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Abstract

The negative effect of advanced female age on fertility and offspring health is well understood. In 

comparison, much less is known about the implications of male age on fertility, with many studies 

showing conflicting results. Nevertheless, increasing evidence suggests that advanced paternal age 

has negative effects on sperm parameters, reproductive success, and offspring health. Herein, we 

summarize the current body of knowledge on this controversial topic, with the belief that this 

review will serve as a resource for the clinicians providing fertility counseling to couples with 

older male partners.
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It is widely accepted that female fertility decreases with advancing age (1). Women are 

born with a finite number of oocytes that cannot be replaced, and there is a steady and 

continuous decline in the ovarian reserve after birth. In contrast, men generally retain the 

ability to generate a limitless number of sperm over their lifetime, and seemingly have no 

age-related time limit on reproductive potential. Indeed, clinical cases of older men even 

above 90 years of age fathering biological children have been reported (2). Societal trends 

in the industrialized world have led to couples having children at older ages (3–5). These 

include educational and career-related commitments, desire for financial security, increased 

life expectancy, and increased use of contraceptives (1, 6). Over the past 4 decades, the 

number of fathers aged <30 years has decreased by >27%, whereas the number of fathers 
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aged 30–34 years increased by 15%, and the number of fathers aged 35–49 years increased 

by 52%–63% (7).

Significant research advancements have led to a better understanding of the effect of 

“advanced paternal age” (APA) on fertility and offspring health, as well as possible 

underlying mechanisms. The purpose of this article is to provide a comprehensive review 

of the topic, with a focus on the following: the effect of APA on semen analysis and 

sperm quality; the relationship between APA and offspring health; the association between 

APA and pregnancy success rates with both natural and assisted reproduction; potential 

mechanisms underlying paternal age-related problems; and potential treatments. A thorough 

understanding of these issues is critical for the clinician providing fertility counseling to 

couples with older male partners.

EFFECT OF PATERNAL AGE ON SEMEN ANALYSIS AND SPERM QUALITY

Semen analysis is the cornerstone of the evaluation of the infertile male (1,7). Numerous 

studies have examined the relationship between paternal age and key sperm parameters such 

as count, motility, concentration, and percent normal morphology (5). Overall, the results 

are conflicting. Many studies have reported statistically significant age-related declines in 

the aforementioned parameters, whereas others have reported no changes or rarely, even 

improvements in some parameters with age (8–16). However, these investigations were often 

limited in their study design, e.g., most of the studies did not include semen samples of 

fertile men (i.e., controls). Moreover, additional confounding factors, such as female partner 

age, were not accounted for in most studies. To better define the effect of paternal age 

on sperm parameters, Johnson et al. (17) performed a comprehensive meta-analysis using 

90 studies that were published through the end of 2013. They concluded that increasing 

paternal age negatively affected nearly all semen analysis parameters (aside from sperm 

concentration). In other words, APA was associated with decreases in semen volume, total 

sperm count, sperm (progressive) motility, and percent sperm with normal morphology as 

well as an increase in DNA fragmentation (Table 1). However, the observed effect sizes were 

uniformly small, with the greatest changes noted in progressive motility (r = −0.200) and 

DNA fragmentation (r = −0.209).

Following up on the work of Johnson et al. (17), we conducted a literature search of 

newer articles (2014– present), and after filtering out reviews, identified 17 additional 

English language studies assessing APA and various semen analysis parameters (6, 8, 

9, 18–31) (Table 1). Direct comparisons were difficult because of the heterogeneity in 

patient populations, study designs, and reporting of data. Overall, the most consistent 

findings included APA’s negative correlation with semen volume (7 of 9 studies) and 

motility (9 of 10 studies) as well as positive correlation with DNA fragmentation (11 of 11 

studies). However, improved standardization of study protocols is necessary to fully define 

age-related changes in sperm parameters.
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RELATIONSHIP BETWEEN PATERNAL AGE AND NATURAL (UNASSISTED) 

PREGNANCY

Advanced paternal age increases the risk of natural (unassisted) reproductive failure in 2 

important areas: infertility and miscarriage (32). Numerous studies have shown that APA is 

associated with a longer time to pregnancy and subfecundity (33–35). In one study, Dunson 

et al. (36) found that 18%–28% of men aged 35–40 years were unable to achieve natural 

pregnancy with their partners within 12 cycles (36). Pasqualotto et al. (37) showed that 

the probability of conception in >12 months doubled from 8% to 15% when comparing 

<25 men to >35 men. In another study, Louis et al. (33) demonstrated that APA, lack of 

biological children, and lack of health insurance were the 3 most important issues correlated 

with time to pregnancy >12 months.

