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SUMMARY
Human reasoning depends on reusing pieces of information by putting them together in new ways. However,
very little is known about how compositional computation is implemented in the brain. Here, we ask partic-
ipants to solve a series of problems that each require constructing a whole from a set of elements. With fMRI,
we find that representations of novel constructed objects in the frontal cortex and hippocampus are relational
and compositional. With MEG, we find that replay assembles elements into compounds, with each replay
sequence constituting a hypothesis about a possible configuration of elements. The content of sequences
evolves as participants solve each puzzle, progressing from predictable to uncertain elements and gradually
converging on the correct configuration. Together, these results suggest a computational bridge between
apparently distinct functions of hippocampal-prefrontal circuitry and a role for generative replay in compo-
sitional inference and hypothesis testing.
INTRODUCTION

Model-based reinforcement learning (RL) engages the hippo-

campus (HC) and prefrontal cortex (PFC)1–4 and makes plans

using knowledge of transitions between states. However,

unlike most RL problems studied in the laboratory, naturalistic

inference problems are profoundly combinatorial. When a

child builds a Lego tower out of 10 bricks, he or she is faced

with more than 3.5 million possible brick orderings. It is not

practical to enumerate the state space or learn about

transitions in the vast product space. Nevertheless, model-

based reasoning is a hallmark of human and other animal in-

telligence even at early stages of development.5,6 Solving

this kind of task efficiently requires taking advantage of its

compositionality.

One kind of compositionality is separating and recombining

abstract relations and sensory specifics. For example, the
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concept of a brick being on top of another brick can be

applied to any two bricks. Models built on this principal ac-

count for a wealth of neural data in the hippocampal formation

and PFC.7–9

Another kind of compositionality is separating and recombin-

ing elements to make larger compounds. For example, brick A

could be attached to brick B or to brick C. This kind of reasoning

and inference is a constructive process.10,11 In generative

models of scene understanding,12 embeddings of visual objects

generalize across different scenes. Such representations enable

agents to engage in flexible compositional reasoning and infer-

ence, a hallmark of ‘‘combinatorial generalization’’ and a poten-

tial path for agents to make ‘‘infinite use of finite means.’’13,14 We

use the term flexible inference to refer to this process of

combining task knowledge in various potentially novel and un-

seen ways. We contrast such processes with other tasks that

require inference over a much more restricted latent space,
ber 26, 2023 ª 2023 The Authors. Published by Elsevier Inc. 4885
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Figure 1. Paradigm and behavioral training

(A) On 2 consecutive days, subjects were trained on nine basic building blocks, which could be flexibly combined by placing one building block on top of (below)

or beside (left or right) another building block.

(B) The complexity of the target silhouettes increased gradually, and subjects achieved overall high performance both in the actual construction (left) and

determination of present building blocks under time pressure (right).

Shaded colored areas reflect standard errors.

See also Figure S1.
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such as inferring whether an animal is currently in context A or B

to determine a particular choice rule.

Less is known about the neural basis of this type of assem-

bly,5 but it is also thought to engage the hippocampal forma-

tion and medial prefrontal cortex (mPFC).15–17 This is perhaps

most strikingly demonstrated in natural scene perception

tasks, such as imagining novel viewpoints, in which HC and

mPFC are causally engaged.18–20 The hippocampal formation

is also critical for integrating visual information to ‘‘anchor’’ a

cognitive map into a perceptual scene, based on input from

higher-order visual regions.21–23 Literature on closely related

tasks in mental rotation24,25 additionally highlights the role of

the posterior parietal cortex in these operations.26,27

While such compositional representations might allow a

compact representational form, they do not provide a mecha-

nism for inferring the appropriate configuration (and therefore

representation) of current experience. However, further consid-

eration of known hippocampal phenomena suggests a candi-

date substrate for this inference. In neural replay, sequences of

cellular ensembles encoding external states of the environment

are (re-)activated in time-compressed form.28,29 Critically, the

external states that are activated are non-local. Replay events

have been suggested as a substrate not only for memory consol-

idation but also for evaluating plans of the future.30,31 One

possible unifying account of these apparently disparate ideas

casts replay as a mechanism for learning and sampling from

generative models of the world, often referred to as generative

replay.32,33 If true, such an account suggests that replay might

be involved in online computations to understand the present.

Thus, when constrained by sensory data, such generative

models are an essential part of any inferential process.34,35

To test these ideas, we designed two studies to investigate the

neural representations and mechanisms that enable flexible

compositional reasoning. We found compositional representa-

tions in the mPFC and anterior HC, reflecting the generalizable

embedding of sensory building blocks in their relational configu-

rations. Further, we show that generative sequences of hypo-

thetical constructions are played as the subject understands

the scene. These sequences resemble hypothesis tests during

compositional inference.
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RESULTS

Subjects solve a compositional construction problem
In a first study, we trained 30 human subjects on the task contin-

gencies of constructing silhouettes out of a set of building blocks

over 2 consecutive days (Figure 1A). Subjects learned that they

had nine basic building blocks available that could be combined

by placing them on top of or beside one another, without regard

for the physical stability of the constructed object (similar to play-

ing two-dimensional Lego or Tangram, see Figure 1A). Every

building block could only be used once. The resultant construc-

tion task has considerable computational complexity: there are

at least 6 3 1012 ways of connecting the nine building blocks,

implying that an exhaustive state space representation including

all possible configurations is computationally intractable.

Nevertheless, subjects managed to solve the most basic

version of the task immediately. Figure 1B shows participants’

performance on the 2 days of training. On day 1 (left), subjects

had to construct silhouettes that increased in complexity and

immediately achieved high overall performance (mean propor-

tion correct: 0.89, SD = 0.09), which remained stable over the

subsequent sessions. On day 2 (right), subjects were presented

with a target silhouette and had to select the correct building

blocks to construct this silhouette within a short amount of

time. Again, subjects displayed high performance that gradually

increased over time. To test whether generalizable inference ex-

tends across hierarchical levels, we added a hierarchical struc-

ture to the task (Figure S1A), such that larger silhouettes could

often be decomposed into smaller recurring chunks. We found

behavioral evidence that subjects made use of the hierarchical

structure during flexible construction (Figures S1B and S1C).

We did not detect neural representations reflecting this hierar-

chy, and consequently the following fMRI analyses collapsed

across hierarchies. Using a behavioral similarity paradigm, we

found that subjects processed silhouettes both in terms of their

visual as well as compositional properties (see STAR Methods

and Figure S1D).

Taken together, these behavioral data suggest that subjects

quickly achieved a successful representation of the generaliz-

able task structure during behavioral training, despite the
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considerable computational complexity of the task. This moti-

vates the question about the neural basis that underlies such

flexible and generalizable inference.

Visual inference signals underlying the flexible
construction of silhouettes
After two sessions of training on separate days, we measured

the neural representations underlying the flexible construction

of silhouettes using fMRI. In the scanner, subjects saw silhou-

ettes for a short period of time and were instructed to infer a

plan to construct these silhouettes. To ensure that subjects

actively engaged in the mental construction, 10% of all trials

were catch trials (see STAR Methods). Despite the challenging

nature of the task and the short time period for the construction

and probe trials, subjects achieved above chance accuracy in

these probe trials (mean reaction time: 1,305ms, proportion cor-

rect: 0.65). We selected silhouettes whose construction features

(particular building blocks in particular relational positions) and

visual features (such as the size or visual shape of the silhouette)

were de-correlated (see Figure S2). In the scanner, trials included

(basic and hierarchical) building blocks as well as compound sil-

houettes. Critically, these compounds were novel silhouettes

that had never been experienced during training (Figure 2B).

