Vol. 1, No. 1

Embryogenesis hours ALH0 24 48 72 96

Plasma membrane

Kinesin-2

Cell body
Primary protrusion

qNSC

Msps
+

_ +

_

> 90% plus-end out

Neuropil

The immature 
centrosome

E-cad

BBB glia

InR/PI3K/Akt
Hippo pathway

Signaling?

Chro
Pr-set7

Dietary amino acids

Fat BodyFDS

?

dILPs
NSC-neuropil

contact
Acentrosomal MTs

Figure 1. Diagrammatic representation showing various factors regulating Drosophila NSC reactivation. Dietary amino acids are sensed by the fat body
that generates mitogens, stimulating blood–brain barrier glial cells to secrete insulin-like peptides (dILPs). dILPs activate the InR/PI3K/Akt pathway in
underlying NSCs and promote their reactivation, while the Hippo pathway maintains NSC quiescence. The spindle matrix complex containing
Chromator (Chro) functions downstream of the InR/PI3K/Akt signaling pathway as a key intrinsic regulator of NSC reactivation. The H4K20
monomethyl transferase, Pr-set7, is also required for the reactivation of Drosophila NSCs. In the primary protrusion of quiescent NSCs, microtubules
are predominantly acentrosomal and oriented plus-end-out. Mini spindles (Msps) and Kinesin-2 promote NSC cell cycle re-entry and target E-cadherin
to NSC-neuropil contact during NSC reactivation. ALH, after larval hatching; BBB, blood–brain barrier; Chro, Chromator; dILPs, insulin/IGF-like
peptides; E-cad, E-cadherin; FDS, fat-body–derived signal; InR, Insulin receptor; Msps, mini spindles; MTs, microtubules; PI3K, Phosphatidylinositol
3-kinase; qNSC, quiescent NSC.

although most NSCs are in quiescence, four mushroom
Body (MB) NSCs and one lateral NSC in the central brain
continue dividing, independent of nutrients [20, 38].
In contrast to the PI3K-dependent reactivation in non-
MB NSCs, PI3K is dispensable for MB NSC proliferation
[38]. This nutrient- and PI3K-independent MB NSC
proliferation requires the transcription factor Eyeless
(Ey), a Pax-6 orthologue expressed primarily in MB NSCs
[38]. Ey appears to bind to regulatory regions of genes
involved in metabolism [38]. In the future, it will be
important to investigate the metabolism signatures of
MB vs non-MB NSCs.

Two recent comprehensive reviews have covered con-
ceptual progress on quiescent NSCs from different model
systems [9, 10]. In this review, we will focus on the most
recent advances in epigenetic regulations and micro-
tubule cytoskeleton in Drosophila quiescent NSCs that
were not previously discussed (Figure 1).

TRANSCRIPTIONAL AND EPIGENETIC
REGULATIONS OF NSC REACTIVATION
Several transcription factors and spatial regulators such
as the Hox protein play a role in NSC reactivation and
quiescence [18]. The homeodomain transcription fac-
tor Prospero (Pros) is also capable of driving proliferat-
ing NSCs into quiescence when transiently expressed
in NSCs [39]. Pros is repressed by spindle matrix pro-
teins composed of Chromator (Chro)/Chriz, Megator and
enhanced adult sensory threshold (East) that function
intrinsically in NSCs [40]. Chro also activates grainy head

(grh), a temporal transcription factor in NSCs, and prob-
ably functions downstream of the InR/PI3K/Akt path-
way to promote NSC reactivation [40]. Future studies
will determine whether Chro has a direct link with the
InR/PI3K/Akt pathway during NSC reactivation.