Regarding miscarriage, several studies found that APA significantly increased the risk 

of miscarriage (38–41). In a 2020 meta-analysis, Du Fosse et al. (39) investigated the 

association between APA and spontaneous abortion. They chose the group of men aged 

25–29 years as a reference and evaluated pooled risk estimates for miscarriage among older 

age groups. These risks were 1.04, 1.15, 1.23, and 1.43 for the age groups 30–34, 35–39, 

40–44, and ≥45 years, respectively. Finally, they concluded that APA correlated with the 

risk of spontaneous miscarriage. Similarly, Belloc et al. (40) demonstrated that APA was 

an independent risk factor for miscarriage in natural pregnancy. de La Rochebrochard and 

Thonneau (41) analyzed 19 articles and found that the risk of infertility and miscarriage 

was high when men were over 40 years of age. In addition, the influence of male age was 

more pronounced when the woman had reproductive risk factors, such as being older than 35 

years or having a low ovarian reserve (41). Thus, APA is strongly linked with a high risk of 

not only infertility but also for pregnancy loss after natural conception.

RELATIONSHIP BETWEEN PATERNAL AGE AND ASSISTED 

REPRODUCTIVE TECHNIQUES

The profound effects of maternal age on assisted reproductive technique (ART) outcomes 

have been widely studied. Pregnancy and fertility rates after ART are significantly lower 

in women >40 years of age than the women in younger age groups (42). On the other 

hand, the influence of APA on ART outcomes is highly controversial (Table 2). Although 

many studies found that APA has a negative independent effect on the success rates of ART 

(43–49), others found this to be insignificant (3, 14, 50–52).

As for intrauterine insemination, most studies found that APA negatively affected pregnancy 

rates (40, 44). Belloc et al. (40) showed that APA was associated with low pregnancy 

rates and high spontaneous miscarriage rates with intrauterine insemination, independent of 

maternal age (40).

In in vitro fertilization and intracytoplasmic sperm injection (IVF/ICSI), the impact of 

paternal age on fertility and pregnancy rates remains unclear (3). A recent analysis of 2,425 

IVF/ICSI cycles suggests that clinical pregnancy outcomes and fertility rates decrease in 

men aged >50 years compared with men aged <40 years (45). A study by Cheung et 
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al. (46) included the ART outcomes of 113 men. Men aged 25–30 years had fertilization 

rates of 87.7%, which decreased to 46.0% among men aged >55 years. In addition, the 

25–30-year-old group peaked in clinical pregnancy rates at 80.0%, whereas no pregnancies 

were reported among the >55-year-old age group (46). Similarly, Frattarelli et al. found that 

paternal age >50 years had a large negative impact on pregnancy outcome and percentage of 

blastocyst formation after controlling for female age in 1,023 oocyte donation cycles (53). 

As noted by most of the studies, the decrease in sperm fertilization rate starts between 

the ages of 45 and 50 years (47). This decline may be due to a decrease in sperm 

parameters, an increase in sperm DNA fragmentation, and alterations in sperm genetic and 

epigenetic characteristics (53). On the other hand, the results of other studies contradict 

the aforementioned data (51, 52, 54, 55). In a study by Bartolacciet al. (54), 1,266 ICSI 

cycles were evaluated. After controlling for maternal age, the investigators found that APA 

did not affect the percentage of high-quality blastocyst formation or the rate of sustained 

pregnancies (54). In another study, Tsai et al. (52) examined the effect of APA on the 

outcome of 184 ICSI cycles and concluded that it did not affect the fertility and pregnancy 

rate after adjusting for female age. However, this study only included men aged 31–51 years 

and did not include men aged >51 years.