Initially, we probed for effects of basic (visual) processing dur-

ing the mental construction of a silhouette (Figure 2C). We found

strong effects for activity in the lateral occipital cortex (peak

Montreal Neurological Institute [MNI] [52 �66 �4], tpeak = 8.73),

superior parietal cortex (BA7, peak MNI [�22 �74 58], tpeak =

8.04), and precentral gyrus (peak MNI [48 6 34], tpeak = 6.37,

peak MNI [�48 �2 34], tpeak = 5.08) that covaried with the num-

ber of basic building blocks in a given silhouette, serving as an

approximation to task difficulty and engagement in the construc-

tion process (left). We also observed strong effects in the

lateral occipital cortex for (absolute) changes in the number of

building blocks between consecutive silhouettes (peak MNI

[�26 �94 14], tpeak = 6.08, peak MNI [38 �88 16], tpeak = 7.78).

In this and all following imaging analyses, we controlled for

shape (pixel) and size overlap effects as potential visual con-

founds in our analyses. We did not detect any significant effects

for differences in pixel overlap between visual silhouettes, but we

found effects for size differences in the superior parietal cortex

(peak MNI [10 �68 46], tpeak = 4.74) and medial frontal gyrus

(peak MNI [30 16 46], tpeak = 4.74). All effects are cluster-cor-

rected at p < 0.001. This suggests that the component building

blocks are reflected in visual activity over and above the basic vi-

sual properties of the silhouette.

Compositional and relational neural representations in
themedial prefrontal cortex and hippocampal formation
Our task design allowed us to go further than probing the effects

of visual processing and to investigate neural representations

that facilitate the internal construction of the object from its

component parts—an instance of compositional reasoning.36–38

Specifically, our key hypothesis concerned the neural represen-

tations of building blocks in specific relational configurations that

can be generalized across different stimuli, such as knowing

what it means for an object to be on top of other objects. Such
a representation implies neural patterns that encode specific

conjunctions of a given building block in a given relational posi-

tion, for example, a building block on top of but not below

another building block. Such conjunctive representations can

be flexibly combined, such as adding W (W on top of something)

to X (X below something), together providing a neural code for the

composed object W
X (note that these are spatial relations of

blocks, not fractions).

Critically, this allows us to predict specific relational configura-

tions of building blocks, using representations of other configu-

rations in a ‘‘silhouette algebra,’’12 as illustrated in Figure 3A

(see Figure S3 for all trials). For example, given building blocks

WXYZ, silhouette algebra says W
X -- Y

X +
Y
Z = W

Z . Notably, we can

perfectly control for the building blocks that are used by asking

that the left-hand side of the equation predicts W
Z (target) but

not Z
W (reference) that uses the same blocks. Such a representa-

tion is compositional—it uses the same representations to

encode the blocks in different constructed silhouettes—but

also conjunctive as these representations differ depending on

the relational position of the blocks.

We used searchlight representational similarity analysis

(RSA)40 to assess whether terms on the left-hand side (silhouette

algebra) are more similar to the target than the reference (Fig-

ure 3B; see STAR Methods). Across the two hierarchical levels,

this silhouette algebra analysis predicted voxel-wise patterns

in the mPFC (peak MNI [41 78 46], tpeak= 4.67, p = 0.045 based

on a cluster-mass family-wise error (I)-corrected whole-brain

non-parametric permutation test, Figure 3B). We found that

these effects are stronger for the non-hierarchical silhouettes

alone in the mPFC (peak MNI [40 76 42], tpeak = 5.35, p = 0.022

based on a cluster-maIFWE-corrected whole-brain non-para-

metric permutation test) and also in the anterior HC, extending

into the entorhinal cortex (peak MNI [29 51 21], tpeak = 4.69,

p = 0.028 based on voxel-wise FWE-corrected non-parametric

permutation test corrected for the bilateral hippocampal forma-

tion), as shown in Figure 3B (right). The latter finding is closely

aligned and highly overlapping with recent findings that transla-

tions in abstract stimulus space can predict representations of

stimuli in the anterior HC.41 We did not detect significant effects

for a hierarchical silhouette algebra alone.

This suggests that the mPFC and anterior HC support repre-

sentations that reflect the building blocks in their correct config-

uration. Previous work has also highlighted representations in

the mPFC and HC when constructing novel items.39,42 Specif-

ically, this work has found a critical involvement of the mPFC

and HC in evaluating novel food items, such as ‘‘tea jelly’’ built

out of ‘‘tea’’ and ‘‘jelly.’’ A central difference to the algebra anal-

ysis reported above is that a tea jelly neural code does not differ-

entiate between different relational embeddings of the individual

building blocks that were used to construct a specific food item.

We tested for an analogous tea jelly representation in our

compositional construction task by disregarding the individual

relational positions of individual building blocks in a compound

and simply using the overlap of individual building blocks across

silhouettes as a measure of similarity instead. This can be

thought of as the ‘‘input’’ to a given construction problem, reflec-

tive of the relevant building blocks used in a given construction
Cell 186, 4885–4897, October 26, 2023 4887



Figure 2. Neural effects of visual processing

(A) In the fMRI-scanner, subjects saw a silhouette for a short period of time and were instructed to infer a plan for the construction of that silhouette. Sometimes

trials were followed by a catch trial, in which subjects had to indicate whether blocks were part of the construction of the previous silhouette.

(B) In the scanner, subjects received (known) basic building blocks (first row), hierarchical building blocks (second row), or novel and previously unseen com-

pounds as construction trials. The novel compound silhouetteswere either built with two basic building blocks on top of each other (third and fourth row) or beside

each other (fifth and sixth row) or with two hierarchical building blocks on top (seventh and eighth) or beside (ninth and tenth) each other.

(C) We found that activity in the lateral occipital, superior parietal, and precentral gyrus covaried with the number of elements in a compound, providing an

approximation to construction difficulty (left). We also found effects for (absolute) changes in the number of elements between consecutive silhouettes in the

lateral occipital cortex (middle). We did not detect any significant effects for differences in visual shape (pixels) but detected effects in superior parietal and frontal

cortex reflecting differences in size between the individual silhouettes.
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problem. To ensure consistencywith earlier approaches, we em-

ployed cross-stimulus fMRI adaptation.43,44 Here, compositional

tea jelly representations predict stronger suppression effects for

silhouettes (i.e., transitions between silhouette-trials) that share

the same compared with different building blocks.

Previous reports of such construction effects have been based

on valuation tasks.39,42 By contrast, our task involves a construc-

tion paradigmwith no valuation component. Despite these differ-

ences, we found repetition suppression effects for these ‘‘input’’

representations in overlapping neural structures, particularly in

the mPFC (Figure 3C, red: compositional representations under-

lying construction, green: effects from Barron et al.39; Figure 2C;

peak MNI coordinates voI-wise FWE-corrected and masked by

effects of Barron et al.39: [2 52 16], tpeak = 3.91, p = 0.037).

