
Shifting Perspectives: A proposed framework for analyzing 
head-mounted eye-tracking data with dynamic areas of interest 
and dynamic scenes

Haroula M. Tzamaras1, Hang-Ling Wu2, Jason Z. Moore2, Scarlett R. Miller1

1Pennsylvania State University Industrial Engineering

2Pennsylvania State University Mechanical Engineering

Abstract

Eye-tracking is a valuable research method for understanding human cognition and is readily 

employed in human factors research, including human factors in healthcare. While wearable 

mobile eye trackers have become more readily available, there are no existing analysis methods for 

accurately and efficiently mapping dynamic gaze data on dynamic areas of interest (AOIs), which 

limits their utility in human factors research. The purpose of this paper was to outline a proposed 

framework for automating the analysis of dynamic areas of interest by integrating computer vision 

and machine learning (CVML). The framework is then tested using a use-case of a Central Venous 

Catheterization trainer with six dynamic AOIs. While the results of the validity trial indicate there 

is room for improvement in the CVML method proposed, the framework provides direction and 

guidance for human factors researchers using dynamic AOIs.

INTRODUCTION

While researchers have been trying to decode people’s thoughts for years, actual mind 

reading is still decades away (Kioustelidis, 2011). For now, we have to rely on other 

methods to understand human cognition. One such method is eye-tracking which is based 

off of the belief that movement of the eye is correlated to mental processing (Płużyczka, 

2018). The field of eye-tracking started with the observation of eye movement using mirrors. 

After this, light was incorporated. The original light-based eye-trackers included a chin rest 

and required the head to be completely still to be used accurately. It wasn’t until the 90s that 

immobilizing the heads of participants became unnecessary (Płużyczka, 2018).

Modern eye-tracking devices use cameras that can be wearable or remote that use infrared 

light to track both the movement of the eyes and when they are still, often referred to as 

eye fixations (Holmqvist & Andersson, 2011; Morimoto & Mimica, 2005). There are two 

main types of eye trackers that are commonly used today, head-mounted eye trackers that a 

participant wears, and computer-mounted or remote eye trackers that are fixed on a surface, 

usually a screen (Morimoto & Mimica, 2005). The scenes in eye-tracking studies can be 

static or dynamic. Static scenes refer to stationary images whereas dynamic scenes refer to 

videos or situations with interactivity and movement.
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Fixations are useful because measuring their duration can help assess levels of 

comprehension or interest for a task, and tracking the movement of the eyes can help 

understand relationships between fixations and how the gaze pattern moves throughout 

time, referred to as gaze mapping or fixation sequences (Płużyczka, 2018; Rayner et al., 

2006). Areas of interest (AOIs), or specific locations where the eyes may become fixated, 

are commonly used as markers of importance when researchers are studying a specific 

procedure or process (Ashraf et al., 2018). The main metric of interest could be AOI hits, 

or number of times the gaze coincided with an AOI (Holmqvist & Andersson, 2011). When 

these metrics are collected in dynamic scenes, it adds complexity to the analysis (Kok & 

Jarodzka, 2017).

Because of its utility, eye-tracking has been used in a variety of fields, from aviation to 

social interaction; eye-tracking has been used to understand attention and learning (Rosch 

& Vogel-Walcutt, 2013; Schilbach, 2015; van de Merwe et al., 2012). An increasingly 

important application of eye-tracking is its use in medical training (Kok & Jarodzka, 2017). 

Eye-tracking in medical education has been used to understand student learning in cadaver 

dissection (Sánchez-Ferrer et al., 2017), operator perception during diagnostic interpretation 

(Brunyé et al., 2019), and expertise and skill level (Tien et al., 2014). For some medical 

procedures, eye-tracking has been used to determine when a trainee has reached an expert 

level of performance (Chen et al., 2019). The most used eye-tracking metrics in medical 

training are fixations on areas of interest (Ashraf et al., 2018; Fichtel et al., 2019), length of 

fixation (Kok & Jarodzka, 2017), and fixation sequences (Kok & Jarodzka, 2017).

