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ABSTRACT

A fluent conversation with a virtual assistant, person-tailored news feeds, and deep-fake images created within seconds—all those things that
have been unthinkable for a long time are now a part of our everyday lives. What these examples have in common is that they are realized by
different means of machine learning (ML), a technology that has fundamentally changed many aspects of the modern world. The possibility
to process enormous amount of data in multi-hierarchical, digital constructs has paved the way not only for creating intelligent systems but
also for obtaining surprising new insight into many scientific problems. However, in the different areas of biosciences, which typically rely
heavily on the collection of time-consuming experimental data, applying ML methods is a bit more challenging: Here, difficulties can arise
from small datasets and the inherent, broad variability, and complexity associated with studying biological objects and phenomena. In this
Review, we give an overview of commonly used ML algorithms (which are often referred to as “machines”) and learning strategies as well
as their applications in different bio-disciplines such as molecular biology, drug development, biophysics, and biomaterials science. We
highlight how selected research questions from those fields were successfully translated into machine readable formats, discuss typical prob-
lems that can arise in this context, and provide an overview of how to resolve those encountered difficulties.
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I. INTRODUCTION

In many areas of medicine and materials science, analyzing com-
plex datasets is a crucial task; those datasets, for instance, consist of
images that can be used to identify pathologies or to quantify the pro-
gress of diseases1–3 as well as for detecting defects on materials4–6 and
monitoring experimental7–9 and production10,11 processes. When per-
formed manually, those tasks require time-consuming expert
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involvement but, nevertheless, may remain error-prone and biased.
This is where computer-based decision processes can help. In the
recent decade, machine learning (ML) approaches have gained vastly
increased attention and have been successfully applied to different
problems. Machine learning is a field of data science that encompasses
a variety of algorithms that automatically learn from provided infor-
mation and then draw conclusions. Such approaches aim at simplify-
ing, extending, or replacing human decision and analysis processes.
Examples include object detection12,13 and monitoring,14,15 identifica-
tion of patterns or correlations between datasets,16,17 as well as data
classification,18–20 regression,21,22 or clustering23,24 (Fig. 1).

A key task for which machine learning has turned out to be
highly helpful is image analysis.25–28 Here, image segmentation and
object detection methods can be used to automatically identify and
locate the presence of certain objects within an image or video.29–31 By
receiving example images as an input, the algorithms learn to find
informative regions in the pictures and extract characteristic features
such as edges or specific shapes from them.32,33 At the moment, such
approaches are extensively applied to face recognition or autonomous
driving tasks; yet, this technique offers great potential in other areas as
well where decisions are made based on visual impressions: The
progression of glaucoma,34–36 dementia,37,38 or cancer39–42 was suc-
cessfully extracted from medical images, cell nuclei were detected in
microscope images,43,44 microtissue-contraction measurements were

automatically analyzed in laboratory experiments,45 and additive
manufacturing processes of biomaterials were optimized.46,47

In addition to analyzing images, ML algorithms can also handle
other data types such as numerical values or text. Instead of an image,
the samples then comprise multiple input parameters (commonly
referred to as features) and—optionally—an output label or value. In
materials science, such data analyses can uncover links among the
composition, structure, and characteristics of known materials and
extrapolate this knowledge to propose potential new materials with
predefined properties.48–50 Here, the algorithms search for patterns
and correlations in the dataset, from which conclusions can be
drawn.51 With such an approach, it was possible to explore therapeu-
tics that target specific diseases52–55 to study glycan functions,56,57 to
enhance single molecule sensing,58 and to improve manufacturing
processes such as 3D bioprinting59 or microparticle production.60

By mapping such input data, e.g., experimental findings, onto
output labels, predictive algorithms can be established. Depending on
the type of possible outputs, one can distinguish between classification
and regression attempts. Classification describes the prediction of dis-
crete outputs, i.e., samples are assigned to specific classes. Examples
are the categorization of surfaces with regard to their wetting behav-
ior61 or sorting the state of polymer conformations.62 In contrast,
regression algorithms predict properties that can be described by
continuous values such as interaction affinities,63–65 transcriptional

FIG. 1. Typical objectives of machine learning approaches. A ML-based analysis of data from the biosciences can have different goals. Typical examples include the correla-
tion of material properties, the classification of samples, the identification of patterns, process monitoring, molecular structure analysis, and the evaluation of medical images.
Correlating material properties can, for instance, be useful to predict the behavior or certain characteristics of materials to provide guidance for a target-oriented design or
selection process. Sample classification finds broad applications in areas where samples need to be assigned to discrete categories, e.g., for the classification of disease pat-
terns based on various biomarkers. ML-based process monitoring can be an essential part of quality control to automatically identify and react to defects or variations in the
process flow. Analyzing molecular structures by means of ML allows us to scan large databases to identify or even to design chemical moieties with certain properties. Another
growing area of application for ML is the automated evaluation of medical images to, e.g., localize and categorize organs or pathological manifestations in tissues. Finally, one
versatile purpose of ML is to identify patterns in databases to unveil hidden dependencies between different characteristics and attributes.
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activities of DNA motifs,66 or material parameters describing mechan-
ical responses.67,68 These approaches are especially useful when mathe-
matical equations based on physical models are still unknown.

II. PRINCIPLES, ADVANTAGES, AND LIMITATIONS
OF DIFFERENT ML ALGORITHMS

Considering the large variety of available ML algorithms, select-
ing the most suitable one for a given problem is not always trivial: The
best choice depends on the problem statement, the database, the
desired output, interpretability, and many other factors. In Sec. II, we
give an overview over common learning strategies, we highlight
selected ML models (including random ensemble-based, probabilistic,
linear, and deep learning methods), and we explain their working
principles and characteristics. Although some models can make use of
different learning strategies, in the following, each of them is assigned
to the most commonly used one. Graphical representations of the
algorithms discussed here are depicted in Fig. 2, and an overview of
the advantages and disadvantages is given in Table I.

Overall, data fed into an algorithm can serve three different
purposes: First, a “training set” is required to allow the algorithms to
develop a model. Second, a “test set” is used for validation, and this
set contains data the algorithms are only confronted with once they
have established the model. Third, once validation was successful,
so-called “query samples” are fed into the algorithm with the aim to
get classified or to make predictions for. In all those datasets, input
variables that quantify individual measurable characteristics of a
data point are referred to as “features,” outputs assigned to training

or test samples are called “labels,” and the output of the algorithm
(be it continuous or discrete values) created for a query sample is
called “prediction.”

A. Supervised learning

In supervised learning, models are developed based on labeled
data—similar to how parents teach their children to name objects. The
algorithm needs to be provided a training dataset, containing a suffi-
ciently large number of samples; each of them is represented by input
data—i.e., information (descriptors) that is likely to characterize the
desired output—and corresponding output labels. Such datasets could,
for example, comprise histological images of cancerous tissue (input)
labeled with the name of the affected organ (output),114 or they could
link the composition of a polymeric biomaterial (input) to its mechan-
ical behavior (output).115,116 With such information offered, the ML
models aim at identifying relationships between the input and the out-
put and can then perform classification or prediction tasks for new
data they were not confronted with before.