Temporal characteristics of compositional construction
Our fMRI data support the view that compositional inference

engages the hippocampal-prefrontal circuitry. They further
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show that in these brain regions, representations for construc-

tion share similarities with those implicated in planning, evalua-

tion,39,42 and spatial reasoning.8 This opens up the possibility

that mechanisms known to represent possible futures in these

planning contexts might also underlie hypothesis testing about

possible presents.

One such mechanism is replay.28,29 In rodents solving spatial

tasks, hippocampal cells signal the current location of the ani-

mal, but during rest45 and planning,46,47 they transiently signal

sequences of remote locations. It is suggested that at least

some of these events signal a roll-out of a model of the world

to predict possible futures and enable choices.30,31,48 Recently,

we and others have developed tools tomeasure such sequences

non-invasively in humans, using magnetoencephalography

(MEG),49,50 and shown that they share many properties with ro-

dent replay. We therefore designed anMEG experiment to probe

the temporal dynamics and potential mechanisms underlying

generative and compositional inference.



Figure 3. Construction inference is relational and compositional

(A) We designed an analysis to test for generalizable representations of individual building blocks in specific relational positions by performing algebraic op-

erations with neural representations for different silhouettes. For given building blocks WXYZ, the silhouette algebra predicts that W
X � Y

X +
Y
Z = W

Z (note these are

spatial relations of blocks, not fractions). Under a conjunctive representation, the algebraic term on the left should be predictive of the actual silhouette with

building block W on top of building block Z (target) but not of a silhouette with building block Z on top of building block W (reference).

(B) Left: we tested in which brain regions such algebraic terms are predictive of target silhouettes but not reference silhouettes, using RSA, where we assessed

whether the distance (defined as 1-correlation between activity patterns) between algebraic terms and target silhouettes is smaller than between algebraic terms

and reference silhouettes (see STARMethods for details). Right: we found significant effects inmPFC and the anterior hippocampus, extending into the entorhinal

cortex, suggestive of a conjunctive representation of building blocks in specific relational positions.

(C) Using repetition suppression, we probed the neural representations encoding for individual building blocks in a given construction problem, using an approach

we reported in previous work when subjects had to imagine and evaluate novel food items.39 In regions encoding such representations, we expect higher

suppression for transitions between silhouettes that share building blocks than transitions of silhouettes that use different building blocks. As predicted, we found

the strongest suppression effects in themedial prefrontal cortex (red), highly overlapping with representations underlying the construction and evaluation of novel

food items reported earlier (green, Barron et al. 39; Figure 2C).
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Twenty human subjects were pre-trained on a construction

task over 2 consecutive days (Figure 4A). This task was similar

to the task used in the fMRI above but with two key differences.

First, to optimize MEG decoding, we only had four building

blocks and endowed each building block with a unique texture.

This meant we could not have a hierarchical version of the task,

which would require more than four blocks. Second, one of the

four building blocks was present in every silhouette (‘‘stable’’).

This was included to introduce asymmetry into possible plans,

which allowed us to define the directionality of replay akin to for-

ward and backward sequences.50,51 Here, these different direc-

tions translate into replay starting from the stable or present

building blocks, as this asymmetry offers a natural way of con-

straining the hypothesis testing process.

After 2 days of training, in which performance gradually

improved (Figure 4B), subjects participated in the MEG experi-

ment (see Figure 4C). The MEG task started with a functional lo-

calizer to train binomial classifiers on the individual building

blocks. This was followed by six task sessions in total, where

subjects played the same task as during training on (initially)

novel silhouettes. Every trial in the task had three phases: ‘‘infer-

ence,’’ ‘‘probe,’’ and ‘‘question.’’ During the inference phase,

subjects were presented with a silhouette and had to infer its

relational configuration. During the probe phase, subjects were
presented with two building blocks out of the previous silhouette

and had to find the relation between these blocks in the previous

silhouette. In the question phase, subjects were probed about

this relation. During the experiment, subjects displayed high ac-

curacy in their performance (mean reaction time: 836 ms, pro-

portion correct: 0.92) with a substantial improvement over time

(Figure 4D).

Our first analysis examined the representational content in the

MEG sensors during the inference phase. As in the fMRI, we hy-

pothesized that the MEG sensors would contain representations

related not only to the visual appearance of the silhouette but

also to the relational configuration of the inferred building blocks.

Because of the always-present block, and because every silhou-

ette has three building blocks, we could not perform the perfectly

controlled algebraic analysis (where target and control consist of

the same blocks in different relational positions). However, a

proxy for this analysis is to test whether representational similar-

ity across silhouettes is predicted by how many times the same

building block appears in the same relational position in the two

stimuli (Figure 4A). We performed RSA over time in the MEG

data.52 For every trial and at any given time point, we assessed

the empirical similarity of sensor representations. We regressed

this empirical similarity matrix against predictions from the

relational representation and from the visual similarity of the
Cell 186, 4885–4897, October 26, 2023 4889



Figure 4. MEG task

(A) The task consisted of an inference and probe phase. During inference, subjects were presented with a silhouette and had to infer its relational composition.

During probe, subjects were presented with two building blocks and were asked to indicate the relation between these two building blocks in the previous

silhouette, if any.

(B) Subjects’ performance on the task improved over time.

(C) The MEG experiment started with a functional localizer, where subjects observed individual building blocks with different textures (wood, concrete, steel, or

bricks) on the screen. Intermittently, they received a probe question. The functional localizer was followed by a rest session, followed by three task sessions. The

task was identical to training, except that we included an additional probe time window in which subjects were asked to infer the relation between two building

blocks but could not yet indicate a response. The three task sessionswere followed by another rest, followed by another three task sessions and a final rest session.

(D) Subjects’ performance again improved over time, such that the proportion of correct responses increased, and reaction times decreased, with ongoing task

experience.

(E) In the MEG experiment, one building block was always present in every silhouette (stable, highlighted in red for an example stimulus set, see Figure S4 for all

used stimuli), whereas two out of the remaining three had to be inferred (present) and one building block was absent.

Shaded colored areas reflect standard errors.
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silhouettes (size and shape overlap, Figure 5B), acting as con-

trols for the configural regressor. From 200 to 1,000 ms post-

stimulus onset, there were strong independent effects of all three

regressors in the MEG signal (particularly for shape and config-

ural representations, Figure 5). While not as cleanly controlled

as the fMRI data above, this suggests that the MEG data are

also sensitive to both the visual and configural representations.

Rapid neural sequences during compositional inference
Next, we asked whether replay plays a role in compositional

inference. That is, whether hypothesized constructions were
4890 Cell 186, 4885–4897, October 26, 2023
evident in rapid sequences in the MEG data. Recent work has

shown that it is possible to measure replay in human MEG

data.49,50 For example, recent studies have shown that when

planning a trajectory through a discrete state space49 or resting

after learning a sequence of pictures,50 individual items are re-

played in sequences with a 40-ms time lag, reminiscent of

sharp-wave ripple activity.28,53

We trained classifiers on building block identity, using the

functional localizer data in the beginning of the experiment (see

Figure S5 for sensor distributions of the classifier weights). In

line with previous reports, we found that class identifiability



Figure 5. Conjunctive representations akin to the silhouette algebra from Figure 3B over time using RSA

(A) Left: we defined a theoretical similarity reflecting the overlap of building blocks in specific relations across silhouettes, and we tested whether this similarity

predicts empirical similarities of MEG sensor patterns across trials and time points. Right: we found a significant conjunctive representation, reflecting repre-

sentations of silhouettes according to their constituent building blocks in specific relations, during a confined timewindow of 200–1,000ms in the inference phase

(significance assessed using a non-parametric permutation test, see STAR Methods for details).