Tobii Pro Lab, a robust analysis software, is commonly used for eye-tracking data, but each 

added area of interest adds extra time and subjectivity into the analysis (Jongerius et al., 

2021). In Tobii Pro Lab, an eye-tracking video can be manually mapped, meaning the person 

doing the mapping draws the AOIs on the first frame and then checks frame by frame that 

the outlines they drew in the first frame still line up with the AOIs stopping to modify size, 

location, and orientation of the AOI labels. Tobii Pro also has the option of automapping 

AOIs, meaning the person draws the AOIs on the first frame and then Tobii automatically 

tracks them throughout the recording. Additionally, several researchers have developed their 

own analysis tools for complex eye-tracking studies, however, in these frameworks the 

eye-tracker was fixed, the AOIs were located on a screen, or the application was so specific 

that the analysis method could not be modified for other purposes, like medical training 

(Fichtel et al., 2019; Jongerius et al., 2021; Kumari et al., 2021).

The drawbacks with current analysis methods lead us to one major question which is: can 

we automate the process for analyzing remote eye-tracking data based on AOI hits when 

the axis and AOIs are moving from frame to frame and the overall scene is dynamic? For 

the remainder of this paper, we propose and test a framework for automating this type of 

eye-tracking analysis.
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COMPUTER VISION + MACHINE LEARNING (CVML) EYE-TRACKING 

FRAMEWORK

To overcome the shortcomings of traditional eye-tracking analysis for more complex 

problems, we developed a framework to automatically locate and track moving AOIs. 

The goal of this framework was its specific application to medical training, and as such, 

eye-tracking videos from a medical simulator were used for all model training. The steps of 

the framework are summarized in Figure 1.

Step 1

The preliminary step in our framework is to clean and prepare the gaze data that came from 

the eye-tracking glasses. For recording, we used a Tobii Pro Glasses 3 with 50 Hz gaze 

collection and a scene camera of 1920 × 1080 pixels and 25 frames per second (fps). The 

gaze data output from Tobii includes a .txt file with timestamp and 2D gaze data, 3D gaze 

data, and left eye and right eye gaze origin, direction and pupil diameter information for 

each point. For mapping AOIs, the data of interest is the 2D gaze coordinates output in XY 

format. The file is imported into excel and the data is cleaned so the only remaining columns 

are the timestamp and the X and Y coordinates.

Step 2

The second step in our framework is to utilize Matlab (R2022a) to plot the gaze coordinates 

on the gaze video from the glasses as a red circle to match what the Tobii software does. 

This is done in the code in four distinct steps:

1. Break into frames - The frame rate of the video is approximately 25 fps. The 

video needs to be broken down into frames at 25 fps so that each frame can be 

plotted with the appropriate coordinates.

2. Find true X and Y for each gaze coordinate - The coordinates are recorded by 

the glasses at 50 Hz, but the true rate when accounting for error is 49.84935. 

Because the sampling rate is not exactly twice that of the video frame rate, 

interpolation is used to find the true coordinate values for each frame to be able 

to plot the circle.

3. Plot true X and Y for each frame on image as circle - On each frame, a circle is 

drawn around the true coordinates with a radius of 30, chosen arbitrarily, and a 

new image with the circle printed on it is saved.

4. Recombine annotated images back into a video - To see the gaze moving in real 

time and to analyze the areas of interest with computer vision more efficiently, 

all red circle images were recompiled into a video at 25 fps.

Step 3

The third step in our framework is to build a computer vision machine learning (CVML) 

model in Roboflow. For this application, two separate computer vision models were used. 

The first computer vision model was previously developed for tracking tools during the use 
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of a medical simulator to give live feedback during training (Brown & Wu, 2022). This 

model was expanded to also include the computer used in the trainer pictured in Figure 2.

The second computer vision model was developed solely for this framework and its purpose 

is to identify the red circle, which represents the gaze point, in the image. Output from 

these respective models can be seen in Figure 2. When the CVML model detects an object, 

it creates a bounding box around that object and provides a percentage of confidence 

that it has labeled that object correctly. For each prediction that it makes, it provides the 

coordinates and dimensions of the bounding box in addition to the confidence. For our 

models, we used the Roboflow default confidence value of 50, meaning that the bounding 

box was only created if the model was at least 50% certain that it was labeling correctly.

Step 4

Finally, to employ the CVML models, python was used to compare the two models to each 

other and see if the input matches. To do this, both models were imported into Pycharm. 

The python code pulls in the video file output by Matlab, and provides a detection output 

frame by frame. The Python code compares the coordinates of each bounding box from 

the computer vison models on the image, and if there is any overlap between the red circle 

bounding box and that of any of the tools (refer to Figure 2), the code outputs what was 

detected and otherwise reports no detection.