Overall, the controversial results of studies on the effect of paternal age on ART outcomes 

may be because of several issues. First, some studies did not control for the confounding 

factor of maternal age which is highly correlated with paternal age (3). Second, a number 

of environmental factors such as alcohol consumption, smoking, and obesity should be 

considered as they could affect ART outcomes (3, 56, 57). Finally, there is no global 

consensus on what should be considered APA (55). Although a couple of studies selected 

the cutoff of >40 years old (48), the results of studies that included males with >50 years old 

showed a more negative impact on ART success rate (45, 58).

Sperm donation is an efficient solution in older males with severe oligospermia or 

azoospermia which can be divided into non-identified (anonymous) or directed (known) 

sperm donation (59). Many studies showed the promising outcome of this technique 

(60–63). Allen et al reviewed the results and complications of ARTs using donor sperm 

compared with partner sperm in a meta-analysis of 37 studies. They concluded that there 

was no difference in the risk of complications such as abortion, preterm labor, and low 

birth weight in these 2 groups. However, they found a mildly increased risk of hypertensive 

disease during pregnancy and a small for gestational age in the sperm donation group (63). 

Besides ethical issues of sperm donation which have been discussed in several studies, 

determining optimal criteria for sperm donation is really challenging (64, 65). Most studies 

focused on good physical and psychological health as well as the minimum World Health 

Organization criteria for normal semen quality (59, 66). Age between 18 and 35 years old 

is ideal for sperm donation since the age of 40 and more affects sperm motility (67). Also, 

donors should follow a healthy lifestyle and not have genetic and infectious diseases which 

may deteriorate the quantity and quality of sperm (68).
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THE RELATIONSHIP BETWEEN PATERNAL AGE, REACTIVE OXYGEN 

SPECIES, AND SPERM DNA DAMAGE

A complex interplay of genetic and biochemical processes underlie male infertility. Given 

the high prevalence of male infertility, understanding these mechanisms is essential to 

integrating effective precision medicine strategies when clinically managing men with 

infertility and their families (69). One promising area of research is understanding how 

increased paternal age, and the biochemical processes therein, impact germline genetic 

integrity and male fertility. Here, we summarize research investigating the relationship 

between paternal aging, oxidative stress, and genetic instability, and how these factors 

contribute to male infertility and poor pregnancy outcomes after ART procedures.

We previously discussed several studies that report increased sperm DNA fragmentation 

with paternal age. Given that elevated degrees of DNA fragmentation mirror reduced 

fertilization, cleavage, blastulation, and successful ART-mediated pregnancy rates, 

understanding the mechanism of germline genetic instability is essential. One mechanism to 

explain the relationship between DNA fragmentation and age is oxidative stress, generated 

by the accumulation of reactive oxygen species (ROS) in spermatozoa (70) (Fig. 1A). 

During fertilization, ROS normally facilitates capacitation and the acrosome reaction (71, 

72). Paradoxically, excessive ROS accumulation to pathologic levels impairs sperm function 

and fragments sperm DNA (73). Furthermore, ROS can alter the chemical composition 

of guanine into 8-oxoguanine, which complements adenine rather than cytosine (71), 

resulting in a G>T point mutation (Fig. 1B). Dysregulation in sperm chromatin packaging, 

specifically age-related aberrant chromatin decondensation, has been hypothesized as a 

potential mechanism that renders sperm DNA vulnerable to ROS-induced damage (4, 74).

Oxidative stress, as it relates to male infertility, can originate in either the spermatozoa 

itself or the seminal fluid. Within the spermatozoa, mitochondrial dysfunction and lipid 

peroxidation of the sperm’s plasma membrane phospholipid bilayer can contribute to the 

overabundance of ROS (75–77). Additionally, seminal fluid leukocytes can produce 1,000-

fold more ROS than spermatozoa, especially after infection (78). Antioxidant mechanisms 

are required to maintain an appropriate balance of ROS and optimize sperm function. 

For example, the enzymatic activity of superoxide dismutase and glutathione peroxidase 

in semen is essential to limit ROS levels and prevent oxidative stress in sperm (79, 

80). Smith et al. (81) functionally investigated the role of thioredoxin redox proteins 

(Txdnc2 and Txdnc3) in mice to show that these genes limited oxidative stress (P<.01) and 

protected sperm DNA from fragmentation. Nikitaras et al. (82) further found that exogenous 

administration of 5uM of Idebenone, a free radical scavenger, reduced superoxide ROS 

concentrations in human sperm by approximately 20% and improved blastocyst implantation 

rates in mice from 18% (no idebenone) to 35% (P<.01). Although the relationship between 

increased paternal age and sperm-related antioxidant capacity has yet to be elucidated, these 

findings point to ROS’s clinically relevant role in sperm DNA instability and, ultimately, 

male infertility (71, 83, 84).