Epigenetic regulators that control histone modifi-
cations or chromatin remodeling also play important
roles in regulating NSC behaviors [41]. Recent work
demonstrated the importance of Drosophila KMT5A/Pr-
set7/SETD8, the sole histone H4 Lys 20 monomethyl-
transferase (H4K20me1), in NSC reactivation [42]. KMT5A/
Pr-set7/SETD8 plays critical roles in maintaining genome
stability, DNA repair and replication, cell cycle regulation,
and chromatin compaction [43, 44]. Increasing evidence
suggests that variants of histone lysine methyltrans-
ferases including KMT5A are associated with neurode-
velopmental disorders [45]. In Drosophila, loss of pr-set7
resulted in delayed NSC reactivation [42]. Though the
role of H4K20me1 as an activator or repressor has been
debatable, targeted DNA adenine methyltransferase
(Dam) identification (TaDa)-based in vivo profiling,
demonstrated that Pr-set7 can bind to the promoter
region of cell-cycle regulator cdk1 and Wnt pathway
transcriptional and co-activator earthbound1/Jerky (Ebd1)
in NSCs, suggesting that Pr-set7 is linked to gene acti-
vation in NSCs [42]. Both Cdk1 and Ebd1 are intrinsically
required for NSC reactivation and the expression of these
genes in NSCs is regulated by Pr-set7 [42]. Interestingly,
Cdk1 and Ebd1 can also reciprocally regulate one another
during NSC reactivation, where Cdk1 upregulates Ebd1
levels and Ebd1 downregulates Cdk1 levels, thus forming
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a negative feedback loop to maintain an equilibrium of
Cdk1 and Ebd1 levels during NSC reactivation [42].

Ebd1 is a Wnt/Wingless signaling pathway transcrip-
tional co-activator, and it stabilizes the Arm-TCF com-
plex and facilitates the recruitment of the complex to
chromatin [46]. Ebd1 localizes in the nucleus of quiescent
and reactivating NSCs, in contrast to NSCs at third instar
larvae where nuclear Ebd1 is absent [42, 46]. Thus, Ebd1
expression is developmentally regulated and the Wing-
less signaling pathway may be transiently activated at
the early larval stage during NSC reactivation [42]. Pr-
set7 promotes Ebd1 expression to activate Wnt/Wingless
signaling, as the expression of Arm/β-catenin in NSCs
in the early larval stage is also dependent on Pr-set7,
highlighting the importance of Pr-Set7 in regulating the
Wnt/Wingless pathway during neural development [42].
The role of other key components of the Wingless path-
way during NSC reactivation is currently unknown and
will be of great interest for future investigations.

THE DYNAMICS OF CELLULAR
PROTRUSION/BASAL FIBRE OF QUIESCENT
NSCS
One distinct morphological feature of quiescent NSCs in
Drosophila is their cellular extension(s) that is attached to
the cell body. Quiescent NSCs in Drosophila extend a pri-
mary cellular protrusion/basal fibre toward the neuropil
and occasionally extend a second but a much shorter
protrusion at the opposite side of the cell body [15, 29].
This morphological feature shares great similarity with
radial glia, a mammalian NSC type found in the devel-
oping brain [47]. Mammalian radial glial cells extend an
apical process attached to the ventricular surface and a
longer basal process extending toward the pial surface
of the brain [47]. The basal process of radial glial cells
has long been known to act as a scaffold, guiding the
migration of newborn neurons to their correct position
in the neocortex [67, 68]. Whether the fibres in radial glia
are involved in quiescent NSC reactivation is currently
unknown.

Are cellular protrusions of Drosophila quiescent NSCs
similar to other microtubule-enriched signaling struc-
tures such as cilia or nanotubes? Microtubule-based
nanotubes mediate signaling between Drosophila male
germline stem cells and their niche [63]. However, the
structure of the primary protrusion in qNSCs is distinct
from that of nanotubes, as the latter lacks acetylated
Tubulin and is much thinner and shorter. Furthermore,
quiescent NSC primary protrusion is distinct from
primary cilia, as the latter is assembled/attached from
the basal body, which is derived from the mother
centriole [64]. The primary protrusion of quiescent
NSCs also differs from the cytonemes and tunneling
nanotubes that were up to 700–1000 μm in length and
mediated long-range signaling between cells [65, 66].

Cellular protrusions of quiescent NSCs are removed
presumably via retraction prior to cell cycle re-entry [29].