1. k nearest neighbor (KNN) algorithms

The simple but powerful k nearest neighbor algorithm follows
the assumption that similarity between samples is accompanied by
proximity in the data space; in other words, similar samples are
expected to come with similar inputs. Instead of developing a general-
ized model, predictions are made by comparing a query sample to the

FIG. 2. Schematic representation of typical ML algorithms used for analyzing problems from the different fields of biosciences. The k nearest neighbor (KNN) algorithm classi-
fies a query sample according to the k samples that are most similar to it, i.e., which have the lowest distance in an n-dimensional hyperspace (here, n corresponds to the
number of analyzed features). The Gaussian Na€ıve Bayes algorithm determines conditional probabilities and classifies samples based on a “most probable” principle. Support
vector machines define hyperplanes in the n-dimensional feature space to distinctly separate samples of different classes while maximizing the distance of all samples to this
separating hyperplane. The Random Forest classifier combines many randomly generated, uncorrelated decision trees to perform predictions in a popular-vote-like manner.
Clustering refers to algorithms that group unlabeled data based on their characteristics. Association rule mining describes the process of finding dependencies that govern cor-
relations and associations between samples. Q-learning assesses the quality of each action available for a given state by rewarding a subset of desired outcomes. Deep neural
networks mimic the structure of the human brain by combining activatable units in consecutive, interconnected layers that process information in various manners.
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training data. Then, the k nearest neighbors, i.e., the most similar
samples according to their feature values, are identified, and a predic-
tion is made considering the labels of those data points in a popular-
vote-like manner. The number of neighbors k can be varied to find a
valid compromise between robustness toward outliers (which is

achieved for high values of k) and distinctness (which is a typical result
for low values of k).117,118

KNN algorithms can be used for multi-class problems,119 and
their accuracy can easily be improved by adding more data points to
the training set. Providing more input data, however, typically comes

TABLE I. Overview of the advantages and disadvantages of the different ML algorithms discussed here.

K nearest neighbors69–72

No training phase needed High dimensionality leads to decreased accuracies
Intuitive and simple algorithm Can become slow for big datasets
Easily adapts to new training data Needs feature scaling
Only one hyperparameter to tune Has problems with imbalanced datasets

Missing values are problematic

Na€ıve Bayes73–78

Very fast The assumption of independent features that equally contribute to the
output rarely holds true

Needs less training data than most other algorithms Zero probability problem: If one feature of a sample exhibits a value
of zero probability according to the trained model, the class will be
assigned a probability of zero.

Works well with high-dimensional data

Support vector machines79–86

Kernel functions can be used to solve complex problems Choosing an appropriate kernel can be difficult
Effective in high-dimensional spaces even for comparably small sam-
ple sizes

Training times can become long with large datasets

Memory efficient, as it uses a subset of training points for the decision
function

Limited capability to handle noisy or strongly overlapping classes

Random forest87–93

Robust to outliers, noise, and imbalanced datasets Long training times for large datasets
Lower risk of overfitting Little control over model formation
Runs efficiently with large datasets Limited ability to extrapolate
Easy data preparation
Can handle high dimensionalities

Clustering94–99

Can handle unlabeled data It can be difficult to interpret the sorting decision
Algorithms of different complexity are available Big datasets can lead to long running times
Can be used on very small and very large datasets The criteria to stop clustering or the number of clusters need to be

defined

Association rule mining100–104

Offers an easy way to detect correlations in unsorted datasets Does not guarantee statistical significance
Unveils relationships between elements Requires nominal variables; continuous values need to be translated

Q-Learning105–109

After sufficient training, it finds optimal actions Can be computationally expensive since each state/action pair needs
to be evaluated multiple times

Can solve problems without explicitly being told how to Does not include risk assessments into the decision making
Can have problems with high dimensionality

Deep neural networks110–113

Highly flexible and suitable to approximate complex functions Requires lots of training data
Can be difficult to interpret (black box)

Once trained, the predictions are fast Training can be computationally expensive
There are multiple different network architectures already available Finding the best network architecture can be challenging
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at the cost of long computational runtimes.69 Moreover, KNN algo-
rithms have limitations when it comes to handling imbalanced data-
sets70 (e.g., training data with a dominant class): For predictions to be
reliable, a certain amount of data points from all classes is required to
achieve a suitable (local) density in the data space. Also, KNN algo-
rithms tend to struggle with large numbers of input features—a phe-
nomenon, which is known as “curse of dimensionality.”71 Finally, as
the input features are usually weighted equally when calculating the
distance of a query sample to its nearest neighbors, it is important to
ensure that the input features have the same scale72 (which is why
some preprocessing of the data might be required).

2. Na€ıve Bayes methods

Na€ıve Bayes approaches are probabilistic learning methods that
are mostly used for classification tasks. Here, the training data are used
to determine likelihood distributions (e.g., Gaussian, multinomial,
Bernoulli, or categorical distributions120,121) of the feature values rep-
resenting each class. Then, the probability that a query sample belongs
to one of the classes is calculated based on the Na€ıve assumption that
all features are independent and contribute equally to the output. The
corresponding mathematical relationship is formulated in Bayes’ theo-
rem.122 Although Na€ıve Bayes approaches typically rely on over-
simplified assumptions, those algorithms can outperform even highly
sophisticated methods.123

Compared to other algorithms, Na€ıve Bayes classifiers can be
extremely fast73 and require a small amount of training data only.74

Owing to the independent likelihood estimation applied to each fea-
ture, those algorithms also perform well when tasked with high-
dimensional problems75 (i.e., those, where many input features are
considered) and multi-class classifications119—and they can process
both, categorical124,125 and continuous input data.126 However, the
simplified assumptions made by Na€ıve Bayes classifiers do not always
hold true when real-life problems are studied: Here, only rarely all fea-
tures of a sample are truly independent;76 similarly, it is not likely that
all sample features contribute equally to the output77 and all feature
distributions meet the assumed profile. Furthermore, categorical
inputs of the query sample that were not present in the training data
will lead to an incorrect probability of zero, known as the “zero fre-
quency problem.”78

3. Support vector machines (SVMs)

Support vector machines (SVMs) define hyperplanes in the n-
dimensional feature space, which then can be used to either distinctly
separate the dataset into single-variety classes (i.e., for classification) or
to approximate the training data (i.e., for regression). To allow for han-
dling problems that would otherwise involve complex mathematical
operations, kernel functions that transform input data into higher
dimensionality can be integrated into those models.127,128

Since only a subset of training points is used for calculating the
decision function, support vector methods can handle data spaces of
high dimensionality79,80 while remaining efficient regarding memory
and runtime.81 However, for large datasets, the training times can
increase significantly.82 Due to the large variety of kernel functions
that can be selected and specified for creating the decision func-
tion,83,84 the algorithms are very versatile and can even be applied to

unstructured data. Still, support vector classifiers can have problems
with handling very noisy data129 or classes that strongly overlap.85,86

4. Decision trees and random forest (RF) algorithms

Decision trees are flow chart-like representations of hierarchical
decision-making models that are created by analyzing a labeled train-
ing set. They consist of nodes (i.e., consecutive stages in which distinct
decisions are made) and branches that connect these nodes. Starting
with a root node, the training data are (based on individual input fea-
tures) split in a stepwise manner by creating and answering simple
true/false questions. A new (¼query) sample can then be classified/
predicted by running through the tree using the input values of this
new sample and the previously established decision rules.

According to the principle of swarm intelligence, the accuracy of
such an approach can be improved by combining an ensemble of non-
correlating decision trees—a random forest.130 Enforcing this manda-
tory variation among the trees is mainly achieved by applying two
methods known as feature randomization (here, only a random subset
of features is provided for splitting the data) and bootstrap aggregation
(short: bagging, i.e., randomly eliminating samples of the training set
and replacing them with duplicates of the remaining samples).131

Random forest algorithms can achieve very high accuracies even
in high-dimensional data spaces.87 These algorithms run efficiently for
large datasets,88 and they can handle variable input data types, includ-
ing binary, categorical, and numerical features.132 They are well suit-
able for unbalanced data,89 robust toward non-linearity,90 and
outliers91 and—when a sufficient number of independent decision
trees is used—rather insensitive to overfitting. Moreover, the decision
criteria chosen by the decision trees can be extracted and used to rank
the importance of individual features for the categorization pro-
cess.133,134 However, the self-directed formation of the different trees
strongly restricts options to influence random forest algorithms.
Importantly, random forest models are not able to extrapolate correla-
tions, and this limits them to making predictions within the created
knowledge space.92 Finally, even though running efficiently once the
model has been established, training can be computationally costly93

since many trees (usually between 100 and 1000) must be created to
obtain a robust random forest.

