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Abstract
Motivation: The process of analyzing high throughput sequencing data often requires the identification and extraction of specific target sequen-
ces. This could include tasks, such as identifying cellular barcodes and UMIs in single-cell data, and specific genetic variants for genotyping.
However, existing tools, which perform these functions are often task-specific, such as only demultiplexing barcodes for a dedicated type of
experiment, or are not tolerant to noise in the sequencing data.

Results: To overcome these limitations, we developed Flexiplex, a versatile and fast sequence searching and demultiplexing tool for omics
data, which is based on the Levenshtein distance and thus allows imperfect matches. We demonstrate Flexiplex’s application on three use
cases, identifying cell-line-specific sequences in Illumina short-read single-cell data, and discovering and demultiplexing cellular barcodes from
noisy long-read single-cell RNA-seq data. We show that Flexiplex achieves an excellent balance of accuracy and computational efficiency
compared to leading task-specific tools.

Availability and implementation: Flexiplex is available at https://davidsongroup.github.io/flexiplex/.

1 Introduction
High throughput sequencing, from both short- and long-read
sequencing technologies, enable the genome, transcriptome,
and other “omics” to be profiled by reading up to billions of
nucleotides. Matching and extracting sequences from
“omics” data are common analysis tasks. For example,
searching for the presence of genetic variants or motifs, or
identifying and error correcting barcodes. Highly efficient
string search command-line tools, such as grep and agrep
(Wu and Manber 1992), which find exact and approximate
matches, respectively, have been used for this purpose in the
past (Panagopoulos et al. 2014). However, they are designed
for a small set of search patterns, and do not output the data
in a format compatible with downstream analysis tools,
thereby limiting their use for demultiplexing. Demultiplexing
is becoming increasingly routine in “omics” data analysis.
For instance, indexes, including barcodes and Unified
Molecular Identifiers (UMIs), are added for a range of pur-
poses, such as pooling samples to save sequencing cost, mea-
suring clonal expansion, labeling reads from individual cells,

or individual molecules (Smith et al. 2010, Merino et al.
2019, Bramlett et al. 2020, Philpott et al. 2021). To address
this, demultiplexing tools have been built such as ultraplex
(Wilkins et al. 2021) for short-read data, and scTagger
(Ebrahimi et al. 2022) and BLAZE (You et al. 2023) for noisy
long-read data. Some demultiplexing tools have also been
built into multi-purpose pipelines, such as FLAMES (Tian
et al. 2021), wf-single-cell (https://github.com/epi2me-labs/
wf-single-cell), and SiCeLoRe (Lebrigand et al. 2020).
However, these tools are often tailored to a specific experi-
ment type, and may not work on a wider range of customized
barcodes and sequencing data, specifically, when the struc-
ture of the barcode, flanking sequences, and their locations
differ from the usual specifications. For this reason,
experiment-agnostic tools have begun to be developed
(Sullivan and Pachter 2023).
Long-read demultiplexing is a particular challenge, as the

reads often contain a high number of errors, including inser-
tions and deletions (Dohm et al. 2020). Moreover, a small
percent of reads may be chimeric (White et al. 2017),
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containing multiple barcodes and requiring the read to be
split. Although there are some tools, which can simulta-
neously split chimeric reads and demultiplex, such as
poreChop (https://github. com/rrwick), these may not work
across a broad range of datasets or when there are thousands
of barcodes. Finally, much of the available software is com-
plex to setup and install and their computational requirements
in terms of time and memory can limit their practical use
when processing the volumes of data now being generated.

Here, we introduce Flexiplex, which given a set of reads as ei-
ther FASTQ or FASTA, will demultiplex and/or identify a se-
quence of interest, reporting matching reads and read-barcode
assignment. Flexiplex works in two modes: (i) when one or
more sequences of interest are known, such as barcodes, and (ii)
discovery mode—when only the sequence which flanks the re-
gion of interest is known. Flexiplex is lightweight, multi-
threaded, fast, and easy to install and run. The source code and
pre-built binary executables for Linux and MacOS are provided
at https://davidsongroup.github.io/flexiplex/.