If the fibre is retracted, is it a pre-requisite for quiescent
NSCs to re-enter the cell cycle? Does the fibre in quies-
cent NSCs provide any cues for the apicobasal polarity of
dividing NSCs? Interestingly, the centrosomes, although
inactive (refer to the following section), are located at the
apical side of the quiescent NSCs, away from the cellular
protrusion [48]. The position of immature centrosomes
in quiescent NSCs appears to mark the future apical side
of the dividing NSCs. Further analysis is warranted to
test whether the fibre provides the earliest cue for the
apicobasal polarity of NSCs.

By using immobilization techniques to allow for long-
term live imaging, Bostock et al. recently documented
NSC reactivation in the larval ventral nerve cord at 22–
24 h after larval hatching (ALH) [49]. In contrast to the
previous notion, quiescent NSCs can retain their cellular
protrusion throughout the first post-reactivation divi-
sion, after which the cellular protrusion is inherited by
the first newborn ganglion mother cell (GMC) and then
by the GMC progeny in the following divisions [49]. This
observation awaits further confirmation by analysing the
dynamics of cellular protrusion of quiescent NSCs in
vivo in intact larvae. The exact mechanism by which
this inheritance occurs also remains to be elucidated.
Can fiber retraction and inheritance occur in different
populations of quiescent NSCs? Alternatively, the fibre
might undergo an incomplete retraction before its inher-
itance by the daughter cell committed to differentiation.
What is the significance of fibre inheritance by neuronal
progeny? Does it play a role in synapse or circuit forma-
tion in the larval or adult central nervous system?

NON-CENTROSOMAL MICROTUBULE
GROWTH AND ORIENTATION IN
QUIESCENT NSCS
Although the primary protrusion is believed to be a hall-
mark of quiescent NSCs, the exact structure and function
in NSC reactivation are poorly studied. Recent work from
our research group reported that these cellular exten-
sions of quiescent NSCs are microtubule-enriched struc-
tures [50]. Are these microtubules organized by the cen-
trosomes in quiescent NSCs? Surprisingly, in quiescent
NSCs of newly hatched larvae, centrosomes are imma-
ture and lack microtubule-nucleation activity [49]. In
centrosome-deficit quiescent NSCs, microtubule growth
is still robust, indicating that microtubule growth in the
primary protrusion of quiescent NSCs is mostly acentro-
somal. The γ -tubulin ring complex (γ -TuRC) including γ -
tubulin is often required for acentrosomal microtubule
nucleation in tracheal, wing and salivary gland epithelia
as well as neurons [51–54]. Super-resolution imaging in
Drosophila quiescent NSCs indicates that γ -tubulin is
localized to the centrioles, but not pericentriolar material
[49], suggesting that microtubule assembly in quiescent
NSCs likely occurs independently of γ -TuRC.

Mini spindles (Msps)/MAP215 has been identified as
the first key regulator of acentrosomal microtubule
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growth in the primary protrusion of quiescent NSCs [49].
Msps/MAP215 directly binds to the tubulin dimer via its
tumor-overexpressed gene (TOG) domains to promote
microtubule polymerization [50]. In quiescent NSCs
upon msps depletion, very little growing microtubules
can be detected in the cellular protrusion, indicating
a critical role of Msps in promoting the microtubule
polymerization in quiescent NSCs [49]. Interestingly,
Msps-dependent microtubule growth also provides
structural support for the formation of the primary
protrusion, as msps depletion leads to the thinning of
the fibre of quiescent NSCs [49].

Microtubules are inherently polarized, possessing a
faster-growing plus end and a slower-growing minus
end. Our recent work has discovered that acentrosomal
microtubules within the cellular protrusion are oriented
predominantly plus-end-out, similar to that seen in
axons of vertebrate and invertebrate neurons [49]. This
plus-end-out orientation is altered in quiescent NSCs
upon msps depletion [49], consistent with the role of
Msps in regulating minus-end microtubule orientation in
Drosophila dendrites in sensory neurons [55]. It remains
to be tested whether microtubule misorientation in
msps mutants is caused by the rotation of shorter
microtubules that presumably resulted from decreased
microtubule polymerization and, in turn, the switch of
microtubule orientation. Interestingly, microtubules in
the basal process of mouse apical radila glia appear
largely acentrosomal with approximately 85% of them
oriented plus-end-out [69], analogous to that of the
primary protrusion of quiescent NSCs in Drosophila. What
is the significance of the plus-end-out microtubule ori-
entation in quiescent NSCs? It is conceivable that plus-
end-out microtubule orientation might be important
for the transport of cargos such as proteins, organelles
and vesicles, in the fibre of quiescent NSCs. As the
microtubule polarity has just beginning to be elucidated
in both flies and mammalian NSCs, future studies on
potential acentrosomal microtubule-organizing centre
in quiescent NSCs as well as conserved mechanisms
that regulate microtubule polarity in both flies and
mammalian NSCs are warranted.