CASE STUDY: Medical simulation

In central venous catheterization (CVC), a complex medical procedure with a high 

complication rate, training is important because the more experienced the operator of the 

procedure is, the less likely they are to have adverse outcomes (McGee & Gould, 2003). 

With CVC, the most difficult skills for trainees to master are mechanical, indicating the 

importance of understanding when and how to use each medical tool (McGee & Gould, 

2003). Figure 3 shows the tools of importance during the CVC procedure as exhibited by a 

CVC simulator and labeled in the order of use.

The application of eye-tracking to CVC training is complex. If eye-tracking were to be 

applied to analyze the acquisition of specific mechanical skills, each tool labeled in Figure 3 

would need to be considered a separate AOI. This adds complexity to the situation because 

eye-tracking studies generally rely on larger AOIs to avoid excess noise during analysis 

(Hessels et al., 2016). Additionally, the medical tools each move at least once during the 

procedure as they are being used by the doctor. Because the tools are moving, the doctor 

needs to be able to move their body around freely; therefore, the eye-tracker needs to be 

head-mounted which means that the axis is shifting throughout the recording.

Considering the complications with analyzing eye-tracking data taken from CVC training, 

we wanted to see if the CVML analysis framework could be applied. In this case study, we 

considered three separate analysis methods. The first method was AOI tracking conducted in 

Tobii Pro by a manual rater. The second method was AOI tracking conducted in Tobii Pro 

by its automatic detection software (auto method) and not adjusted by a manual rater. The 

third method was AOI tracking conducted by the CVML framework. The manual method 
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was used as the control method; it was checked by a rater frame by frame and is therefore 

the most accurate.

Metrics

The AOIS used in this case study were the computer, the needle, the guidewire, the scalpel, 

the dilator, and the catheter (refer to Figure 3). These tools were chosen because they 

are all significant aspects of CVC and the process of learning the mechanical skills of the 

procedure (Graham et al., 2007). The two metrics of interest used in this case study were 

total number of AOI hits and level of agreement between methods. An AOI hit is anytime 

the gaze is located on an AOI in a single frame. Total number of hits per AOI is a useful 

metric because it shows how many times the gaze was located on a certain AOI and allows 

direct comparison between the output of the three models. Agreement between methods, 

based on Cohen’s Kappa of interrater reliability, is a useful metric because it allows us to 

understand if the automatic and CVML methods are different from the control method.

Model Analysis

The same two-minute eye-tracking video was run through the three methods of interest. For 

the Tobii manual method, one independent rater mapped AOIs. This was done by going 

through the video frame by frame for 2994 frames and correcting the AOI outlines each 

frame to make sure they were lined up with each tool. For the auto mapped case conducted 

in Tobii Pro, AOIs were drawn in the first frame by the same independent rater and the 

rest were auto calculated by Tobii based on where the AOIs were in the first frame. For the 

CVML framework, the video was input to the python code. All output was in the form of 

AOI hits per tool for each frame where a 1 indicated alignment of the gaze and the AOI and 

a 0 indicated no alignment.

Next, the metrics of interest were calculated from the AOI hits. For total AOI hits in each 

model, the sum of all 1 values of each tool were added together. Cohen’s kappa for interrater 

reliability was found by comparing the total output for each tool frame by frame in the 

CVML method and the automatic Tobii method to the control.

Results

The total number of AOI hits found by each model for each tool can be seen in Figure 

4. The control method and the CVML framework found a similar number of hits for the 

computer and the catheter whereas the auto method was not close for any of the tools. The 

auto method also did not detect any AOI hits for the needle, scalpel, dilator, or catheter.

Cohen’s Kappa was run in SPSS to measure agreement through interrater reliability between 

the various methods for each tool compared to the control. The data met all required 

assumptions. All results from the Cohen’s Kappa and the strength of each agreement 

(Landis & Koch, 1977) can be found in Table 1. The auto method had fair agreement 

for the computer (κ =.375, p < .05) and poor agreement for the guidewire (κ =−.037, p < 

.05). The CVML method had very good agreement for the computer (κ =.831, p < .05) and 

poor agreement for the guidewire (κ =.190, p < .05). Agreement with all other tools was 

poor (p>.05).
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Discussion

The results of the CVML framework indicate that it was more precise for AOI detection 

compared to existing automapping tools. Specifically, the CVML framework identified 

all six of the AOIs while the automapping feature was unable to detect four of the 

six AOIs (needle, scalpel, dilator, and catheter). This may be due to the fact that the 

automapping software relies on the automatic AOI tracking, which is not always able to 

account for smaller shapes and parts that move often (Hessels et al., 2016). Additionally, the 

automapping method detected the computer over 400 times, likely because of its large area 

compared to some of the other tools (refer to Figure 2).