To date, however, investigations into the link between ROS levels and APA report discrepant 

findings (70). Cocuzza et al. (83) examined 98 fertile men seeking vasectomy to observe 
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a positive correlation in semen ROS levels with age (r = 0.20, P=.04). Building off this 

finding, the investigators reported that men ≥40 years had significantly elevated seminal 

ROS levels relative to men <40 years (P=.0009). To study the oxidative stress in the context 

of fertility status, Cocuzza et al. (83) further compared ROS levels to men with infertility 

falling in both age groups and reported significantly elevated ROS levels in men with 

impaired fertility. Similarly, Vaughan et al. (85) performed a large-scale retrospective study 

of nearly 17,000 semen samples from men seeking infertility treatment. They found a linear 

increase in oxidative stress with increased paternal age (weighted linear trend P<.001). In 

line with the hypothesis that oxidative stress destabilizes sperm DNA, these investigators 

also observed a significant concomitant trend in DNA fragmentation with age across the 

cohort (weighted linear trend P<.001). Conversely, Alshahrani et al. (12) examined 472 

men with infertility and did not observe elevated ROS levels in men >40 years of age 

compared with those younger than 40 years of age, although a significant relationship 

between DNA fragmentation and increased paternal age was observed. As described in their 

article, one possible reason for this discrepancy is that the cohort in the study by Alshahrani 

et al. comprised men seeking fertility treatment at a tertiary hospital and thus may not be 

representative of the general fertile and even infertile population. Nevertheless, given the 

increasingly established role of ROS in inducing sperm DNA damage, male infertility, and 

poor pregnancy outcomes, understanding risk factors for increased germline oxidative stress 

can inform improved clinical management strategies for men infertility and their families 

(86).

AN ARRAY OF COMPLEX, AGE-DEPENDENT MECHANISMS CONTRIBUTE 

TO MALE INFERTILITY

Beyond ROS-induced DNA damage, several age-related mechanisms can contribute to male 

infertility. These include: the accumulation of male germline de novo mutations; epigenetic 

modifications in the sperm methylation landscape; and transcriptomic and proteomic 

alterations in the male germline.

Germline de novo Mutations Accumulate with Paternal Age

Human male gametes differ from female gametes in that spermatogonial stem cells 

constantly divide throughout the lifetime of the testis-bearing individual. Estimates from 

Crow in 2000 suggest that sperm in a 20-year-old male would undergo 150 rounds of 

cell division, whereas sperm in a 40-year-old male would undergo 610 rounds of cell 

division (87). Therefore, along with dysfunctional DNA repair mechanisms and exposure 

to exogenous mutagens, male germ cells are uniquely susceptible to the accumulation 

of de novo mutations (DNMs) in an age-dependent manner via DNA replication errors 

(88). The patterns and rates of male germline DNMs are conventionally examined through 

genome sequencing of parent-child trios (89, 90) or multigenerational pedigrees (91). These 

studies reproducibly estimate the male germline mutation rate at approximately 0.9×10−8 

(i.e., the probability of a mutation occurring at a given site) and report an accumulation 

of approximately 1.5 germline DNMs/year. Although germline mutations may underlie 

human evolution and drive human diseases, their contribution to male infertility remains 

unknown (92–94). To this end, our group is currently testing the hypothesis that men with 
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infertility harbor elevated germline and somatic mutation rates, because of the transmission 

of impaired DNA repair and replication mechanisms, which could explain the association of 

male infertility with poor individual and familial somatic health.

The Sperm Methylation Landscape in Clinically Relevant Genes Changes with Increased 
Paternal Age

In addition to chromatin decondensation, age-associated alterations in sperm DNA 

methylation have been associated with reduced fertility and impaired embryonic 

development (95). Work from our group in 2015 devised predictive hierarchic clustering 

models to distinguish men with and without infertility using genome-wide sperm DNA 

methylation data with 82% sensitivity and 99% positive predictive value. Further, our model 

leveraged sperm methylation data to identify the samples with successful and unsuccessful 

embryo-genesis events after IVF with >94% positive predictive value (96). To characterize 

the effect of male age on sperm methylation, Oluwayiose et al. (38) examined sperm DNA 

methylation profiles in 47 males between the ages of 21–45 years seeking fertility treatment. 