2 Flexiplex’s approach
Flexiplex assumes a read structure, where a barcode and UMI
are flanked by other known sequences (Fig. 1A). To identify the
barcode, Flexiplex first uses the edlib Cþþ library (�So�si�c and
�Siki�c 2017) to search for the left and/or right flanking sequence.
Default sequences are 22bp from the 10x Genomics Chemistry
v3 primer and 9bp of poly T sequence. The intermediate se-
quence, which contains the barcode and UMI, is initially left as
a wildcard (default length of 28bp). For the best match to the
flanking sequence within a specified edit distance (default edit
distance of eight), the intermediate sequence (barcode and UMI)
þ/− 5bp either side is extracted. Next, we align the extracted
sequence against a user-provided list of known barcodes and
calculate the Levenshtein distance (Berger et al. 2021). For
speed, this step is implemented in an efficient dynamic program-
ming algorithm within Flexiplex, rather than edlib. The best
matching barcode equal or less than a specified distance (default
of two) is reported, but only if no other barcode has equal low-
est distance. To identify and split chimeric reads, Flexiplex will
repeat the flank and barcode search with the previously found
barcode and flanking region masked out. This is repeated until
no new barcodes are found in the read. Subsequently, the re-
verse complement of the unmasked read is searched using the
same algorithm.

The flank and barcode sequences provided to Flexiplex are
customizable, as is the length of the barcode and UMI, and their
order. Flexiplex will output identified barcodes, UMIs, and
trimmed reads by default. If the barcode, UMI, and right flank
are left unspecified, Flexiplex can be used as a general searching
tool and will identify any read containing the left flanking se-
quence within a user defined distance. As it can read and write
to standard IO, the output of Flexiplex can be piped to another
instance of Flexiplex for complex search and demultiplexing
applications, such as extracting cell barcodes from all reads,
which contain a genetic variant of interest.

Flexiplex can also be used to discover barcodes directly from
the data. If no barcode list is provided, the sequence following
the left flank is assumed as the barcode, and barcodes are
reported, along with their frequencies. Flexiplex is provided
with a Python script, flexiplex-filter, which generates a filtered
barcode list based on knee plot frequencies and, optionally, a
user-provided whitelist. Flexiplex-filter works by first using a

rolling window to approximate the derivative of the knee plot
curve for each barcode. The most negative derivative is then as-
sumed as the inflection point, which becomes the cutoff point.
A plot of the frequency distribution and inflection point can be
generated for manual inspection and the search range custom-
ized if needed (Supplementary Fig. S1). The filtered barcodes
can then be passed back into Flexiplex for error tolerant bar-
code demultiplexing of each read.
To illustrate the performance of Flexiplex, we considered

several typical use cases; searching for specific sequences of
interest in low error short-read data and discovering and
demultiplexing single-cell RNA sequencing barcodes from
noisy long-read data. In all instances, Flexiplex demonstrated
an excellent balance between computational efficiency and
accuracy. However, these use cases are not exhaustive.
Flexiplex is versatile with a wide range of applications be-
yond the examples presented here, such as clonal tagging of
single cells using barcoding approaches (Putri et al. 2023)
and sample demultiplexing in bulk data.

3 Use cases
3.1 Fast and accurate sequence search
We first show Flexiplex is a reliable and general sequence
searching tool using an Illumina short-read single-cell RNA-
Seq dataset from Chen et al. (2021). These data were gener-
ated from a mixture of seven cell lines including MCF-7,
which is known to harbor the highly expressed fusion gene
BCAS4-BCAS3 (Edgren et al. 2011, Davidson et al. 2015).
The pool also included the HEK293T cell line, which
expresses E1A, an Adenovirus 5 gene and the T47D cell line,
which contains a Single Nucleotide Variant (SNV),
rs878887783, in the mitochondrial gene, MT-ND1. Here, we
demonstrate how reads of interest can be extracted using a
query sequence and then processed for downstream analysis;
in this use case, identifying reads from BCAS4-BCAS3,
Adenovirus E1A, and rs878887783, and using them to assign
cells to their cell line of origin.
Using Flexiplex, we searched the reads for 34 bp from each