B. Unsupervised learning

When it is not clear yet what the algorithm is supposed to find,
or if labeled data are not available, unsupervised machine learning is
more suitable. In such a data-driven approach, the algorithm is simply
fed with unsorted input data and allowed to draw its own conclusions
by either autonomously clustering the samples or by identifying
trends, similarities, extreme points, or patterns in the data. With such
a strategy, it was possible to quantify the morphological heterogeneity
of cells based on a specified set of geometrical parameters135 and to
automatically control the quality of electro-spun nanofibers.136

1. Clustering

An important concept in the field of unsupervised learning is
clustering; this approach can be used to identify patterns in a set of
unlabeled data. Here, a dataset (containing input values only) is ana-
lyzed by sorting the samples into subgroups (clusters) by identifying
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similarities among them. A common subtype of this approach is k-
means clustering. Here, the samples are assigned to k clusters in an
exclusive manner by iteratively adjusting cluster centroids until the
variety of samples within the formed clusters is minimized while the
variety between the clusters is maximized. K-means clustering algo-
rithms are simple and fast, which is why they can handle large data-
sets.94 They can easily adapt to new samples or data, and their sorting
result can be influenced by predefining the initial centroids.95,96 Yet,
identifying the correct number k of clusters to be formed can be far
from trivial and might require preliminary analyses.97,98 Also, as com-
mon for distance-based algorithms, high data dimensionalities can
cause issues.99 Finally, basic k-means algorithms encounter problems
when the created clusters differ in terms of size or density; however,
generalization methods can be applied to deal with this particular
issue.137

In addition to the rather simple k-means clustering algorithms,
there are also other clustering variants that are selected when more
complex datasets need to be processed. Mean-shift clustering, for
example, searches regions of high data density by sliding pre-defined
analysis windows over the data until the windows containing the high-
est number of data points are identified. There are two main advan-
tages of this algorithm variant: First, the number of final clusters does
not need to be pre-defined; second, centroids in close proximity to
each other are automatically merged. A very powerful extension of
such mean-shift clustering is the DBSCAN method (density-based
spatial clustering of applications with noise), which is capable of iden-
tifying clusters of any shape and size while detecting and ignoring out-
liers. In addition, methods that establish clusters of different
hierarchies were shown to work efficiently as well.138

2. Association rule mining

Another popular example of an unsupervised ML method is
association rule mining. This approach aims at unveiling correlations
between variables in a set of unlabeled data. Such association rules can
be interpreted as “if–then” statements, where certain variables (antece-
dents) are linked to correlating ones (consequents). To identify the
most important rules, the dataset is first searched for such if-then pat-
terns, which are then ranked using different significance measures. A
major drawback of this approach is that calculating those metrics for
all identified relations becomes computationally expensive rather
soon. The so-called a priori algorithm provides a good solution to this
problem: Here, item sets containing variables or subsets with low
importance in one metric are quickly eliminated, and this drastically
reduces the amount of data that need to be analyzed regarding the
other measures. In addition, there is a broad variety of other
approaches for association rule mining that allow for handling differ-
ent datasets and problems of higher complexity.100–102 Yet, in any
case, a sufficiently high data density is essential for these algorithms to
avoid random correlations from becoming too prominent.

C. Reinforcement learning

A third learning strategy is reinforcement learning—an action-
focused training approach. Here, the machine chooses from different
possible actions and is punished or rewarded depending on whether
or not it made a “correct” choice. Typically, this is implemented by the
algorithm trying to optimize a reward function: Here, positive values

are assigned when the algorithm chooses the desired outcome, which
presents an incentive for the machine to make this choice; consistently,
assigning negative values to “wrong” choices serves as a punishment
rendering undesired behavior less likely. With this reward/penalty
strategy, a machine can, for example, learn to play a simple board
game by repeatedly exploring possible actions in a trial-and-error like
fashion and trying to maximize the cumulative reward that is granted
upon victory. So far, in materials science, reinforcement learning has
been applied to a lower extent than supervised or unsupervised learn-
ing strategies. Nevertheless, reinforcement-based training strategies
were shown to be suitable for controlling the growth of microbial co-
cultures in bioreactors139 and for automatically designing RNA
sequences with desired secondary structures.140

1. Q-learning

Q-learning is a simple but efficient method to teach an algorithm
to automatically act and react in the context of playing a game or to
perform certain workflows. By repeatedly (over thousands or even mil-
lions of trials) exploring all available actions during the training phase
and iteratively assessing their quality based on the final received
reward, the algorithm learns to identify the best available action for a
given state.

A major advantage of Q-learning is that it does not require an
actual model of the environment. The algorithm does not undergo any
explicit external teaching step but learns on its own by autonomously
exploring the possible options. This allows for gaining competence in
areas that might otherwise remain unexplored by humans. Such wide-
ranging exploration, however, can easily become computationally
expensive. Another drawback is that—in its basic form—Q-learning is
only useful for stationary environments; for non-stationary problems,
new training is required to adapt the decision values. However, there
are several modified versions of Q-learning, where these issues are
dealt with.105–107

D. Deep learning

In addition to the learning strategies discussed so far, there are
also “deep learning” approaches. Deep learning can be performed in a
supervised, unsupervised, or reinforced manner and aims at mimick-
ing the anatomical structure of biological neural networks and the
decision-making process of the human brain. Therefore, multi-
hierarchical structures of algorithms are established that can handle
and analyze data at different levels of abstraction. This approach holds
the potential to analyze even highly complex problems but comes at a
prize: Owing to the autonomous, multi-stage data processing proce-
dure, such algorithms act as a black-box. In addition to the provided
input, only the generated results are accessible: It remains concealed
how exactly the algorithm arrived at a particular decision, and this
makes it difficult to rationalize the models suggested by deep learning.
Nevertheless, deep learning models have demonstrated tremendous
success across a plethora of research areas including biomaterials sci-
ence; for instance, they precisely predicted the skin permeation behav-
ior of drugs released from biopolymeric films,141 supported the design
of anti-fouling polymer coatings and materials,142–145 size-tunable
poly(lactic-co-glycolic acid) particles,146 or nucleus-targeting
polypeptides,147 they successfully detected single molecule activity
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from patch-clamp electrophysiology trials,148 and they could accu-
rately model biopolymerization processes.149,150

1. Deep neural networks (DNNs)

Deep neural networks (DNNs) denote digital constructs that
mimic the architecture and mode of operation of the human brain.
Here, the key players are artificial neurons—small, digital units that
can be triggered with a (typically) non-linear activation function.
Those neurons are structured in subsequent, interconnected layers,
and the individual computations made by each neuron are eventually
combined into a final output. Each neuron transforms the received
input variables and transmits the result to the next layer. Between each
input and output layer, there can be a variable number of “hidden”
layers comprising different numbers of neurons with distinct activa-
tion functions. A basic example of a DNNmaking use of forward-only
data processing is the so-called multi-layer perceptron (MLP). MLPs
are suitable for supervised learning problems (both, regression and
classification tasks) and are basically able to model any non-linear
function, which is why they are also referred to as “universal function
approximators.” Recurrent neural networks (RNNs) are extensions of
such DNNs and aim at including more complex information into the
decision-making process: Different from MLPs, RNNs combine infor-
mation from preceding and subsequent layers with the goal of not
only to analyze single elements but also to consider their context as
well.