NSC-NEUROPIL CONTACTS AND CELL
ADHESION MOLECULES IN QUIESCENT
NSCS
Drosophila quiescent NSCs extend their primary cellular
protrusion towards the neuropil [15, 29]. Recent work
using Targeted GFP Reconstitution Across Synaptic Part-
ners (t-GRASP), has shown that quiescent NSCs directly
contact the neuropil [49]. The t-GRASP method has pre-
viously been shown to specifically detect cell–cell inter-
actions including those in synapse formation [56]. Using
two split-GFP fragments, one split-GFP fragment is tar-
geted specifically to the NSCs, while the other split-GFP
fragment is targeted specifically to the neuropil, the full-
length GFP could be successfully reconstituted at the

extracellular space between the two cell types, marking
the membrane contact sites between quiescent NSCs and
the neuropil [49]. The following open questions remain to
be answered—Can neuropil function as a new niche to
control NSC quiescence and reactivation? Which signal-
ing pathways are mediated by the NSC-neuropil contacts
in quiescent NSCs?

What are proteins that facilitate NSC-neuropil com-
munication? The cell adhesion molecule E-cad that
is often localized to cell–cell contacts forms endfeet-
like structures at NSC-neuropil contact sites and is
intrinsically required for NSC reactivation [49]. Drosophila
E-cad, together with β-catenin and α-catenin, forms
adherens junctions in epithelial cells and regulates
cell adhesion and the apicobasal polarity of epithelial
cells [57]. Furthermore, E-cad has also been reported
to localize to MB NSC-cortex glia contact in the adult
Drosophila brain [58, 59]. How exactly is E-Cad transported
to these NSC-neuropil contact sites? The localization of
E-cad at NSC-neuropil contact sites is possibly mediated
by Msps-dependent microtubule growth with the help
of the microtubule plus-end-directed motor protein,
Kinesin-2 [49]. Both Msps and Kinesin-2 play a critical
role in promoting quiescent NSC reactivation [49],
suggesting that plus-end-oriented cargo transport might
be required for NSC reactivation. Several studies have
shown microtubule-dependent transport of E-cad in
various cell types, such as in the elongated epidermal
cells within the Drosophila embryo [60]. In HeLa cells,
overexpressed E-Cad was found to transit from the Golgi
to the Rab11 endosomes [61]. In Drosophila epithelial
cells, E-cad is delivered from recycling endosomes to
the plasma membrane [62]. It remains to be determined
whether the localization of E-cad at the NSC-neuropil
contact sites is mediated by membrane trafficking in
quiescent NSCs. It will also be important to identify
additional molecules that are localized and function at
the NSC-neuropil contact sites.

CONCLUSIONS AND FUTURE PERSPECTIVES
Drosophila is indeed an indispensable model system for
understanding molecular mechanisms regulating NSC
quiescence and reactivation in vivo. As discussed in this
review, recent findings have opened new avenues into
the understanding of epigenetic regulation as well as
the structure and function of quiescent NSCs cellular
protrusuions in reactivation of quiescent NSCs. The
primary protrusion of quiescent NSCs arises as novel
microtubule enriched, signaling structure that possibly
mediates NSC-neuropil communication, contributing to
timely reactivation of Drosophila quiescent NSCs. Future
studies on novel mechanisms underlying epigenetic
regulation and microtubule-dependent transport during
NSC reactivation in Drosophila and mammalian systems
will provide insights into how these regulators modulate
stem cell behaviour in a more complex system, with
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important implications in understanding neurological
disorders and potential therapeutic targets.
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