of Adenovirus E1A and the dominant breakpoint of BCAS4-
BCAS3, and 54 bp centered on rs878887783 within an edit
distance of two. As BCAS4-BCAS3 has an MCF-7-specific
SNV 13bp from the breakpoint, we used two query sequen-
ces, one with the SNV and one with the reference allele. We
compared these results against three alternative methods:
grep, which looks for an exact match; and ugrep (https://
github.com/Genivia/ugrep) and seqkit grep (Shen et al.
2016), both allow mismatches. Flexiplex processed �200
million reads in 24min using a single thread per search (linux
high-performance computer). The computational speed was
slower than grep (which took 1–2min), but significantly
faster than the other mismatch tolerant methods, seqkit grep
(�190min) and ugrep (�40min) (Supplementary Fig. S2).
To translate identified reads into a list of cells expressing

the novel sequence, we extracted cellular barcodes (first
16 bp) from the pair of matched reads. The cells identified fell
into clusters based on gene expression as expected (Fig. 1B),
allowing us to assign clusters to cell lines and assess the per-
formance of each tool. Flexiplex identified the highest or sec-
ond highest number of cells expressing BCAS4-BCAS3 (365
of 956 cells), Adenovirus E1A (439 of 869 cells), and
rs878887783 (515 of 987 cells) in the correct cluster
(Fig. 1C). The importance of allowing mismatches was
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Figure 1. (A) The demultiplexing approach used by Flexiplex. The right and left flank are first searched for within a read. The barcode and UMI regions are

then extracted from the intermediate sequence, with barcode error correction if known barcodes are provided. (B) UMAP of the short-read single-cell

dataset of seven pooled cell lines. Cells positive for BCAS4-BCAS3, Adenovirus 5 EA1, and rs878887783 are indicated. (C) The number of cells identified

with grep, seqkit grep, ugrep, and Flexiplex that express sequence from BCAS4-BCAS3 (SNP—using an MCF-7-specific variant or Reference—using the

reference allele), Adenovirus 5 EA1, and rs878887783 in a short-read single-cell dataset of seven pooled cells lines. Cells, which cluster away from the

presumed cluster (hatched), are likely to be false positives, whereas those falling within the presumed cluster are true positives (values on bars). (D) The

accuracy of barcode demultiplexing on a simulated set of 5 million single-cell RNA-seq long reads for Flexiplex, scTagger, and FLAMES, varying the

maximum allowed edit distance to known barcodes between zero and three. (E) Assessment of cellular barcode demultiplexing on a real dataset of 248

cells sequenced with ONT for Flexiplex (with and without chimeric read splitting), scTagger, and FLAMES, varying the maximum allowed edit distance to

known barcodes between zero and three. Correct barcodes will result in a higher level of consistent cell-line annotation. (F) Performance of Flexiplex and

scTagger on a large dataset of 61 million reads, where decoy barcodes were used to assess demultiplexing accuracy. As scTagger reports multiple

barcodes of equi-distance for each read, we assessed its performance by either removing reads with ambiguous reads, or counting any true barcode as a

true positive. (G) The number of barcodes recovered across four datasets when no known barcode list was provided. As scTagger does not adjust the

produced barcodes to remove empty droplets like the other methods, we used a script provided with Flexiplex, flexiplex-filter, to automatically refine the

barcodes based on the end of the inflection point of the read-barcode frequency distribution. (H) The run-time (log scale, four threads) of stand-alone tools

for barcode discovery, Flexiplex, BLAZE, and scTagger, as a function of the number of reads processed from the four datasets used for barcode

discovery evaluation. See text and Supplementary Material for further details.
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exemplified by BCAS4-BCAS3. When using the reference al-
lele in our query sequence rather than the MCF-7-specific sin-
gle nucleotide polymorphism (SNP), grep reported no
matching reads, whereas Flexiplex identified 97% of those
found using the MCF-7 variant (Fig. 1C).