After adjusting for body mass index and smoking, the investigators discovered 19 CpG 

hypermethylated sites significantly associated with APA. Furthermore, a multivariate linear 

regression identified 1,146 differentially methylated regions significantly associated with 

male age, which primarily impacted genes involved in pathways associated with embryonic 

development, organ morphogenesis, and neuronal development. Similarly, Atsem et al. (97) 

identified a trend of decreased FOXK1 methylation, a gene implicated in autism, in the 

sperm of aged men as well as the cord blood of their children diagnosed with autism 

(correlation coefficient = −0.35 and −.20, respectively) (98). Given the transmissibility of 

clinically relevant epigenetic markers, there exists a clinical need to further characterize 

genes linked to age-dependent sperm DNA methylation events (99, 100).

AGE-RELATED TRANSCRIPTOMIC AND PROTEOMIC ALTERATIONS ARE 

ASSOCIATED WITH MALE INFERTILITY

Given the heterogeneous nature of male infertility, additional “omic” approaches beyond 

genomic and epigenetic approaches are needed to ameliorate the high prevalence of 

idiopathic male infertility cases (101, 102). To this end, Cheung et al. (46) performed 

bulk RNA sequencing on spermatozoa-derived RNA from 8 fertile and 5 infertile males 

to identify 86 differentially expressed genes. Critically, the investigators further noted that 

decreased expression of DNA repair and apoptosis-modulating genes were associated with 

increased age and DNA fragmentation. Regarding proteomics, Panner-Selvam et al. (103) 

studied the proteomic landscape of 8 normozoospermic fertile and 9 normozoospermic 

men with infertility. Their analysis revealed 162 differentially expressed proteins in men 

with infertility, including ANXA2 (2.03 fold change, P=.0243), SPA17 (0.37 fold change, 

P=.0205), and SERPINA5 (0.32 fold change, P=.0073), all 3 of which are key proteins 

in spermatogenesis and sperm function. Adding to the controversial relationship between 

oxidative stress in the aging, infertile male, the investigators report an insignificant 

overexpression of PRDX2 (peroxiredoxin antioxidant protein, P=.3258), in men with 

infertility, perhaps as a response to the increased oxidative stress experienced in the 

reproductive tract of men with infertility. Additional research efforts using large fertile and 
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infertile cohorts are needed to elucidate the relationship between APA, proteomic changes, 

and male infertility.

EFFECT OF PATERNAL AGE ON OFFSPRING HEALTH

The impact of APA on offspring health was first documented in 1955 through a genetic 

disorder, namely, achondroplasia, which is the most common cause of skeletal dysplasia 

and dwarfism resulting from dysfunctional osteogenesis (5, 104). Since then, numerous 

investigations have associated APA with genetically heterogeneous conditions that are 

distinct in etiology and development (Table 3) (105). Here, we will focus on the relationship 

between APA and poor offspring health in specific disease contexts such as malignancies, 

chromosomal aneuploidies and aberrations, congenital disorders, autosomal dominant 

Mendelian diseases, and neurocognitive disorders.

Several studies have suggested an association between APA and increased rates of childhood 

cancer. Among these malignancies, the most common diagnosis is acute lymphoblastic 

leukemia (1, 5, 106, 107). Indeed, Kovac et al. (1) reported that the relative risk for a 

child to develop acute lymphoblastic leukemia is as high as 1.5 for fathers aged ≥35 years. 

Other childhood malignancies linked to APA include central nervous system tumors (5, 

107, 108), breast cancer (with Kuhnert and Nieschlag (5) also found an association between 

paternal aging and early death from breast cancer), early onset (<65 years) prostate cancer, 

and non-Hodgkin’s lymphoma (1). In contrast, Paul et al. (108) described a negative (i.e., 

protective) relationship between paternal age and rates of colon and thyroid cancer. The 

mechanisms underlying these observed positive and negative associations remain unknown.