DNNs are especially suitable for large-scale datasets, for problems
that are too complex for other ML algorithms, and when the problem
space is not well understood. Their architecture can be flexibly adapted
to other problems, applications, learning strategies, or data types.
These networks are able to handle data of high dimensionality, can
analyze problems at different levels of abstraction, and learn progres-
sively over time. For DNNs to outperform other ML techniques,
though, usually a very large amount of data is needed, and this comes
with high computational costs. However, once the costly training
phase is completed, making predictions on query samples can be very
fast. For instance, a deep model that learned to segment and track cells
frommicroscopy images (which involved large experimental and com-
putational costs) was able, after training, to perform segmentation
tasks in less than a second.151 Owing to the high complexity of DNNs
in combination with the low transparency of their decision-making
process, choosing the right approach and interpreting the obtained
results or models can be extremely challenging.

2. Convolutional neural networks (CNNs)

When aiming at processing images or videos, convolutional neu-
ral networks (CNNs) usually are the method of choice. When given an
image as an input, CNNs use trainable weights to assign importance
gradings to different aspects of an image or to objects within the
image. The networks can then be used to analyze or classify images, or
to identify trained objects within an image. For this purpose, CNNs
mainly make use of three procedures: convolution, pooling, and flat-
tening. For image convolution, filters are applied to each pixel. This
can help the network to identify certain structures such as edges or
peaks. Pooling can lower the computational cost by combining pixels
from the same region into one, thus reducing the size of the image.
After applying (multiple) convolution and pooling steps, the

individual pixels of the resulting image matrix are fed into a standard
neural network—a process, which is referred to as “flattening.”

III. SELECTED EXAMPLES OF MACHINE LEARNING
APPLICATIONS FROM DIFFERENT BIOSCIENCES

For years, ML approaches have been an integral part of many sci-
entific areas and have been used to develop computer vision for auton-
omous systems,152,153 to design synthetic materials,154,155 or for
human behavioral analysis.156–159 Yet, their application in biophysics
or biomaterials science has been less frequent. The scientific questions
addressed in these bio-disciplines are characterized by a very high
complexity that arises from biological variance and, thus, noisy, diver-
gent data. Hence, it can be quite challenging to translate experimental
results from those areas into a format that can be well interpreted by
ML models and algorithms. However, once this major hurdle is taken,
ML approaches can deliver highly valuable insight into bio-based data
as well: Implementation of ML was successfully achieved in the fields
of biofabrication,160–165 biosensors and -markers,166–174 pharmaceuti-
cal science,175–185 pathophysiology,186–198 biomacromolecule sci-
ence,199–210 gene analysis,211–221 biomaterials,222–231 and process
optimization232–240 (Fig. 3; for more details, see Table II). In this sec-
tion, we discuss selected examples from those areas, and we highlight
what type of data was used by the different ML algorithms to obtain
predictions or classifications that—using classical data analysis
approaches—would have either been way more time consuming to
achieve or outright impossible.

A. Supervised learning approaches

When applying supervised learning strategies, the researchers still
have a good level of control over how the algorithms are trained and
what type of predictions they try to achieve. For instance,
Tourlomousis et al.241 used a supervised SVM algorithm to investigate
the mechano-sensing response of cells to electrospun fibrous materials
(Fig. 4). Therefore, they compared the morphologies of cells after they
were cultivated on different substrate geometries. They correlated cell
morphology parameters (e.g., cell area, ellipticity, or number of focal
adhesions per cell) obtained from confocal microscopy images with
architectural features of the substrate (e.g., fiber diameter, pore size, or
degree of uniform fiber alignment). With this ML strategy, it was pos-
sible to investigate yet unexplored design spaces to yield specific
designs qualified at the single-cell level. The authors demonstrated
that certain geometrical characteristics of fiber-based materials can be
mapped onto unique aspects of cell morphologies—and this is an
important step toward a shape-driven pathway to controlling cellular
phenotypes.

Other studies went beyond purely analyzing datasets and used
the knowledge generated by ML algorithms to tailor materials for spe-
cific applications. For instance, Sujeeun et al.242 utilized multiple
supervised learning algorithms for the development of scaffolds for tis-
sue regeneration; such scaffolds are typically used to provide structural
support for cell attachment and to enable cell proliferation. Here, the
main challenge was to browse through a plethora of available poly-
meric materials to identify the most suitable candidate that meets
specified requirements regarding, e.g., biocompatibility, biodegradabil-
ity, mechanical strength, porosity, and wound healing behavior. To do
so, in vitro cell viability data (obtained from an MTT [3–(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay) were
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combined with physico-chemical properties (e.g., the dimensions of
fibers and pores, Young’s modulus, or water contact angles) of differ-
ent scaffolds to model the material-cell interactions. The established
correlations then served for reverse-engineering scaffolds with desired
performance. Six basic supervised approaches, including KNN and
SVM, were compared, and a random forest classifier achieved the
highest accuracy. Moreover, this RF algorithm could provide deeper
insight into the identified correlations and demonstrated that two
selected material characteristics (the pore and fiber diameter) have the
strongest influence on the material-cell interaction. Finally, by per-
forming preliminary in vivo biocompatibility experiments, the authors
were able to show that the determined correlations also hold true (at
least to a certain extent) when the material is placed into a living
organism. The authors mention, however, that an integration of more
advanced techniques, such as reinforcement learning or transfer learn-
ing (see Chap. 4), should be considered to obtain a more generalized
and robust model that is applicable to unknown scaffolds.

In addition to those applications related to tissue engineering,
basic supervised ML algorithms were proven to be handy for various

other tasks: RF models, for example, can support the design of self-
assembling dipeptide hydrogels243 and anti-biofouling surfaces244 and
can supervise 3D bioprinting.245 With KNN and SVM algorithms, it is
possible to differentiate healthy from apoptotic cells,246 to detect pneu-
monia247 or COVID-19248,249 by extracting features from x-ray
images, to diagnose Parkinson based on recordings of speech disor-
ders,250 and to classify white blood cells.251 Finally, Na€ıve Bayes mod-
els can classify protein folding patterns,252 identify post-transcriptional
modifications in RNA sequences,253 and support the detection of brain
tumors.254

B. Unsupervised learning approaches

Different from supervised learning approaches, unsupervised
algorithms process unlabeled data. For instance, Gamage et al.255

employed a k-means clustering algorithm to group seismocardio-
graphic signals (SCG) according to the patients’ different respiratory
states (Fig. 4). SCG is a noninvasive technique that monitors heart
function by measuring cardiac-related vibrations on the chest surface.

FIG. 3. Research areas from the biosciences in which machine learning has already been successfully applied. ML approaches were successfully implemented in different
fields dealing with biofabrication, biomarkers and sensors, pharmaceuticals, pathophysiology, biomacromolecules, gene analysis, biomaterials, or process optimization.
Biofabrication includes various production methods, such as 3D printing or electrospinning; here, ML can be used for process and quality control or for the a priori definition of
process parameters. In the context of biomarkers and biosensors, ML can support the identification and the monitoring of diagnostic molecules, and it can assist in the analysis
of signals. Pharmaceutical sciences benefit from ML in drug screening and design applications as well as in extensive studies on drug delivery, response, and efficiency. In the
context of pathophysiology, ML can help with the classification of diseases as well with diagnostics, prognostics, and the assessment of risk levels. Moreover, a ML-driven anal-
ysis of biomacromolecules can help us to investigate polymer-ligand binding, to predict molecule conformations, and to correlate molecular structures with their properties. As
part of gene analysis, ML can be employed in the fields of epigenetics, chemogenomics, taxonomy, and genome editing. Biomaterials science and development profit strongly
from an ML-driven correlation of properties and functions of different materials including particles, films, or three-dimensional bulk materials. As a final example, process optimi-
zation can be achieved by ML-based monitoring and an analysis of microscopy or other experimental procedures/bioengineering processes.
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TABLE II. Overview of studies from various research areas, in which ML was applied.