False positives for BCAS4-BCAS3 and Adenovirus E1A,
assessed by cells expressing the novel genes from other cell-line
clusters, were at a similar rate for all tools. We hypothesize that
the false positives are unlikely to be a result of poor sequence
matching, but rather, a result of sequencing errors in the cellular
barcodes, ambient RNA (Young and Behjati 2020) or barcode
switching (Griffiths et al. 2018). To confirm this, we searched
for the same variants in bulk RNA sequencing from three of the
same cell lines and found no false positives for BCAS4-BCAS3
or Adenovirus E1A (Supplementary Table S1). For
rs878887783, however, a large number of false positives were
seen for ugrep and seqkit in both single cell (Fig. 1C and
Supplementary Fig. S3) and bulk (Supplementary Table S1)
data. These can be attributed to detection of the reference allele
in other cell lines. As Flexiplex allows different error tolerance
for different regions of the search sequence, it could require a
perfect match for the 5bp at the SNV while allowing up to two
mismatches in the flanking region. Taken together, these results
demonstrate that error tolerance improves sensitivity without
compromising precision, even for low error Illumina data.

3.2 Demultiplexing cellular barcodes from noisy
long-read data
Barcode demultiplexing is an application of sequence search-
ing, where the number of query sequences (barcodes) can be
large and the best match should be reported. We validated
Flexiplex’s demultiplexing performance on noisy long-read
Oxford Nanopore Technology (ONT) single-cell RNA se-
quencing. We compared Flexiplex’s performance with two
specialized tools for long-read single-cell demultiplexing,
scTagger and FLAMES, on simulated data generated by
Ebrahimi et al. (2022). The simulation consisted of 5 million
reads generated for 5000 cells. True barcode sequences were
provided to each tool to benchmark them under a best-case
scenario, where a perfect list of known barcodes is provided.
Flexiplex reported the correct barcodes for more reads than
any other methods across all maximum edit distances tested
(0–3) and had the lowest false discovery rate (Fig. 1D).

Next, we verified these results on a real dataset, scmixology
2 from Tian et al. (2021). Scmixology 2 is a pool of five cell
lines, which underwent FLT-Seq (Jabbari and Tian 2019),
where cells were processed with the 10x Genomics 3’ v3 proto-
col followed by ONT long-read cDNA sequencing in addition
to Illumina short-read sequencing. Approximately 25 million
ONT reads were generated. Two hundred and forty-eight cells
were identified in the matched short-read sequencing and their
barcodes passed to the long-read demultiplexing tools.

To test the cellular barcode demultiplexing accuracy, we
used two orthogonal methods to determine a read’s cell line of
origin and assess their concordance. In the first method, cells
had previously been annotated to cell lines using SNP-based
clustering from matched short-reads (Tian et al. 2021). Reads
could therefore be assigned to cell lines by correctly demulti-
plexing their cellular barcodes and looking up their associated
cell line from the annotation. For a subset of reads, we could
also determine the cell line using a second method, using cell-
line-specific SNPs present in the reads (16 000 reads). For each
of these SNP-typed reads, we assessed whether the predicted

cell line from each approach matched (see Supplementary
Methods for details), with the assumption that inconsistencies
were predominantly caused by incorrect cellular barcodes.
We found that Flexiplex reported the highest number of

reads where the cell lines were concordant, whilst <5% of
reads had discordant cell lines (Fig. 1E). Importantly, we
found that 3% of the reads in the dataset were chimeric, and
Flexiplex’s ability to split these improved the demultiplexing
performance further. Flexiplex took 2.6 h to process 25 mil-
lion long reads (default settings, single thread, linux high-
performance computer), which was slower than FLAMES
(1.1 h), but faster than scTagger (2.9 h). Both Flexiplex and
FLAMES consumed <1 GB of RAM, compared to 41 GB for
scTagger (Supplementary Fig. S4).
Finally, we verified the performance of Flexiplex on a large