Although extensive literature highlights the effect of increased maternal age on elevated 

rates of chromosomal aneuploidy (most commonly with trisomy 21), less research has 

been conducted with regards to paternal aging (1, 5, 106, 107). In 2000, Asada et al. 

(109) used flupressense in situ hybridizatipn to analyze sperm chromosomal nondisjunction 

in the context of paternal age. They identified a significant increase in XY disomy 

in men aged >39 years with idiopathic infertility compared with healthy donors aged 

<25 years. These results contrasted with an earlier study that reported YY disomy as 

the only nondisjunction event to exhibit a paternal effect (110). Subsequent studies and 

reviews established a consistent finding that paternal aging did indeed have an effect on 

chromosomal aneuploidies, especially sex chromosome disomies (i.e., XX, YY, and XY) 

as well as trisomy 21 (5, 104, 107, 35). In particular, Sharma et al. (104) noted that 

on an average, 10% of sperm cells of healthy male populations possessed chromosomal 

aneuploidies; however, this value increased with paternal age. Additionally, the strongest 

associations between paternal aging and increased rates of chromosomal aneuploidies 

occurred when maternal age was >35 years, with Kuhnert and Nieschlag commenting that 

the paternal effect in aged couples could no longer be neglected (5, 104, 107, 35).

To build on these findings, several studies examined the relationship between APA, 

chromosomal aneuploidies, and nondisjunction-mediated conditions. For example, the 

frequency of XY spermatozoa increased with age in fathers of offspring with Klinefelter 

syndrome (5, 104, 107, 35). In contrast, Ramasamy et al. (106) commented how the 
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frequency of XY spermatozoa is increased in older men compared with younger men, 

and yet, this did not translate to an increased risk of having an affected child for older 

men (5, 104, 35). To explain this observation, the investigators hypothesized a possible 

mechanism by which germ cells self-correct their aneuploidy, thereby protecting against 

the transmission of XY spermatozoa which would result in Klinefelter males. For trisomy 

21 (Down syndrome), Kovac et al. (1) and Stewart et al. (112) both concluded that a 

significant association existed with APA only when the female partner was >35 years of age. 

No association was observed with younger female partners; however, Stewart et al. (111) 

further described a strong association if the female partner was >40 years of age, noting 

that the incidence of Down syndrome seemed to be related to sperm approximately 50% of 

the time. Of note, Kovac et al. (1) also observed a significantly increased risk of trisomy 

21 with younger fathers aged 20–24 as compared with fathers aged 25–29. Such bimodal 

distributions in relation to paternal aging have been documented in other studies, primarily 

with a focus on obstetric outcomes (1).

Multiple congenital cardiac defects, including atrial septal defects, ventricular septal defects, 

and patent ductus arteriosus have been associated with APA (5, 70, 104, 108). Furthermore, 

Humm et al. (70) identified associations between APA and multifactorial congenital 

defects, including cleft palate, diaphragmatic hernia, and right ventricular outflow tract 

obstruction. In their reviews, Sharma et al. described the associations existing between 

paternal aging and anencephaly, whereas Kovac et al. (1) could not corroborate their finding 

(104). However, associations for the former lacked statistical significance and only existed 

when paternal age was >45 years (104). Combined with a low sample size of 186 total 

anencephalus cases, further studies are required to demonstrate any increased risk for 

anencephaly resulting from paternal aging. Additionally, Kovac et al. (1) discussed that 

their analysis of paternal age and anencephaly was limited as they were missing 55% of 

paternal age records on these cases.

An increase in germline de novo mutation burden, primarily manifesting as single base-pair 

mutations, is strongly associated with APA and directly implicated in offspring health 

(1, 5, 107). Ramasamy et al. (106) described how mutation accumulation and frequency 

is theoretically higher in males compared with females, as a 70-year-old male would 

have had approximately 1,300 rounds of spermatogonial mitotic division. Transmission of 

mutations that accumulate throughout spermatogonial stem cell division can contribute to 

many autosomal dominant disorders, including achondroplasia, Apert syndrome, Crouzon 

syndrome, Pfeiffer syndrome, MEN2A syndrome, and MEN2B syndrome. This association 

is especially true for paternal age effect genes, such as FGFR2, FGFR3, and RET, which 

drive spermatogenesis and are responsible for the pathogenesis of human diseases (1, 

32, 107, 108). However, these reviews noted that age-related nucleotide substitution rates 

in FGFR3 were not high enough to fully explain the exponentially increased rates of 

achondroplasia associated with APA. Such a finding suggests additional undiscovered 

mechanisms in older fathers that may influence the incidence of autosomal dominant 

disorders in offspring.