(B)We also found effects for shape (pixel) and size representational overlap during a similar timewindowduring inference but with a slightly earlier onset. Note that

the purple line in (A) and (B) are the same.

Shaded colored areas reflect standard errors, and dotted lines reflect the statistical threshold obtained from a sign flip permutation test.
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peaked at 200 ms after stimulus onset (Figure 6A left and mid-

dle), and the classifiers displayed high specificity for identifying

the correct building block when trained at that time (Figure 6A

right; see STAR Methods). We used these classifiers in linear

modeling54 to test whether reactivations of these representa-

tions occurred in specific (pairwise) orders and at specific time

lags during inference.

Importantly, one (stable) building block was present in every

silhouette. This meant that subjects could use this knowledge

to constrain possible configurations (see below and Figure 4E).

Each silhouette used two from the remaining three building

blocks. On each trial, these two (present) building blocks were

different and arranged in different configurations. This left out

one (absent) building block in every trial that was not present in

the silhouette (note the present and absent building blocks

differed across silhouettes). In some trials, the stable block

was connected to both present blocks. In other trials, the stable

blockwas connected to one of the present blocks, and therewas

also a connection between the two present blocks (Figure 6B;

see also Figures S4B and S4C).

To establish whether neural sequences exist, we first exam-

ined sequenceness from stable and present blocks to their con-

nected neighbors. We initially focused on the inference period,

after elapse of the first 500ms to avoid contamination from basic

visual processes. We found little evidence for sequenceness

starting from the stable building block but strong evidence of se-

quenceness starting from present building blocks (Figure 6C;

see STAR Methods). Note that the x axis in Figure 6C is the tem-

poral lag—the time difference between representations that form
a sequence. This effect was significant at a broad range of tem-

poral lags between 30 and 200 ms but had pronounced peaks at

60 and 170 ms—two time lags that correspond to reports in the

previous human replay literature.49–51

Understanding the computations executed in replay requires

an examination of how the content of replay changed throughout

the inference period. We therefore designed a moving-window

analysis where we averaged over (10–200 ms) temporal lags.

We computed this average sequenceness in 1-s windows

centered at every 10ms in the inferenceperiod.Hence, unlike Fig-

ure 6C, the x axes in Figures 7A–7D refer to the time in the infer-

enceperiod, not the temporal lagwithin the sequence. Todemon-

strate this method, Figure 7A shows the difference between

sequences that start with present compared with those that start

with stable. This is the same difference shown in Figure 6C but

now measured at different times in the inference period. Here,

the effect in Figure 6C is revealed as a significant cluster covering

the time range 260–1,660 ms (cluster-corrected p < 0.05; see

STARMethods). This demonstrates sequences of building blocks

during the inference period, which are constrained by the struc-

ture of the task in a way that guides relational inference, suggest-

ing replay as a candidate mechanism of relational inference.

Also of note is a strong early negative effect (see also Fig-

ure S6). Thismight indicate a short very early periodwhere replay

emanates from the stable blocks but more likely is a confound:

unlike all other blocks, the stable block can be predicted before

the onset of the stimulus. Any later activation of other blocks

(when the stimulus appears) will be measured as a forward

sequence (as it comes after the pre-stimulus representation
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Figure 6. Neural replay in construction inference

(A) We found peak decoding accuracy for building blocks in the localizer at 200ms (left andmiddle) and high-class identifiability for the different building blocks for

the classifiers trained at 200 ms (right).

(B) In every silhouette, one building block was stable across silhouettes, two additional building blocks were present, and one building block was absent. This

allowed us to define different types of sequences to (green) and from (red) the stable building block as well as between the present (purple) and absent (cyan)

building blocks.

(C) We investigated effects of neural replay for sequences starting either from the stable or the present building blocks. We found a short (non-significant)

predominance of sequences starting from the stable building block for very early lags, followed by a predominance of sequences starting from the present

building blocks at later lags with pronounced peaks at 60 and 170 ms.

Shaded colored areas reflect standard errors.

See also Figure S4.
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stable, see Figure S7). We therefore refrain from interpreting this

peak here and in all later graphs.

Replay as generative hypothesis construction
Our task structure confers a clear optimal strategy for sequential

hypotheses, as the stable block constrains what solutions are

actually possible. Subjects should begin the construction pro-

cess by testing the stable block with all other candidate blocks.

Once the neighbor(s) of the stable block is (are) resolved, the

final step is to resolve any remaining connections between the

two present blocks. Replay followed exactly this progression

(Figures 7B and 7C). The earliest sequences in the inference

period all proceeded toward the stable block and did not distin-

guish between present (180–1,620 ms), distant present (i.e.,

present but unconnected to stable, 170–1,680 ms), and absent

(190–1,580 ms) blocks (blue and green lines in Figure 7B—note

that these two analyses are orthogonal, and the blue, yellow,

and green lines are independent measurements). Sequences

that did not involve the stable blocks emerged later (260–

1,650 ms) and only involved the present blocks (Figure 7C, pur-

ple/dark green line; note present-to-present sequences in pur-

ple are shown in Figures 7B and 7C to allow visual comparison
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of timings). Finally, at the end of the inference period, se-

quences to the stable block re-emerged, but these were only

those involving the correct present blocks (1,590–3,500 ms,

Figure 7B).

Note that Figures 7B and 7C show individual sequenceness

effects, rather than differences between sequences (as in Fig-

ure 7A). This implies that a positive sequenceness effect implies

higher reactivation probability of a certain building block after

another block, such as the stable building block after the present

building block. Likewise, a negative effect implies inhibition of a

certain building block after another block, such as the absent

building block after the present building block in Figure 7C.

In line with prior work,50 we also investigated evidence for

length-3 replay between building blocks in a configuration.

This implies testing whether a particular sequence between

two building blocks (A to B) predicts the sequence to a third

building block C, while controlling for all other possible

length-3 and length-2 sequences. We indeed found evidence

in favor of length-3 sequences, such that sequences between

present building blocks were predictive of a subsequent repre-

sentation of the stable building block. Specifically, we found sig-

nificant effects for length-3 sequences from [‘‘present’’ to



Figure 7. Generative neural replay underlying

hypothesis testing over timescales of online

computation

(A) We investigated the difference between se-

quences starting either from the stable or the pre-

sent building blocks for different time intervals of the

inference period, and we found a brief early pre-

dominance of replay starting from the stable build-

ing block followed by a predominance of replay

starting from the present building blocks (260–

1,660 ms) during inference.

(B) We assessed the individual contributions of the

different types of neural replay to these differences

and found an unspecific predominance of se-

quences from the present (180–1,620 ms), distant

present (the present block that is unconnected to

stable, 170–1,680 ms), and absent (190–1,580 ms)

building blocks to the stable building block early

during inference, as well as a specific effect from

present to the stable building block late (1,590–

3,500 ms) in inference shortly before subjects

entered the decision phase of the task.

