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1. The formulae concerning the representation of a number as the sum of
5 or 7 squares belong to one of the most unfamiliar and difficult chapters in
the Theory of Numbers, and only one proof of them has been given. The
proof depends on the general arithmet'c theory of quadratic forms, initiated
by Eisenstein and perfected by Smith and Minkowski. This theory, of
which a systematic account will be found in the fourth volume of Bachmann’s
Zahlentheorie gives a complete solution of the problem of any number s of
squares not exceeding 8. Beyond s = 8 it fails.

When s is even there is an alternative method. This method, which de-
pends on the theory of the elliptic modular functions, is much simpler in idea
than the method of Smith and Minkowski; and it has another very important
merit, that it can be used—within the limits of human capacity for calcula-
tion—for any even value of s. Thus Jacobi solved the problem for 2, 4, 6 and
8. In these cases the number of representations can be expressed in terms of
the divisors of #. Suppose, e.g., that s = 8; and let us write, generally,
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a divisor of #, & a even, and §; an odd divisor. When s exceeds 8 the formulae
are less simple, and involve arithmetical functions of a more recondite
nature. Liouville gave formulae concerning the cases s = 10 and s = 12,
and Glaisher! has worked out systematically all cases up to s = 18. More
recently important papers on the subject, to which I shall refer later, have
been published by Ramanujan? and Mordell® 1In the latter paper the whole
subject is exhibited as a corollary of the general theory of modular in-
variants.

The primary object of my own researches has been fo deduce the formulae
for s = 5 and s = T from the theory of elliptic functions, and so to place the
cases in which s is odd and even, so far as may be, on the same footing. The
methods which I use have further important applications, but this is the one
which I wish to emphasize at the moment. The formulae which I take as my

goal are the formulae
_ Bn\/n n\1
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given by Bachmann (pp. 621, 655). Here # as an odd number not divisible
by any square (so that there is no distinction between primitive and imprimi-
tive representations); m runs through all odd numbers prime to #; B is 80,
160, 112, or 160, according as » is congruent to 1, 3, 5 or 7 (mod. 8); and C
is 448, 560, 448 or 592 in simfilar circumstances. These formulae are the cen-
tral formulae of the theory: they involve infinite series, but these series are
readily summed in finite terms by the methods of Dirichlet and Cauchy.
With them should be associated the formula

,s<n)=“‘1r7‘2(“7”)}n,' | ®

where A is'24, 16, 24, or 0: but this formula, as we shall see, stands in some
ways on a different footing.

2. My new proof of the formulae (1) and (2) was arrived at incidentally in the
course of researches undertaken withadifferent end, that of finding asymptotic
formulae (valid for all values of s) for 7,(n) and other arithmetical functions
which present themselves as coefficients in the expansions of elliptic modu-
lar functions. In a paper* shortly to appear in the Proceedings of the London
Mathematical Society, Mr. Ramanujan and I have developed an exceedingly

~powerful method for the solution of problems of this character, and applied
it to the study of p(n), the mumber of (unrestricted) partitions of #. This
method, when applied to our present problem, introduces the function
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and the summation applies to k£ = 1,2,3, . . . ,andall positive values

of & less than, of opposite parity te, and prime to & (k¢ = 0 being associated
with 2 = 1 alone). The coefficient of ¢” in 6,(g) is

hk

and our method leads to the conclusion that
r.(n) = x: ) + O (n*), 6)

at any rate for every value of s exceeding 4.

When s is even, F(g) is an elementary function; and (Sj, ;) is easily expressi-
ble in a form which does not involve the ‘Legendre-Jacobi symbol’ Z‘ .
The function X,(n) is then susceptible of a variety of elementary transforma-
tions and it was shown by Ramanujan, in the second of his two papers quoted
above, that X,(») is identical with r,(n) when s = 4, 6 or 8. In what follows
I confine myself to the case in which s is odd, merely remarking that my method
(which is entirely unlike that used by Ramanujan) leads directly to an alterna-
tive proof of his results.

3. When s is odd, F(g) is not an elementary function. But it is not diffi-
cult to prove that
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every term on the right hand side having an argument numerically less than
isv. Further, Sj: = Sii Siu; and the first factor can always be expressed in
a simple form. Suppose, to fix our ideas, that s = 5. Then Sj = (— l)"k2
Substituting from this equation and from (7) into (4), and effecting some ob-
vious simplications, we obtain

_ (= 1)*Sis 1
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where now % assumes all valués of opposite parity to and prime to k. This
formula may be simplified further by multiplying each side by
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We then find
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the summation now extending to k2 = 0,1,2, . . . and all k of opposite parity

to k. This is our fundamental formula, when s = 5. Two steps remain:
first, to prove the identity of 65(q) and #%; secondly, to deduce the formulae of
Smith and Minkowski.

4. The first step presents no very serious difficulty, for it involves nothing
beyond an adaptation of the ideas used by Mordell in his paper quoted in §1.
We prove first that ©s behaves like #° in respect to the linear modu-
lar transformations 7 = T + 2, 7 = —1/T; so that 6;/9° is an invariant of
the modular sub-group called by Klein-Fricke and Mordell T's. Secondly, by
studying the transformation 7 = (T — 1)/T, we prove that 6;/9° is bounded
in the ‘fundamental polygon’ associated with I';. Itthen follows that the quo-
tient is a constant which is easily seen to be unity. In all this the only
difficulty arises from the use of certain reciprocity-formulae satisfied by Gauss’s
sums.

We now transform (9) by effecting the summations with respect to 4,
using certain contour integrals of a type common in the work of Lindelof
and other writers. We thus obtain

= l-l-i—Z;‘E k’z 2 (mk+])i mk + 5 (10)

m=0
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a fundamental identity which contains the whole theory of the representation
of numbers by sums of 5 squares. The symbols j and u alone require expla-
nation; j runs through the complete set of least positive residues of 0, 1%,
22 . . . ,(k — 1)? to modulus %, each taken as often as it occurs; and pk
is the multiple of ¢ deducted in order to arrive at such a residue. And the
remainder of the work is purely arithmetical. Picking out the coefficient
of ¢", we obtain a series for 75(z) which is found, after some reduction, to be
equivalent to the series given by Bachmann. :
4. The formulae which correspond to (10) for s = 7 and s = 3 are
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& = 2563 (=1i¢-» 1)m 1 > E(mk . .
W& 2
_“Z kﬂZ E( D™ (ke +5)* "'k+1$,
_1+8;,35 ‘l)m 1)2 zo(mk+]); s a2
+242 2 ,§< )™ (mk + 1)} ~»+,2

The interpretation of j and u is as before, except that, when % is even, j is a
residue of one of the numbers 3k, 3¢ + 12, . . . , 3k + (¢ — 1) These
identities embody the theory for 7 or 3 squares. It should be ncted however,
that the application of my method becomes very much more difficult when
s = 3, as the double series used are then not absolutely convergent;and in fact
the only proof of (12) which I possess consists in an identification of the results
which it gives with those already known.

I conclude by a word concerning the cases in which s>8. Here, when s is
odd, we are on untrodden ground. We have the asymptotic formula (6);
and we can evaluate X,(n) as when s = 5 or 7, thus obtaining a series of new
results. But it is no longer to be expected that our results should be exact,
and I have verified that, when s = 9, they are not exact, even when n = 1.
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During the winter of 1916-1917 the crystal structure of ice was investi-
gated by means of the X-rays. The photographic method originated by
deBroglie! was used with certain modifications suggested privately by Dr:
A. W. Hull. The source of energy was a Coolidge tube with tungsten target
excited by an induction coil with mercury turbine interrupter. At first the