The age-dependent accumulation of male germline DNMs is also implicated in 

neurocognitive disorders. Sharma et al. (104) reported a twofold increase in risk for 
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schizophrenia in offspring of men ≥45 years, increasing to a three-fold increase in risk 

for men >50 years (104). Even higher magnitudes of risk elevations for autism spectrum 

disorders have been noted, ranging from 3.3 to 5.75 for paternal groups aged >45 years 

and >50 years, respectively. Bipolar disorder has demonstrated significant associations with 

APA; however, it does so to a lesser degree compared with schizophrenia and autism, with a 

relative risk of 1.37 (1). Although some studies (107, 111) have found associations between 

APA and Alzheimer’s disease, others have failed to do so (5).

Several studies have identified the associations between APA and adverse birth outcomes, 

including preterm birth, low birth weight, stillbirth, and miscarriage (1, 32, 104, 107). 

Sharma et al. (104) summarized associations between paternal aging and preterm birth (with 

odds ratios ranging from 1.3 to 2.1) and low birth weight (with odds ratios ranging from 

1.2 to 1.9). As low birth weight has been identified as the leading cause of infant mortality 

in the United States (104), such associations should require considerable attention during 

family counseling. For offspring of older fathers, stillbirth has been found to have odds 

ratios ranging from 1.22 to 1.48 (5, 32, 70, 108).

When assessing how APA influences the risk of adverse birth outcomes, there has 

been a predominant focus on how APA affects reproductive function through variables 

such as paternal DNA integrity, sperm quality, and hormonal changes. Although these 

factors do change with APA and play a critical role in affecting offspring health, the 

topic of overall paternal health and its relation to adverse birth outcomes has been less 

scrutinized. In 2020, Kasman et al. (113) demonstrated that fathers possessing most or 

all components of metabolic syndrome exhibited significantly high risks for preterm birth, 

low birth weight, and neonatal intensive care unit stay, even after adjusting for maternal 

age and comorbidities. The risk of developing metabolic syndrome or its components (i.e., 

hypertension, hyperlipidemia, diabetes mellitus, and obesity) and other chronic disorders 

undoubtedly increases with APA. Thus, the effects of APA on offspring health may be 

much more widely distributed than currently understood, impacting beyond just paternal 

reproductive function and necessitating further research.

POSSIBLE TREATMENTS

As men age, physiologic changes can impair the fertility potential. These include 

conditions such as benign prostatic hyperplasia, erectile dysfunction, and hypogonadism 

(decreasing testosterone and increasing follicle-stimulating hormone) (40). Additionally, 

men are susceptible to a variety of disease processes as they age, and some of them can 

impair fertility as well. These include, but are not limited to, infections (e.g., prostatitis, 

epididymitis), cancer and associated treatments (e.g., prostate cancer, testicular cancer), 

diabetes, vitamin deficiency, and obesity. Finally, medications commonly used by older 

men, such as exogenous testosterone (for testosterone deficiency) and alpha blockers 

(for benign prostatic hyperplasia) can cause impairment in fertility through mechanisms 

such as inhibition of spermatogenesis and retrograde ejaculation. These pathologies and 

environmental factors can contribute to the age-related decline in male fertility. Fortunately, 

many of these factors can be fully or at least partially ameliorated through specific 

interventions, such as weight loss, antimicrobial therapy, medical and surgical treatments 
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for erectile dysfunction, and cessation of fertility impairing medications (Table 4) (40). Even 

for conditions that cannot be reversed, there exist treatment options that can improve a 

man’s reproductive potential, such as a-adrenergic agonists for diabetes-related retrograde 

ejaculation and sperm extraction procedures for men with a history of prostatectomy.

One pathology that bears special mention is varicocele, which is the most common 

reversible cause of male infertility. The abnormal dilation of the pampiniform plexus 

in the spermatic cord is thought to elevate testicular temperature, which subsequently 

increases oxidative stress within the testis and reduces the fertility potential (114, 115). 