(C) We found a selective predominance of replay

between present building blocks over replay be-

tween present and absent building blocks in a time

window between 260 and 1,650 ms.

(D) We also tested for length-3 replay effects using

this sliding window approach. This implies testing

whether a specific transition between two building

blocks predicts the transition to a third building

block, while controlling for all possible length-2 and alternative length-3 transitions. Using this approach, we found significant effects for length-3 replay reflecting

sequences from [present to present] to stable (100–1,650 ms), [distant present to present] to stable (110–1,800), and [present to distant present] to stable (130–

1,590 and 2,080–3,420 ms).

Shaded colored areas reflect standard errors.

See also Figures S4, S6, and S7.
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‘‘present’’] to ‘‘stable’’ (100–1,650 ms), [‘‘distant present’’ to

‘‘present’’] to ‘‘stable’’ (110–1,800), and [‘‘present’’ to ‘‘distant

present’’] to ‘‘stable’’ (130–1,590 and 2,080–3,420 ms).

Unlike the initial negative effect indicating sequences from sta-

ble to present that are likely caused by prior expectations about

the presence of the stable building block, the subsequent se-

quenceness effects are not caused by purely representational

differences of the present building blocks. In fact, when investi-

gating the time courses of the classifiers for the stable, present,

and absent building blocks, we see an early peak for the stable

followed by (simultaneous) peaks for the present and absent

building blocks before all classifiers return back to baseline

(see Figure S7A). This implies that there is no specific temporal

profile of those reactivation probabilities that could cause the

above sequenceness effect, except for the initial negative effect

in Figure 6E. Rather, these classification profiles are in line with

our proposal of a hypothesis testing mechanism that simulta-

neously resolves uncertainty about the candidates, and our re-

sults indicate replay as a neural mechanism underlying these

computations.

Taken together, these results indicate a role for replay in con-

strained hypothesis generation. Replay followed the optimal

strategy for hypothesis generation, starting with unspecific se-

quences to the stable block, proceeding to infer connections be-

tween present blocks, and converging on sequences that only

include correct blocks.
DISCUSSION

The hippocampal formation and PFC contribute to scene

perception,15–17,21,22 the instantiation of a cognitive map during

spatial and conceptual navigation,55–59 and model-based plan-

ning in RL.1–4 A key problem underlying these functions is

learning an efficient representation of the state space and its

relational structure that deals with the considerable complexity

of naturalistic problems and enables generalization of knowl-

edge to novel instances. We identified neural replay in the HC-

PFC circuit as a candidate mechanism of generative hypothesis

testing during such flexible inference.

Prior work has highlighted the importance of mPFC and hippo-

campal representations in the construction of novel compounds

such as tea jelly out of known compounds such as tea and jel-

ly.39,42 We detected representations in mPFC that reflect the

use of a building blocks in a given compound irrespective of its

relational embedding, highly overlapping with tea jelly represen-

tations reported earlier.39 Such representations are predicted

under a ‘‘factorized code,’’7,8 i.e., a representation of basic sen-

sory building blocks that can be flexibly combinedwith structural

knowledge to form novel conjunctive representations. It is an

important challenge to understand how such structural or rela-

tional knowledge itself is represented efficiently, such that it

can be flexibly inferred60 and adjusted to novel contexts, akin

to a basis set for structural reasoning.61
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Based on the involvement of the hippocampal-prefrontal cir-

cuit, we reasoned that generative replay provides a candidate

mechanism for flexible construction. Generative replay refers to

the hypothesis that replay reflects sampling from a generative

model of the world to facilitate inference,32,33,62 enable general-

ization,63 and train a recognition model,34 providing a core

mechanism for active hypothesis testing. In line with this hypoth-

esis, we detected replay during constructive hypothesis testing.

Replay sequences revealed an unspecific predominance for se-

quences in the direction of the fully predictable building block

early during inference but a specific effect for replay from the

correctly inferred present building blocks toward the predictable

building block late during the inference period. We also detected

more sequences linking correctly inferred present building

blocks than sequences linking present and absent building

blocks later during inference. These results suggest that gener-

ative replay may underlie hypothesis testing, with the results of

this computation becoming increasingly refined as inference

proceeds.

Our findings align with previous reports suggesting a role for

replay during planning49 and learning64 in non-spatial problems,

as well as evidence from recordings in animals suggesting that

replay can explore novel trajectories.30,48 More broadly, our find-

ings accord with notions that generative replay provides amech-

anism for efficiently learning and sampling from a generative

model of the world,32,65 in line with a crucial role of replay in plan-

ning66,67 and structure learning.68

In conclusion, we developed a paradigm to probe the neural

mechanisms that underlie compositional reasoning. In close

alignment with neural representations subserving both naviga-

tion and model-based RL, we found conjunctive representations

in the hippocampal formation and PFC that flexibly generalize

knowledge about relations between objects in a compound

configuration. Further, we identified generative neural replay as

a candidate mechanism underlying gradual hypothesis testing

in construction problems. Together, these results provide insight

into efficient neural representations that enable flexible general-

ization, supporting the hypothesis of a shared neural code un-

derlying navigation, model-based RL, and compositional infer-

ence based on a cognitive map of task structure.

Limitations of the study
In contrast to Barron et al.,39 we did not detect above threshold

representations for individual building blocks in the HC, nor did

we detect evidence for a purely relational code in the hippocam-

pal formation or elsewhere. This negative result may be ex-

plained by the high degree of efficiency that participants

obtained during 2 days of training prior to the scanning experi-

ment. Participants may have strongly relied on a sequential

mode of conjunctive processing (building block X below, build-

ing block Y on top, building block Z right of that, .) rather

than an initially factorized representation that is subsequently

conjoined (like Barron et al.39). Consequently, it would be of

much interest to investigate the formation and change of the rep-

resentations underlying these computations over the course of

training.

We did not find significant replay effects during the probe

phase (although the effects had similar tendencies), nor any
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other significant effects for task-based computations during

the probe phase (Figure S7B). While we cannot draw conclu-

sions from this null result, these effects are in line with our inter-

pretation of replay being specifically involved in computations

resolving uncertainty about a present configuration. Similar to

prior work,49 we did not find a significant relationship between

replay strength and performance, such as reaction times or the

proportion of correct responses (see STAR Methods). One

possible explanation for the lack of such a relationship might

again be the over-training of participants, such that their perfor-

mance was already close to ceiling when entering the scanner

(see Figure 4D). This raises the intriguing question about a

possible relationship between replay strength and performance

during task learning.

Another limitation concerns the lack of a computational pro-

cess model of generative and compositional inference as

discussed here. Such a process model would be particularly im-

pactful in making predictions for neural representations underly-

ing more complicated compositional algebras. Owing to the lack

of such a process model, we studied simpler and clearly defined

compositions. Future work should bridge this gap and develop

computational models that can solve such tasks with composi-

tional representations to study the underlying neural representa-

tions in more complex environments.

By using non-invasive imaging techniques, we rely on indirect

measures that limit our ability to make claims about the specific

involvement of different brain regions or the origins of the genera-

tive replay signals. To understand the specific interplay of regions

in the hippocampal formation and PFC underlying compositional

inference, it would be crucial to obtain direct neural recordings.