In addition, the CVML framework had a higher level of agreement with the control 

condition compared to the automapping condition. While the automapping had significant 

agreement with the control condition for two AOI’s, one was only “fair” agreement 

(computer) while the second was not only “poor” agreement, but the negative kappa 

represented less than chance agreement. On the other hand, for CVML framework the 

level of agreement was very good for “computer”. In addition, for the guidewire, the 

level of agreement was approaching “fair” agreement (0.20). However, agreement was not 

significant for four of the six AOIs.

There are several reasons why the AOI hits for the CVML model may not have reached 

significant agreement with the control. First, the threshold for confidence in the CVML 

framework was set to 50%. In other words, if the framework was detecting the gaze point 

(represented by a red circle) or a tool (AOI) and was less than 50% confident in its selection, 

it was not listed as being seen by the model and thus no bounding box was created. In 

addition, there may have been inaccuracies in the integration of the Computer Vision and 

Machine Learning components. For example, there were times where the CVML model 

would detect the gaze point but not the AOI, or vice versa, and thus would not return a hit.

The CVML framework introduced here provides direction and guidance for human factors 

researchers interested in analyzing gaze data for dynamic scenes. The results of this study 

identify three promising areas that deserve further investigation. First, there were some 

strength in agreement between the CVML framework and the control method, indicating 

that additional work on the CVML framework may lead to increases in inter-rater agreement 

and thus accuracy. Second, this framework provides a method for automatic analysis in 

experimental setups where the eye tracker is head-mounted and the person is doing an 

active task. Finally, the CVML framework is an efficient means of analyzing these complex 

datasets – the case study presented here took less than an hour to analyze AOI hits, which 

is significantly more efficient than manual mapping which took the rater 3 hours and 

53 minutes. The manual method took substantially more time because of AOI drift that 

occurred from frame to frame. For example, Figure 5 shows AOI drifting over the span of 1 

second, with the images being taken every 5 frames. Because of this drift, the manual rater 

needed to make modifications to the AOIs almost every frame. This type of manual coding is 

infeasible when analyzing gaze data of larger participant pools.
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While the CVML framework shows promise, there are several limitations of this study. First, 

the manual eye tracking analysis method that was used as the control condition has been 

shown to be the most accurate for analyzing eye gaze data, but it is not without criticism 

(Jongerius et al., 2021). However, there is currently no better option to ensure complete 

accuracy. Additionally, only one video was tested on the proposed framework, and a separate 

video was used to train the model. More trials need to be conducted with more videos to 

determine the transferability of these results.

Future work should focus on improving the accuracy of the CVML model and the attributes. 

There were several cases where the CVML model did not detect the red circle. This could 

be due to the size and appearance of the red circle, which was not varied or tested during 

this case study. More shapes, colors, and sizes of the circle will be tested to determine if this 

impacts the detection.

CONCLUSION

This paper outlines the CVML framework and an initial validation through a use-case. 

This framework uniquely applies to eye-tracking with dynamic areas of interest. This 

CVML framework is necessary because the existing analysis methods either do not account 

for an axis that shifts every frame, or take an infeasible amount of time to apply. The 

CVML framework was shown to have higher detection and accuracy compared to other 

automatic eye-tracking analysis methods. However, there are areas for improvement in this 

methodology. Future work should focus on increased methods of identifying gaze points and 

CVML model robustness.
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Figure 1: 
Summarized steps of proposed framework
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Figure 2: 
(left) output from the tool tracking CVML model; (right) output from the red circle tracking 

CVML model
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Figure 3: 
The simulator of interest with the tools labeled; A. needle, B. guidewire, C. scalpel, D. 

dilator, E. catheter, F. computer
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Figure 4: 
AOI hits for each method. The lighter bar for the manual method represents the control 

condition for AOI hits – proximity to this bar indicates increase similarity in AOI detection 
but not necessarily the accuracy of when it was detected
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Figure 5: 
AOI drifting over time during the manual mapping method in Tobii Pro
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