Question Approach Outcome Study

Predicting biophysical interactions
Affinity of protein-peptide
interactions across multiple
protein families

Hierarchical statistical model Interaction affinities were successfully predicted based on the
amino acid sequences and the inferred structured
Hamiltonians (mathematical functions that map the state of a
system to its energy).

16

The model outperformed both, other computational meth-
ods293–295 and high-throughput experimental assays developed
for the same purpose
Good performance in high-data and low-data domains

Protein-ligand binding SVM, random forest, gradient
boosting tree, and a CNN

Successful prediction of protein-ligand binding affinities based
on molecular descriptors obtained from topological models

63

Comparable to or even outperforming other state-of-the-art
models296–299

Powerful feature engineering
Compound-protein
interactions

Combination of GNNs and
CNNs (both supervised);

networks were analyzed with
neural attention mechanisms

Data-driven representations of compounds (as graphs) and
proteins (as sequences of characters) were achieved that proved
to be more robust than traditional chemical and biological fea-
ture vectors

64

Competitive or even better performance compared to state-of-
the-art models300,301

Wettability of a surface based
on its topography

KNN, linear regression, Na€ıve
Bayes, random forest, and a

DNN

Successful mapping of surface topography parameters to the
wetting behavior of the surfaces

61

Feature elimination was performed to reduce dimensionality
and to identify the most influential surface parameters, the
choice of which otherwise relies on expert assessment
The random forest outperformed the other models

Pathogen attachment to mac-
romolecular coatings

Bayesian regularized artificial
neural networks

Successful mapping of individual pathogen attachment to
copolymers represented by a set of molecular descriptors

145

Multiple-pathogen modeling was achieved
Functional interactions
between human genes

Decision tree, logistic
regression, Na€ıve Bayes,

random forest

Phylogenetic profiling was performed, and the combination
with ML considerably improved the prediction of functional
interactions between genes

217

The random forest outperformed the other models
Cytotoxicity of nanoparticles
(NPs)

Association rule mining Knowledge about the toxicity of inorganic, organic and carbon-
based NPs was extracted from the literature

257

NPs properties most relevant for their toxicity were identified
with a focus on hidden relationships

Molecular analysis
Identifying polymer states DNN Based on a simulated 3D polymer configuration represented by

spatial coordinates, the model can identify different configura-
tional patterns

62

Phase transition points identified by the model compared well
with those obtained from independent specific-heat
calculations

Designing functional protein
sequences

Generative model The model was trained on evolutional protein sequence data
and, by this, learned sequence constraints

202

A diverse library of nanobody sequences was designed
that significantly increases the efficiency of discovering
stable, functional nanobodies compared to synthetic
libraries
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TABLE II. (Continued.)

Question Approach Outcome Study

Predicting protein
liquid–liquid phase
separation

DNN The ML classifier was trained based on a pre-analysis of
datasets comprising proteins of different phase separation
tendencies and learned the underlying principles of phase
separation behavior with similar accuracy to classifiers using
knowledge-based features

209

Analyzing the structural fold-
ing of proteins

Na€ıve Bayes, SVM, Bayesian
generalized linear model

The classifiers accurately predicted mainfolds of proteins
based on provided biophysical properties of the amino
acids

252

The Bayesian model outperformed the other two models
Investigating structures and
functions of proteins

Unsupervised language proc-
essing (transformer neural

networks)

Based on the amino acid character sequences of more than 250
� 106 proteins as an input, knowledge of intrinsic biological
properties was developed without supervision

259

Sensing of single molecules CNN A CNN was trained to classify translocation events of single
molecules based on time-series signals obtained from nanopore
sensors
The network was able to automatically extract such
information with higher accuracies than previously
possible

58

Disease classification
Automated detection of
glaucoma

Modified CNN (DenseNet),
decision trees

Multiple different models were combined to automatically
detect glaucoma based on medical images as well as
demographic and systemic data

36

The model shed light onto features that were previously not
considered for diagnosis

Predicting the primary origin
of cancer

CNN with an attention model The model was trained based on labeled images of tumors of
known primary origin

114

The trained model first classified unknown tumors to be either
metastatic or primary; then it predicted its site of origin with
high accuracy

Detection of brain tumors Random forest, SVM, deci-
sion trees

Based on geometric features extracted from MRI images, the
different models were able to distinguish normal from abnor-
mal brain images

88

The SVM had the highest sensitivity for detecting brain tumors,
whereas the RF had the highest accuracy

Assessing sepsis through bio-
marker host response

Na€ıve Bayes, decision trees Multiple biomarker measures from plasma samples were used
to distinguish septic from healthy cohorts with high accuracies

168

Na€ıve Bayes and decision trees performed better than other
classifiers—especially regarding the small data size

COVID-19 detection from x-
ray images

Pretrained CNN Transfer learning (based on a CNN trained on images of
general objects) was employed to train a CNN to analyze chest
x-ray images

249

The model successfully distinguished between healthy patients
and those suffering from pulmonary diseases; from ill patients,
it could identify those with COVID-19 and marked regions of
interest in the x-ray images

Classification of EEG signals
in dementia

MLP, logistic regression,
SVM

Different feature sets extracted from EEG signals obtained
from neurological patients were analyzed and used to make
highly accurate predictions of cognitive disorders

196

The MLP outperformed the other models, and a combination
of two different feature sets was shown to entail the most
accurate results
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TABLE II. (Continued.)

Question Approach Outcome Study

Biomaterials design
Antifouling polymer brushes DNN, SVR A DNN was trained on a benchmark database to

rationalize the antifouling properties of existing
polymer brushes

142

A functional group-based SVR was then used to design new
antifouling polymer brushes that indeed showed excellent
protein resistance properties

Abiotic nuclear-targeting
mini-proteins

Directed, evolution-inspired
deep learning

The ML model was provided with data from high-throughput
experiments and was then capable of predicting activities of
mini-proteins in cells and to decipher sequence-activity
predictions for new designs

147

The ML-designed mini-proteins were more effective than any
previously known variant

Gas-separation polymer
membranes

Regression A rather small set of known polymer membranes (represented
by binary fingerprints) and their experimental gas permeability
data were used to train the model to predict the gas-separation
behavior of a large dataset of polymers that have not been
tested for these properties yet

21

Tested membranes produced from the most promising candi-
dates (based on the prediction) were shown to exhibit excellent
gas-separation performance

Mechanically tough bio-
nano-composites

Decision tree and random
forest (both as regressors)

Using material compositions linked to the resulting fracture
toughness obtained from experimental trials and finite
elements analysis, the ML models successfully predicted
composition/strength relationships which assist the design of
new composites without time-consuming trial-and-error
experimentation

68

Stabilized silver clusters SVM The algorithm learned how the sequence of 10 base pair DNA
strands correlates to the wavelength of fluorescent light emitted
from silver-DNA clusters

166

With the motifs extracted from the analysis, the model was
able to predict the fluorescence color of silver clusters with
DNA sequences of variable length

3D-printable bioinks Regression Different bioink formulations were evaluated regarding
their rheological properties and printability, and a
general relationship between those properties
was established

59

Cell image analysis
Extracting biological informa-
tion from bright field images

Generative adversarial neural
network

After being trained on a dataset comprising bright field and
fluorescently labeled cell images, the model was able to virtually
stain cellular compartments, which eliminates the need for
actual (possibly toxic) staining

278

Quantitative measures of cellular structures were then extracted
from the virtually stained images

Identifying cell morphologies Image segmentation, princi-
pal component analysis, k-

means clustering

Cell contours were first identified by image segmentation. After
aligning the cell shapes, a principal component analysis was
conducted and the cell shape was reconstructed based on the
determined eigen-vectors. Finally, different shape modes were
identified by k-means clustering.