We believe that we have laid important groundwork for pursuing

such investigations, based on our complex yet intuitive paradigm

and our findings suggesting generative replay and a prefrontal-

hippocampal involvement in compositional inference.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

fMRI task
30 subjects (25 females, mean age: 22.9, range: 19-33) participated in behavioural training and a subsequent fMRI experiment. Addi-

tionally, we scanned two pilot subjects and one subject did not participate in the fMRI part of the experiment after the behavioural

training. All subjects were recruited from the UCL psychology subject pool, had no history of neurological or psychiatric illness and

had normal or corrected-to normal vision. All subjects gave written informed consent and the study was approved by the UCL ethics

committee (ethics code: 11235/001).

MEG task
20 subjects (15 females, mean age: 25.4, range: 20-36) participated in the behavioural training and subsequent MEG experiment. We

scanned two pilot subjects prior to the experiment and one subject had to be excluded from the analysis due to impaired vision. All
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subjects were recruited from the UCL psychology subject pool, had no history of neurological or psychiatric illness and had normal or

corrected-to normal vision. All subjects gave written informed consent and the study was approved by the UCL ethics committee

(ethics code: 11235/001).

METHOD DETAILS

fMRI task
Training and fMRI task

Subjects completed two tasks during behavioural training on two consecutive days. Initially, subjects completed four sessions (50 tri-

als each) of the construction task on the first day of training. Subjects were instructed that in this and every subsequent construction

task, every building block could only be used once for a given silhouette and that they had to find a solution using the minimum num-

ber of building blocks, allowing precise experimental control over the correct solutions that subjects had to infer. In this version of the

training, there was no time restriction, and subjects familiarised themselves with the task contingencies. In every trial, subjects were

presented with the nine basic building blocks at the top of the screen and saw a target silhouette at the bottom left. They then had to

construct the target silhouette by selecting the correct building blocks and moving them around on the screen using a computer

keyboard, being instructed that a construction would only be marked correct if they found a solution with the minimum number of

elements. Further, every building block could only ever be used once. Silhouettes increased in size and complexity over the course

of training. On the second day of training, subjects had to solve five sessions (70 trials each) of a similar task, but this time only select

the correct building blocks without actually constructing the silhouette. This version of training had a time restriction, such that sub-

jects had 6 seconds to infer a construction plan for a given silhouette followed by 6 seconds to select the correct building blocks. This

task was designed to train subjects on the rapid mental construction of a silhouette that was required in the fMRI. In both tasks, sub-

jects received feedback at the end of a trial indicating whether the construction or selection was correct, and they received 3 pence

per correct answer in the second version of the training task.

To test whether flexible constructive inference extends across different hierarchical levels, we added an additional layer to the task.

With ongoing experience, subjects could learn that larger silhouettes can often be decomposed into smaller recurring chunks, which

are themselves built using two basic building blocks (Figure S1A). Thus, subjects were implicitly exposed to a set of ‘hierarchical’

building blocks, which facilitated an efficient decomposition of larger silhouettes. Analysis of participants’ behaviour on the second

day of training provided evidence that when constructing larger silhouettes, subjects indeed chose ‘hierarchical’ building blocks

more often than predicted by chance. Large silhouettes usually had more than one solution, not all of them required the usage of

hierarchical building blocks. We probed how often participants relied on hierarchical chunks when constructing a silhouette

compared to other available solutions that do not rely on such hierarchical building blocks (Figures S1B and S1C). We found that

participants relied significantly more often on using such hierarchical chunks than a random agent (observed mean proportion of ‘hi-

erarchical’ solutions: 0.6 (std=0.09), random mean proportion of ‘hierarchical’ solutions: 0.49 (std=0.03), tmean difference(30)=6.9499,

p < 0.01). Note that this analysis does not rely on the analysis of building block selection order, which is contaminated by the spatial

proximity of building blocks within hierarchical chunks. Rather, we focus on silhouettes that can be decomposed in different ways,

and analyse how often participants found a solution based on a hierarchical compared to a non-hierarchical decomposition.

To impose hierarchical learning, we gradually introduced hierarchical building blocks into the training regime. In the first two

training sessions of training day 1, subjects only had to construct silhouettes consisting of two building blocks. 27 of these 50 silhou-

ettes in each session were hierarchical building blocks (3 trials per hierarchical building block) as illustrated in Figure 2B (second row).

In the next two sessions of the construction task, subjects received larger silhouettes that often contained one or two hierarchical

building blocks (third session: 18 hierarchical building blocks, 18 silhouettes with one hierarchical building block and one extra

basic building block; fourth session: 18 silhouettes consisting of two hierarchical building blocks and 18 silhouettes with one hierar-

chical building block and one extra basic building block). Of the 70 trials in every session of the second training task, 24 where sil-

houettes that consisted of two hierarchical building blocks.

In the fMRI experiment, subjects had to solve a similar task to the second training task. Here, subjects were presentedwith a silhou-

ette for 2 seconds and were tasked to mentally construct this silhouette. In 90% of trials, this was followed by a fixation cross for

1 second before presenting the next silhouette. In 10% of the trials, the silhouette was followed by a probe trial. In this probe trial,

subjects were shown one or two basic building blocks and askedwhether this/these building block/s can be used for the construction

of the previous silhouette. Subjects had 2 seconds to respond ‘yes’ or ‘no’ via button press and received 20 pence for every correct

answer. Every session in the scanner consisted of 288 trials in total, and subjects completed three sessions. In half of these trials,

subjects were probed on a silhouette that either consisted of two basic or hierarchical building blocks (two repetitions per silhouette),

combined with ‘on-topness’ or ‘besideness’ (i.e., one building block is on-top or left/right of another building block). In the other half

of the trials, subjects were presented with one of the nine basic or hierarchical building blocks (eight repetitions per building block). In

order to minimise effects of visual overlap of individual building blocks with silhouettes using these building blocks on the screen, the

individual building blocks were presented at various locations throughout a session (twice at the top/bottom/left/right of the screen).

After the fMRI task, we assessed subjects’ individual similarity judgements about silhouettes that were presented in the scanner.

To do so, subjects completed two sessions consisting of 120 trials in total, where they were presented with a target silhouette in the

top middle of the screen and had to judge whether this target silhouette was more similar to a silhouette presented at the bottom left
Cell 186, 4885–4897.e1–e7, October 26, 2023 e2
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or right. Subjects had 6 seconds to make this judgement, followed by a 1 second inter-stimulus interval. In half of these 120 trials

subjects were probed about silhouettes using basic building blocks and half of trials consisted of silhouettes using hierarchical build-

ing blocks. In the first of these two sessions subjects were instructed to focus on visual similarity, while in the second session subjects

were instructed to focus on ‘construction similarity’ (‘which silhouette is more similar in terms of how you would construct them?’).

fMRI data acquisition

fMRI data was acquired on a 3T Siemens Prisma scanner using 32 channel head coil. Functional scans were collected using a T2*-

weighted echo-planar imaging (EPI) sequence with a multi-band acceleration factor of 4 (TR = 1.450 s, TE = 35 ms, flip angle = 70

degrees, voxel resolution of 2x2x2mm). A field map with dual echo-time images (TE1 = 10ms, TE2 = 12.46ms, whole-brain coverage,

voxel size 2x2x2mm)was acquired to correct for geometric distortions due to susceptibility-induced field inhomogeneities. Structural

scans were acquired using a T1-weighted MPRAGE sequence with 1x1x1mm voxel resolution. We discarded the first six volumes to

allow for scanner equilibration.