PromethION dataset from You et al. (2023) of over 1000 hu-
man induced pluripotent stem cells (hiPSC) sequenced to a
depth of 61 million reads. To emulate a typical 10x
Genomics experiment, we passed each tool �11 000 cellular
barcodes, where 1022 were true barcodes obtained from
short-read data and the remaining 10 000 were decoys—ran-
domly sampled from 10x Genomics’ list of possible cellular
barcodes for v3. We then assessed the rates that true and de-
coy barcodes were reported (see Supplementary Methods)
and found that Flexiplex was able to demultiplex the highest
number of reads correctly, consistent with other analyses
(Fig. 1F). Flexiplex completed in 7–14 h using 16 threads.
scTagger was considerably faster, taking just 1.5–5h, but re-
quired over 100 GB of RAM, compared to <1 GB for
Flexiplex. FLAMES was unable to complete in a reasonable
time due to being single threaded (<30% complete after
48 h), so was excluded from the comparison.

3.3 Discovering cellular barcode from noisy
long-read data
Next, we assessed Flexiplex’s performance at barcode discov-
ery, a scenario where the barcodes are unknown, and a list of
valid barcodes need to be generated prior to demultiplexing
with tools, such as those in the previous use case. This is one
of the first analysis steps required for long-read single-cell se-
quencing without matched short-reads. We compared
Flexiplex’s barcode discovery against the purpose-built tools
scTagger, BLAZE, and ONT’s wf-single-cell on the scmixol-
ogy 2 dataset, as well as three technical replicates (GridION
Q20, GridION, and PromethION) of hiPSC sequenced with
varying depths and error rates by You et al. (2023). The asso-
ciated barcodes derived from short-read data were used as
truth, but not provided to the tools. As scTagger does not es-
timate the number of cells using a knee plot method, we ap-
plied flexiplex-filter to the barcode frequencies from
scTagger, to obtain the short-list for comparison. All tools
were found to have similar sensitivity and specificity
(Fig. 1G). However, we found that Flexiplex (four threads,
other settings default, Linux high-performance computer)
completed barcode discovery in �5%–16% of the time of
BLAZE and 25%–42% of the time of scTagger (Fig. 1H).
Relative performance was similar for other thread counts
(Supplementary Table S2). While wf-single-cell is able to gen-
erate a barcode list, it is a complete Nextflow pipeline for
single-cell data preprocessing, and will therefore perform
tasks unrelated to barcode discovery. Hence, computational
performance will exceed other tools and cannot be compared
directly. For example, wf-single-cell (16 threads, up to 20
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concurrent jobs) required memory and run-time an order of
magnitude higher than Flexiplex (Supplementary Table S2).

4 Discussion
Here, we present Flexiplex, a generalized tool for sequence
searching and demultiplexing. To achieve computational effi-
ciency on large “omics” data, Flexiplex uses a combination
of two Levenshtein distance alignment algorithms. Hence,
Flexiplex is tolerant to substitutions, insertions, and dele-
tions, which can be present in the data due to sequencing
errors and SNPs. Flexiplex is highly customizable, including
all search sequences and lengths, and whether to split chime-
ric reads, making it a versatile tool for many applications.

Using barcode discovery and demultiplexing of single-cell
long-read RNA-Seq, and sequence searching in single-cell
short-read RNA-Seq as use cases, we demonstrate that
Flexiplex achieves accuracy comparable or exceeding popular
task-specific tools, with good run-time and memory usage.
However, Flexiplex’s applications are broader, and extend
beyond single cell and RNA sequencing. For example, demul-
tiplexing pooled samples generated by bulk long-read experi-
ments, or custom clonal barcodes. Because Flexiplex can read
and write to standard IO, instances of itself can be chained
together on the command line for more complex tasks, e.g. to
select reads with a mutation of interest and then demultiplex
their cellular barcodes, or to search for phased variants or
splicing. We designed Flexiplex to be a simple, user-friendly,
and fast command line utility, with few dependencies, mak-
ing it straightforward to install and run. It addresses the need
for a lightweight tool to rapidly search and extract subsets of
reads from raw data and can be easily integrated into com-
prehensive downstream data analysis pipelines.
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