135

The protocol is highly automated and very fast in quantifying
the cell morphologies
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TABLE II. (Continued.)

Question Approach Outcome Study

Predicting osteogenic
differentiation

SVM Based on the cell morphology recorded after 1 day of
incubation on nanofiber scaffolds, a pretrained classifier
was able to successfully predict the osteogenic differentiation
fate of cells

226

Detecting leukemia CNN Characteristic features of white blood cell leukemia were
extracted from images and sorted regarding importance

302

By applying statistics-based feature elimination, the model out-
performed several CNN-only based models

Tracking cell migration CNN Stain-free, instance-aware segmentation of cells from phase
contrast images was achieved with a CNN and provided unique
identifiers for each cell

237

Based on those identifiers, the same cell could be followed in a
series of images taken at different times
Highly accurate visualization and analysis of cell migration was
achieved

Pharmaceutical development
Analyzing existing drugs
regarding their suitability to
target SARS-CoV-2

Natural language processing
with self-attention

mechanism

A pre-trained model was used to predict binding affinities
between antiviral drugs (represented as strings) and
amino acid sequences of the target proteins without
providing explicit structural information on the
binding epitope

55

A list of antiviral drugs with good inhibitory potencies against
SARS-CoV-2 related proteins was identified

Identifying self-aggregating
drug formulations

Random forest First, a RF model was used to identify self-aggregating drugs 177

Then, another RF model precisely predicted the co-aggregation
properties of different drugs and excipients and was able to
find suitable excipients for a novel drug

Generation of anticancer
molecules

Conditional generative model A reinforcement learning-based model was trained to design
anticancer molecules with specific drug sensitivity and toxicity
properties to target individual transcriptomic profiles

271

Such designed molecules exhibit (in silico) comparable physico-
chemical properties as existing cancer drugs

Predicting cancer patient
drug responses

Linear regression, ridge
regression, support vector

regression

Based on transcriptomic data obtained from 3D culture mod-
els, different biomarkers were identified that allow for accurate
patient/drug response predictions

273

Identifying drug targets Na€ıve Bayes Multiple different data types were combined to train the model
based on a dataset of known molecule/target correlations

180

Novel drug binding targets were predicted

Biofabrication
Predicting the molecular
weight of synthesized bio-
molecules

MLP, SVM Biopolymers were synthesized via enzymatic polymerization,
and various reaction parameters were tuned to alter the molec-
ular weight of the product

150

An SVM was shown to be highly suitable to predict the molec-
ular weight despite the small training data size

Controlling the size of
elastin-based particles

K-means clustering A dataset comprising the properties of elastin-based particles
and the corresponding fabrication parameters were analyzed by
the clustering algorithm

60

The influence of the fabrication parameters on the size of the
created particles was revealed, and this information was used to
fine-tune the fabrication process
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Since the measured signals are typically a convolution of respiratory
movements and heart contractions, a direct comparison of two differ-
ent measurements is difficult. By subdividing the obtained signals and
using the vibration amplitudes in those subsignals as input features to
cluster the generated subsequences based on their similarity, the SCG
data were automatically separated into classes of different lung vol-
umes (high or low) or different flow directions (inhaling or exhaling
process). Indeed, within those categories, a comparison of the vibra-
tion signals to assess cardiac health (and to detect anomalies) is feasi-
ble. Hence, an ML-supported analysis of SCG signals may eliminate
the necessity of additional (simultaneous, but independent) respiratory
measurements.

Another unsupervised clustering approach was reported by
Helfrecht et al.256 who aimed at identifying secondary and tertiary
structures in proteins and rationalizing their formation. Here, the idea
was not to use common structural descriptions of molecules that are
based on predefined motifs such as intramolecular hydrogen bonds or
distinct dihedral angle patterns (two strategies, which often rely on
human intuition/approximations and only cover a predefined subset
of molecular motifs) but to develop a more general approach that is
readily applicable to various macromolecules. Therefore, the positions
of all atoms in a given protein backbone were combined into an input
vector whose complexity was reduced into 6–10 features based on a
principle component analysis; then, a density-based algorithm was
employed to cluster those reduced vectors: Regions in the feature space
with high data density were defined as clusters that are separated from
each other by low density areas. Even though several of the formed
molecule clusters can belong to the same category of secondary struc-
tures (e.g., a-helices or b-strands), a similarly good over-all classifica-
tion could be achieved with this ML-based approach as with
traditional methods. Furthermore, the authors compared unsupervised
and supervised methods: Their example highlighted that a supervised

approach is suitable to adapt existing motif definitions or to test
whether the chosen input data sufficiently represent the output.
Unsupervised learning, in contrast, turned out to be better suitable for
finding new patterns in the feature space.

In addition to clustering, which is certainly one of the most
important techniques where unsupervised ML is applied for, unsuper-
vised association rule mining was shown to be a useful tool to highlight
hidden correlations between data such as between the material proper-
ties and production process of nanoparticles and their cytotoxicity.257

Moreover, unsupervised learning methods were successfully employed
for image processing or pattern analysis. For instance, the autonomous
detection of characteristic features from abdominal computed tomog-
raphy (CT) images enabled the reconstruction of CT images captured
with low radiation doses.258 Owing to this reduced radiation exposure,
the concomitant risk of side effects for patients (such as developing
new cancer) is minimized while sufficient image quality is maintained.
Furthermore, unsupervised models were able to rationalize and predict
selected functional properties (e.g., the biological activity259 or thermo-
stability260) of proteins based on their sequences only, they could
unravel the structure of block copolymer micelles,261 and they man-
aged to successfully and automatically recognize the origin tissue of
metastatic tumor cells.262

C. Reinforcement learning approaches

Reinforcement learning does not aim at identifying correlations
or classifying samples according to given labels (which are typical goals
for supervised and unsupervised learning strategies) but makes use of
learning procedures to perform certain actions “correctly.” An inter-
esting example for a reinforcement based learning approach was pre-
sented by Jafari and Javidi.263 Here, the researchers tried to obtain a
complete prediction of the conformation of a polypeptide based on
hydrophobic interactions only (Fig. 4). For this purpose, polypeptides

TABLE II. (Continued.)

Question Approach Outcome Study

Controlling microbial
co-cultures in bioreactors

Q-learning Process feedback via a trained reinforcement learning model
successfully supported maintaining populations at pre-defined
target levels

139

The model was shown to be robust toward variations in the ini-
tial states and targets and outperformed standard control
approaches

Identifying high-quality
printing configurations

Random forest With the printing conditions (resulting from the material
composition) and the printing parameters as inputs, a
classification model could distinguish between “high” and
“low” quality prints, and a regression model returned a direct
quality metric

245

The random forest outperformed a simple linear model
Monitoring anomalies in 3D
bioprinting

CNN, SVM SVM models were trained to predict whether a specific defect is
directly visible in the image of a printed object

274

A CNN was trained to provide information about the applied
printing pattern and the occurring printing anomalies
The combined model accurately detected and recognized
anomalies in various different printing patterns
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were modeled as a sequence of amino acid polarities: For instance, the
sequence “HHHPP” would represent a polypeptide with three hydro-
phobic (H) amino acids followed by two polar (P) ones. Then, the pos-
sible conformational space of a polypeptide is given as a bidimensional
Cartesian grid with two constraints: First, two consecutive amino acids
must be vertical or horizontal neighbors in the grid; second, two
amino acids cannot be superimposed. To find the ideal overall confor-
mation, a Q-learning algorithm with a dedicated reward function was
employed, which aimed at minimizing the free energy of the polypep-
tide. In this model, the only actions available to the algorithm are mov-
ing a given amino acid from its current position in the grid to a

neighboring position. With this approach, conformations of minimal
free energy were identified (and found to agree with classical calcula-
tions using complex models) without explicitly implementing biophys-
ical knowledge; moreover, it was faster than other state-of-the-art
approaches. Remarkably, the “long short-term memory” network (a
subtype of recurrent neural networks) used in this study proved to be
particularly capable of handling sequential data such as chains of
amino acids.