MEG task
Training and task

Subjects completed two tasks during behavioural training. Initially, subjects completed two sessions of a construction task (50 trials

each) of the same structure as in the beginning of the training for the fMRI task. In this task subjects only had four different building

blocks available to construct silhouettes. After two sessions of the construction task, subjects were trained on a second version of the

task that required them to make judgements about the relational configuration of given silhouettes. Subjects saw a silhouette for

6 seconds and had to infer the relational positions of individual building blocks in the silhouette. This was followed by a question

screen lasting for 6 seconds, in which subjects were shown two building blocks and asked how they related to each other in the pre-

vious silhouette. Specifically, one of these building blocks was presented in themiddle of the screen and the other at the top left of the

screen, and subjects had to infer whether the building block in the top left was on-top, right, below, or left of the building block in the

middle of the screen. They also had the option to indicate that the two building blocks did not connect in the previous silhouette.

Subjects completed 3 sessions of this task on the first day and 5 sessions on the second day of training and received 5 pence for

every correct answer.

After being trained on the task for two consecutive days, subjects participated in an MEG experiment on the day after the second

day of training. In the scanner, subjects started with a resting session, in which subjects saw a fixation cross for 4 min and were in-

structed to maintain a state of wakeful rest. This was followed by a localiser screen for individual building blocks, which allowed us to

train classifiers to decode individual building blocks from sensor activity (see below). Subjects completed two sessions in which each

of the four building blocks was shown 25 times on the screen for 2 seconds. Subjects were instructed to focus on the building block

identity, and particularly its texture (bricks, concrete, steel, or wood). To ensure that subjects actively engaged with the task, 10% of

trials were followed by probe questions in which subjects had to indicate within 2 seconds via button press whether the previous

building block was made of bricks/concrete/steel/wood. These two localiser sessions were followed by three task sessions (48 trials

each). Subjects had to perform a task that was very similar to the training task where they had to infer the relation between two build-

ing blocks in a previous silhouette. In contrast to the training, the presented building blocks always connected to each other in the

previous silhouette, such that the ‘did not connect’ option was removed in the MEG task. In this task, subjects saw a silhouette and

had to infer a plan of its construction for 3.5 seconds, followed by a screen showing two building blocks out of the previous silhouette

for 3.5 seconds, in which subjects had to infer how one building block related to the other in the previous silhouette. Finally, subjects

saw a question screen for 1.5 seconds inwhich theywere presentedwith one of four possible relations (on-top of, right of, below of, or

left of) and had to indicate whether this was the relation they had inferred via button press (‘yes’ or ‘no’). In these question screens,

probe relations could either be presented as text written at the bottom of the screen or via a question mark at the corresponding

location (on-top, right, below, or left) of the building block presented in the middle of the screen to ensure that subjects process

both the semantic meaning and the actual use in the construction of the inferred relation. The three task sessions were followed

by another 4-min rest period, followed by another 3 task sessions and a final rest period.

MEG data acquisition

MEG was recorded continuously at 1200 samples/second using a whole-head 275-channel axial gradiometer system (CTF Omega,

VSMMedTech), while participants sat upright in the scanner. Subjects indicated ‘yes’ and ‘no’ responses in both the functional local-

iser and MEG task using a scanner-compatible button box.

QUANTIFICATION AND STATISTICAL ANALYSIS

fMRI task
We conducted a logistic regression to probe the influence of different silhouette characteristics on the similarity judgements. Spe-

cifically, for the small silhouettes we assessed the pixel overlap (defined as themaximum shape overlap of the two silhouettes across

all possible translations along the presentation grid), size overlap, relational overlap (0/1 for whether the silhouettes were built with the

same relation (ontopness/besideness) between the basic building blocks), and overlap of basic building blocks (BBs). For the large

silhouettes we assessed the pixel overlap (defined as above), size overlap, relational overlap (0/1 for whether the silhouettes were

built with the same relation (ontopness/besideness) between the hierarchical building blocks), overlap of basic building blocks,
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and overlap of hierarchical building blocks. We then computed the difference in those similarity measures between the left and right

candidate silhouette, and defined a logistic regression to assess the predictability of these similarities for choosing the left candidate

small silhouette:

pðchoose leftÞ =
1

1+e�ðb0+b1$Diffpixel+b2$Diffsize+b3$Diffrelation+b4$Diffbasic BBsÞ
And for large silhouettes:

pðchoose leftÞ =
1

1+e�ðb0+b1$Diffpixel+b2$Diffsize+b3$Diffrelation+b4$Diffbasic BBs+b5$Diffhierarchical BBsÞ
Group level statistics was then obtained by performing a one-sample t-test on the resulting regression coefficients (see Fig-

ure S1D). Investigation of the resultant regression weights indicated that similarity judgements were guided by basic visual similarity,

namely the shape (pixel, small silhouettes: bmean = 3:46 (std = 1.73), t = 10:21, p< 0:01, large silhouettes: bmean = 3:73 (std = 3.09),

t = 6:15, p< 0:01) and size overlap (small silhouettes: bmean = 1:16 (std = 1:22), t = 4:86, p< 0:01, large silhouettes: bmean = 1:06

(std = 2.49), t = 2:17, p = 0:04) of the candidate silhouettes with the target silhouette. Importantly, however, we also found that

the overlap of relevant building blocks (‘construction similarity’) accurately predicted similarity judgements. In small silhouettes

that were compounds of two basic building blocks, the overlap of basic building blocks predicted subjects’ similarity judgements

(bmean = 0:62 (std = 0.88), t = 3:55, p< 0:01), whereas in large silhouettes, the overlap of hierarchical building blocks was predictive

of those judgements (bmean = 1:39 (std = 1.79), t = 3:95, p< 0:01) (Figure S1D).

Pre-processing
All pre-processing steps and subsequent imaging analyses were performed with SPM12 (Wellcome Trust Centre for Neuroimaging,

http://www.fil.ion.ucl.ac.uk/spm). Functional images were corrected for signal bias and realigned to the first volume in the sequence

using a six-parameter rigid body transformation to correct for motion. Imageswere then spatially normalised bywarping subject-spe-

cific images to MNI (Montreal Neurological Institute) reference coordinates and smoothed using a 6-mm full-width at half maximum

Gaussian kernel. The RSA-analysis was performed on unsmoothed data before smoothing the resulting contrast estimates

(see below).