The commonly quoted prevalence of varicocele is 15% in the general population; however, 

it has been shown that the prevalence of varicocele increases with age. Levinger et al. (116) 

reported that the prevalence of varicocele increases by approximately 10% per decade of 

life, ranging from 18% in men aged 30–39 years to 75% in men aged 80–89 years. Clearly, 

physical examination of an older male for the presence of clinically palpable varicoceles 

is critical, as varicocelectomy is the sole surgical treatment option that can enhance and 

optimize sperm production.

Additionally, there have been many studies that explored the utility of antioxidant 

supplementation as a measure to combat oxidative stress. These include agents such as 

vitamin C, vitamin E, carotenoids, selenium, zinc, folic acid, N-acetyl cysteine, L-carnitine, 

polyunsaturated fatty acids, and coenzyme Q (40, 117, 118). Overall findings suggest 

that antioxidant therapy can improve semen parameters and pregnancy outcomes (40). 

As older men seem to have higher levels of oxidative stress and resultant sperm DNA 

fragmentation, these treatments are particularly noteworthy. However, consistent conclusions 

are difficult to obtain as study designs lack uniformity. With that said, Li et al. (119) have 

performed a meta-analysis of 23 randomized controlled trials focusing on the effects of 

various antioxidants on sperm parameters and pregnancy rates in idiopathic male infertility. 

They found the strongest evidence for L-carnitine (improvement in sperm motility and 

morphology) and omega-3 fatty acids (improvement in sperm concentration). Unfortunately, 

none of the treatments significantly affected actual pregnancy rates. Finally, there is some 

evidence that for men with sperm DNA fragmentation index >30%, the use of testicular 

sperm for ICSI (vs. ejaculated sperm) results in high pregnancy and live birth rates (114).

CONCLUSIONS

It has become increasingly clear that APA, just like advanced maternal age, is associated 

with reduced fertility and poor health effects in offspring. Significant research efforts 

have uncovered some of the genetic, environmental, and disease factors contributing 

to age-related male infertility. This progress has, in turn, led to the development of 

strategies to improve or restore fertility in older men, such as the hormonal treatment of 

hypogonadism and the use of antioxidant therapy to counteract ROS-induced DNA damage. 

These advancements in clinical management strategies for men with infertility are highly 

relevant in the modern age, where because of multiple socioeconomic factors, many couples 

(and especially men) are choosing to have children at older ages compared with previous 

generations. Clinicians are encouraged to familiarize themselves with the issues discussed 

within this article to facilitate fertility counseling for couples with older male partners.
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Figure 1 - 
Schematic diagram of oxidative-stress induced DNA damage and mutation

(A) Sperm DNA chromatin decondensation, as a function of increased paternal age, 

has been hypothesized as a mechanism underlying increased DNA fragmentation rates. 

Specifically, sperm DNA decondensation exposes the DNA to reactive oxygen species 

(ROS) generated from several sources, including mitochondrial dysfunction. These ROS 

can induce DNA damage in the form of double- or single-stranded breaks (yellow star). 

(B) Oxidative stress can result in the conversion of the guanine nucleotide to 8-oxoguanine 

(orange). During subsequent rounds of replication, if left unrepaired, 8-oxoguanine will 

complement adenine rather than cytosine. Further replication of the strand harboring adenine 

(red, middle panel) will result in a complementary strand harboring a thymine nucleotide at 

the site formerly occupied by a guanine nucleotide (red, bottom panel). Figure made with 

biorender.
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Figure 2 - 
Source of male germline de novo mutations

(A) We provide a schematic diagram of James Crow’s estimates(87) which describe the 

number of cell divisions mature sperm would undergo as a function of male age. Here, we 

aim to highlight the years elapsed post-puberty (after roughly 16 years), which contributes 

to the non-linear increase in spermatogonial stem cell divisions by age 20 and 40. (B) 
As discussed in Cioppi et al.(88), several processes can introduce male germline de novo 
mutations, including dysfunctional DNA repair mechanisms, environmental mutagens such 

as smoking, and DNA replication error - the latter of which is related to age-dependent 

differences in spermatogonial stem cell divisions. Figure made with biorender.
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