Interestingly, reinforcement learning was also successfully used
for target-oriented design tasks such as de novo drug development:
Popova et al.264 employed reinforcement learning to combine two

FIG. 4. Schematic representation of selected examples from the biosciences, where ML algorithms have been successfully applied. By using a supervised approach, the geo-
metrical characteristics of electrospun scaffolds were successfully linked to the resulting shape of cells seeded onto the scaffold. An unsupervised ML algorithm could group
seismocardiographic signals according to the respiratory phases during which they were acquired to allow for a more direct signal comparison. Reinforcement learning was
employed to find energetically optimal conformations of polypeptides. Finally, deep learning was applied to generate photo masks that compensate for the light-scattering
effects of cells present in the used bioink.

Biophysics Reviews REVIEW scitation.org/journal/bpr

Biophysics Rev. 3, 021306 (2022); doi: 10.1063/5.0082179 3, 021306-14

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/bpr


independent supervised learning algorithms; here, the first one was
capable of creating drug-like molecules, and the second one could pre-
dict certain properties of molecular structures. After individual, super-
vised training phases of both algorithms (in which either learned how
to fulfill its particular task), they were jointly re-trained in a reinforce-
ment approach to deliberately bias the creation of new molecules
toward variants with desired properties: The first algorithm received a
reward only if the properties predicted by the second matched the pre-
defined goal. By adjusting this reward, the created molecule library
was successfully tailored to contain drugs with specific physical prop-
erties, biological activity, or chemical substructures. Overall, this study
impressively demonstrated how reinforcement learning can be used
for generating property-optimized chemical libraries of novel
compounds.

Overall, reinforcement learning is currently gaining an impor-
tance. It was recently used to control and optimize bioprocesses,265 to
adapt cold atmospheric plasma conditions to optimally eliminate can-
cer cells,266 or to identify efficient surgical cardiac ablation strategies
for atrial fibrillation.267 Moreover, reinforcement learning was shown
to be useful for controlling tumor growth,268 to optimize cancer
therapy,269,270 and for the development and dosing of anti-cancer
drugs.271–273

D. Deep learning approaches

Deep learning is a special subtype of machine learning, where all
types of (supervised, unsupervised, or reinforcement) approaches are
solved by algorithms that try to mimic the structure and function of
the human brain. These algorithms are often difficult to interpret, but
they come with the advantage of high variability and the potential to
model even highly complex systems. A process-oriented application of
deep learning that recently gained considerable importance addresses
3D bioprinting: Here, deep learning-based algorithms can be used for
monitoring the printing procedure to determine optimal process
parameters or for detecting anomalies in the printed products.274,275

Moreover, an advanced deep learning approach was demonstrated by
Guan et al.276; here, the researchers set out to compensate for cell-
induced light scattering effects in light-based bioprinting—a common
fabrication technology used for tissue engineering and regenerative
medicine purposes (Fig. 4). To obtain the desired structures, a typical
approach is to illuminate a reservoir containing the bioink while using
a photo mask that only allows curing in predefined regions. However,
the light-scattering effect brought about by cells embedded into the
bioink impacts the photopolymerization process and entails a reduced
printing resolution. To determine the correlation between the used
photo mask and the resulting printing pattern, a convolutional neural
network was employed: Pairs of graphical representations of the photo
mask on the one hand and the printing result on the other hand were
processed with several subsequent convolution and deconvolution
steps to model the transformation of the former into the latter. With
such a trained network, a photo mask was generated that was sup-
posed to compensate the light-scattering effect of this particular bioink
sample based on a desired printing output. Indeed, with this approach,
a considerable improvement of the printing resolution was achieved;
without the help provided by ML, a similar result would have required
an extensive and costly trial-and-error style optimization for each indi-
vidual structure.

Overall, deep learning techniques have been proven to be particu-
larly useful for processing and analyzing images. This includes assess-
ing the damage mechanics of bone tissue based on microCT
images,277 extracting quantitative properties of cells from bright-field
images,278 or compensating optical errors in microscopy images to
obtain reliable images even under difficult conditions.279 Sk€arberg
et al.280 employed a deep learning approach to analyze images of
porous polymer films; here, the aim was to obtain a better understand-
ing of how to tune those materials for controlled drug release.
Therefore, they collected combined focused ion beam and scanning
electron microscopy images of polymer films with different porosities
and fed them into a convolutional neural network for segmentation.
From the obtained dataset, 100 images (which corresponds to �0.4%
of the total dataset) were manually segmented and used for training.
To increase the dataset size, those images were subdivided, resulting in
over 19� 106 training samples. The trained CNN was then able to
automatically identify pores in the images; thus, important informa-
tion was retrieved that is needed for further sample analysis but that
otherwise could only be gathered through expensive expert assess-
ments. In fact, the results received with the CNN were comparable to
manual segmentations and better than those previously obtained with
a random forest classifier that was trained on scale-space features.
Hence, extending the training set by augmenting data (for more infor-
mation on this particular method, see Sec. IV) was an important step
to achieve a robust ML model capable of competing with actual expert
judgments.

The potential applications of deep learning approaches are virtu-
ally limitless, and many highly sophisticated neural network architec-
tures have been developed and applied to different problem sets. For
instance, generative models, such as generative adversarial neural net-
works, Gaussian mixture models, or hidden Markov models, are unsu-
pervised approaches that can learn patterns from given input data;
then, those models can generate new examples that could plausibly
stem from the original dataset. Such algorithms were shown to be use-
ful for the design and discovery of drugs,281,282 for the development of
complex materials with desired elasticity and porosity283 or tissue
engineering-related properties,284 to create synthetic data (e.g., photo-
realistic images285 or biomedical signals286) for network training, and
for analytical tasks such as identifying cell morphologies typical for
cancer.287 Whether for an automated evaluation of tumor spheroid
behavior in 3D cultures288 or for identifying cancer based on RNA
data,289 for predicting the in vivo fate of nanomaterials based on mass
spectrometry,290 to detect the presence of viral DNA sequences from
metagenomic contigs,291 or to autonomously detect sleep apnea events
from electrocardiogram signals,292 deep learning can be considered
the ML equivalent of a Swiss-Army Knife as it can be a helpful tool in
many fields of research.

IV. BIGGER IS BETTER BUT HARD TO GET—HOW
TO HANDLE SMALL DATA

The performance of all ML algorithms critically depends on the
amount of existing knowledge, i.e., the size of the database available
for training. Whereas “Big Data” are a phrase commonly used in the
context of machine learning, generating large volumes of data from
experimental trials is often very challenging: The costs and time
requirements associated with experimental studies are typically signifi-
cant. When the training set is too small, commonly encountered
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problems include overfitting, biased predictions, or a phenomenon
known as the “curse of dimensionality” (Fig. 5). Overfitting refers to
algorithms that represent the training data in too much detail.
Typically, this happens when a model depicts the variations (and,
sometimes, even noise) in the training data to such an extent that it
negatively impacts the performance of the model when confronted
with new data.303 Data bias denotes a type of prejudice or favoritism
toward a certain class or a decision that is based on wrong assump-
tions, which are made based on (non-ideal) training data.304 This can,

for instance, occur when the sample set used does not sufficiently rep-
resent the whole problem, hence (possibly) neglecting concealed fac-
tors or if the model does not properly fit the training data.305,306

Finally, a prominent issue of small datasets occurs with increasing
dimensionality (i.e., with increasing numbers of features added):
When the total amount of training data stays the same, the density of
data points decreases with every dimension added to a multi-
dimensional feature space, and low data density can lead to reduced
accuracy. Thus, a frequently asked question is: How many data points

FIG. 5. Typical challenges that can arise when applying ML methods and available remedies to deal with them. High dimensionality, small datasets, overfitting, bias, and vari-
ance are common difficulties encountered when using ML. High dimensionality entails a decrease in the data density in the feature space and leads to an equalization of dis-
tances between data points. This becomes particularly problematic when datasets are too small to compensate for these effects. Overfitting refers to ML models that
approximate the training data too well. Overfitted models show a high sensitivity to small fluctuations in the dataset—a phenomenon which is referred to as “high variance.” In
contrast, when the models are not able to sufficiently capture the relationship between input and output, the model is underfitting the training data. Such limited flexibility to fit
the model to the data is called “bias.” Those problems, however, can be tackled for the following strategies: Reducing the dimensionality can be achieved by performing a
feature elimination302,328 or by condensing the feature space via a principal component analysis.329 Overfitting can be avoided or at least reduced by including regularization,330

early stopping,334 or dropouts332 into the ML models, by using multiple independent predictors (ensembles),333 or by validating the models using cross-validation.331 Finally,
the size of a dataset can be increased by simulating326 or augmenting data.335
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are actually necessary to establish robust models that provide reliable
results? Answering this question is, however, not trivial as several fac-
tors need to be taken into account: the complexity of the problem, the
chosen algorithm, the number and type of input features, and the
noise level in the available data.

There are some established rules of thumb that can help research-
ers to navigate this issue: In a regression problem, the number of train-
ing samples should be ten times as high as the number of dimensions
of the investigated problem; and at least 1000 images per class should
be available for computer vision tasks.307 However, under certain con-
ditions, good prediction accuracies have also been reported for much
smaller datasets. For instance, Shaikhina et al.308 successfully estab-
lished a deep neural network for predicting the compressive strength
of human trabecular bones in severe osteoarthritic conditions, and
they could achieve this by using data from 35 bone specimens only.
Here, the versatile design of DNNs came in handy: The number of
hidden layers as well as the number or neurons and their activation
functions were iteratively adjusted until the predictive accuracy of the
model reached a maximum. Similarly, basic (non-deep) ML models
can be optimized with respect to both, the desired problem and the
available dataset: Every ML model is characterized by a set of distinct
parameters, which are typically referred to as hyperparameters.
Examples for such hyperparameters are the number of neighbors con-
sidered in a KNN model, the allowed dimensions of the trees in a RF
model, or the set amount of penalty for misclassified samples in an
SVM; however, also more advanced parameters can be adjusted. With
such optimized algorithms, even fewer than 65 samples were shown to
be sufficient to train various algorithms including RF or SVM
models.309,310

Another important realization in this context is that, even though
each research topic is distinct, most questions asked are not entirely
unique. Thus, machine learning models that were trained for a certain
task can often be used as a starting point for similar problems (this is
referred to as transfer learning).311 Then, only few data points of the
target problem are needed to transfer models generated from the
source task to the target task—a procedure known as few-shot312 or
even one-shot learning.313 With this approach, neural networks
trained on large-scale image datasets of various macroscopic objects
were successfully employed to classify electroencephalogram (EEG)
signals obtained from patients diagnosed with delirium,314 or to iden-
tify diseases on grape leaves.315

Of course, no algorithm can generate knowledge where no data
exist—all models are based on the assumption that the training data
cover a suitable and representative subset of the problem at hand.
Inter- or extrapolation procedures can (to a certain extent) fill in local
gaps, where data are missing, but the machines and models generated
by them will only be as reliable as the data fed into them. Even though
there might not be a pre-trained algorithm for every research problem,
there is a huge amount of data documented in the literature or even
stored in readily accessible repositories. From those sources, it is often
possible to selectively extract a subset of data to complement one’s
own dataset, thus increasing the amount of training data. Intriguingly,
the collection of such supplemental data is not limited to data already
available in a numerical form; especially the extraction of data from
texts has been quite successful recently:316 for instance, unsupervised
algorithms were—without having been provided with explicit chemi-
cal knowledge—able to understand the structure of the periodic table

from text-based sources only, and they could recognize complex
structure-property relationships of materials for specific applications,
such as energy conversion,317 nanomedicine,318 or pharmaceutics,319

even years before they were actually realized.320,321

Gathering data from various sources can, of course, involve con-
siderable effort in terms of retrieving and formatting. Other—possibly
less expensive—approaches to extend the training dataset (to improve
model generalization and robustness) make use of augmented or syn-
thetic data. Data augmentation refers to a strategy where slightly
altered copies of existing data are added to the training set. In the case
of images, for example, augmented data can be created by rotating,
shifting, splitting, zooming, or flipping the original pixel matrix.322

With these transformations, Liang et al.323 used 48 microscopy images
obtained from collagenous tissue to create>300 000 training images;
with this augmented dataset, they then successfully trained a CNN to
predict non-linear stress-strain responses of the tissue. Importantly,
such an approach is not limited to images—also other data types can
be augmented, e.g., by superimposing random noise324 or by adding
synthetically generated features; examples for the latter include crude
estimations of the property-to-predict325 or calculated characteristics
derived from empirical models.326 When training samples are created
entirely from simulations, this is referred to as synthetic or in silico
data. Indeed, by complementing experimental datasets with large
amounts of such in silico data, Tulsyan et al.327 were able to develop a
reliable ML-based monitoring system for biopharmaceutical
manufacturing processes—a task that was previously very difficult due
to the lack of data.

V. CONCLUSION AND OUTLOOK

Ongoing challenges encountered in the context of ML include
having to deal with insufficient data quality, data scarcity, under- or
overfitting of the models on the training data, biased training sets, and
high computational costs. Indeed, for a long time, the application of
ML techniques for bio-related research questions has been severely
restricted by the range of difficulties associated with such problems,
i.e., small datasets, complex problem definitions, and biological vari-
ability. However, some of those issues can now successfully be dealt
with: Once the research questions have been translated into computer-
readable formats, various methods can be used to increase the data
density and to optimize the models in a way that common problems,
such as overfitting and bias, are reduced. Even though the training
phase of such algorithms might be computationally and/or experimen-
tally costly, once trained, the models can make predictions very
quickly.328–335

The black-box character of most deep learning methods and the
increasing complexity of advanced algorithms in combination with
the lack of experienced users especially entails a completely new set of
hurdles on the path to fully exploiting the potential of ML. ML nowa-
days includes a diverse spectrum of different algorithms that can be
employed for a plethora of different purposes, and the continuous
advancement and expansion of the ML portfolio open up an ever-
increasing number of possible applications in all kinds of scientific
areas. Generative adversarial neural networks, for example, have suc-
cessfully been employed to mimic any type of data (including images,
numerical, or binary data), which then can be used to either increase
the training dataset and/or to generate results. As neural networks are
automatically developed inspired by human evolution, evolutionary
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machine learning approaches can decrease the required expert knowl-
edge needed for creating deep ML models. Attention mechanisms are
very recent but promising strategies to improve deep model perform-
ances by putting a stronger focus on a few, more relevant aspects while
paying less attention to the rest. Finally, by integrating statistical prop-
erties into variables, Bayesian neural networks are especially suitable
for research problems dealing with sparse data. With these improved
techniques available now, current ML models are well-equipped to
explore the diverse range of structures, effects, and mechanisms of bio-
related systems in more detail, and it is clear that we will encounter
many more exciting results in the near future.
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