Repetition suppression analysis
We employed univariate repetition suppression analysis to test for compositional representations of individual building blocks within

a silhouette. To do so, wemodelled the onset of all objects on the screen as stick functions, and defined several parametrically modu-

lated regressors of interest to control for potential confound variables. In total, we defined four control regressors that account for

repetition suppression due to size or pixel non-overlap and change in the number of building blocks in a silhouette. Size non-overlap

was defined as the absolute difference in height and width of silhouettes, and pixel non-overlap as the maximum proportion of over-

lap of pixels of two silhouettes relative to their full ‘pixel-size’ subtracted from 1. We also added the number of building blocks in a

silhouette as an additional fourth control regressor. The effects for these control regressors are shown in Figure 2. Next, we defined

three building block non-overlap regressors that account for compositional representations, i.e., representations of individual build-

ing blocks within a silhouette. We defined a regressor that reflected the proportion of non-overlap of the basic building blocks in a

present silhouette with the basic building blocks of the previous silhouette (see supplementary information for an illustration). This

regressor only had a unique value for small silhouettes that did not consist of hierarchical building blocks. This is because there

was more than one solution of basic building blocks in large silhouettes (built with two hierarchical building blocks and four basic

building blocks). Consequently, we split up this regressor that reflected the non-overlap of basic building blocks into trials with small

(two basic building blocks) and large (two hierarchical building blocks, four basic building blocks) silhouettes. For large silhouette-

trials that had more than one basic building block solution, we computed the average of building block non-overlap weighted by

the different solutions for a given silhouette. In addition to those basic building block non-overlap regressors, we defined a hierar-

chical building block non-overlap regressor following the same logic but with hierarchical building blocks. Just as the regressor

for basic building block non-overlap in small silhouettes, the regressor for hierarchical building block non-overlap (in large silhouettes)

had only unique solutions. Finally, we defined three regressors that accounted for relational non-overlap. These regressors differen-

tiated between trials of silhouettes that used the same or a different relational operation (putting a building block on-top or beside

another building block) compared to the previous trial. We split this regressor into trials of small silhouette transitions (relational oper-

ation for basic building blocks), large silhouette transitions (relational operation for hierarchical building blocks), and transitions be-

tween small and large silhouettes. In order to make all these parametric regressors comparable, they were projected onto an interval

ranging from -1 to 1.

Because of the sensitivity of the blood oxygen level-dependent (BOLD) signal to motion and physiological noise, all GLMs also

included six motion regressors and their derivatives obtained during realignment, as well as 6 regressors for cardiac phase, 6 for res-

piratory phase and 2 for respiratory volume extracted with an in-house developed Matlab toolbox.70 Sessions were modelled sepa-

rately within the GLMs.
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To obtain the ‘tea jelly’-like compositional representation results (Figure 3C), we combined the effects for building block non-over-

lap with unique solutions, i.e., the basic building block non-overlap in small silhouettes and the hierarchical building block non-

overlap.

‘Silhouette algebra’ analysis
To test for the presence of a conjunctive code, we assessed the representational distance between algebra terms, target silhouettes

and reference silhouettes. We performed volumetric searchlight RSA40 based on a GLM approach similar to Hunt et al.71 Effectively,

we askedwhether we can predict empirical distances (defined as a 1 - correlationmetric) between activity patterns for algebra terms,

target silhouettes, and reference silhouettes by theoretical distances predicted by a conjunctive codewhilst controlling for visual con-

founds based on size and shape overlap. To do so, we first obtained individual coefficient estimates for all stimuli used in the fMRI

task based on a first-level univariate GLM on unsmoothed data. We then defined searchlights across every voxel including the 100

cortical voxels with smallest geodesic distance from the central voxel.72 Coefficient estimates in every searchlight were pre-whit-

ened. Both the searchlight definition and pre-whitening were based on adapted scripts from the RSA toolbox.69 We then defined

a representational distance metric (defined as 1-correlation) between algebra terms, target and reference silhouettes. To do so,

we first computed all possible algebra terms as shown in Figure S3. We then computed the distance to the respective target and

reference silhouette, resulting in a sparse representational matrix of size [(algebra terms + target silhouettes + reference silhouettes)

x 3 sessions] x [(algebra terms + target silhouettes + reference silhouettes) x 3 sessions]. To avoid any within-session similarity ef-

fects, we only computed and compared cross-session distances. Next, we tested whether this empirical representational distance

matrix could be predicted by a theoretical representational distance that reflects a conjunctive code as shown in Figure 3B. For every

searchlight, we computed a GLM to assess the prediction of the empirical representational distance matrix based on a conjunctive

representation, whilst controlling for two additional theoretical distances based on the shape and size of the objects. This ensured

that any shared variance between conjunctive and visual confound representationswas removed, and resulted in a single conjunctive

representation map per subject. These coefficient maps were smoothed using a 5mm FWHM kernel in line with a recent study based

on a similar approach.73

Multiple comparison correction
To assess statistical significance on the group-level for conjunctive representations, we performed family-wise error (FWE) corrected

sign-flip permutation tests74 using PALM75 either using a pre-defined ROI of the hippocampal formation based on the Juelich

anatomical atlas76,77 or in a more exploratory whole-brain approach. Coefficient values of every subject were randomly multiplied

by 1 or -1 based on the null-hypothesis that these coefficient values are symmetrically distributed around 0. To create a null distri-

bution of the means this process was repeated 5000 times, and the true value was then compared to this null distribution. On the

whole brain level, we used a maximum cluster mass statistic74 for FWE correction based on a cluster forming threshold of p < 0.001.

MEG task
MEG data preprocessing

The preprocessing protocol closely followed a recently published study.50 Data were resampled from 1200 to 100 Hz to improve

signal to noise ratio and high-pass filtered at 0.5 Hz using a first-order IIR filter to remove slow drift. Subsequently, an ICA

(FastICA, http://research.ics.aalto.fi/ica/fastica/) was performed to decompose the data into 150 temporally independent compo-

nents and their corresponding sensor topographies. Artifact components were identified using automated inspection based on

spatial topography, time course, kurtosis of the time course and frequency spectrum. Eye-blink artifacts can be identified based

on high kurtosis (>20) and mains interference based on a low kurtosis and a frequency spectrum dominated by 50 Hz line noise.

Based on these definitions, artifacts were rejected by subtracting them out of the data. Epoched data from the functional localiser

and inference period during the MEG task was baseline-corrected by subtracting the mean sensor activity 100ms before stimulus

onset from the data. Subsequent analyses were performed directly on the filtered, cleaned MEG signal in units of femtotesla on

the whole-brain sensor level.

RSA

We performed GLM-based representational similarity analysis akin to our fMRI analysis. During the inference period of the task we

obtained empirical representational similarity matrices for the different stimuli based on a similar approach reported in Luyckx et al.52

We defined a design matrix that specified the present silhouette at a given trial using one-hot vectors (12 one-hot vectors for 12 sil-

houettes in total) and one additional regressor to account for the mean activity. Using this design matrix, we then obtained sensor

coefficients for each stimulus at any given time point, resulting in a sensor x stimulus x time-point matrix. The coefficients were

pre-whitened using an adapted script from the RSA toolbox69 and then used to compute Pearson correlation coefficients between

sensors, for every individual silhouette for every time-point. This resulted in a representational similarity matrix for silhouettes across

time points for both the inference. Akin to the fMRI conjunctive code analysis, we then specified a GLM predicting these empirical

similarities using different (z-scored) theoretical similarities across time (see Figure 5). During the inference period when subjects saw

a silhouette on the screen, we defined conjunctive representations (building block in a specific relational position) as well as size and

pixel overlap as theoretical representational similarities.
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We defined a non-parametric permutation threshold to test for statistical significance. We repeated the above analyses with

randomly shuffled predictor representational similarities 5000 times to create a null distribution of predictive coefficients. To define

a significance threshold, we defined the 97.5th and 2.5th percentile of the range of the shuffled predictive coefficients as upper and

lower significance thresholds.

Multivariate Decoding

Training of the classifiers and subsequent sequenceness analyses closely followed previously published approaches.50,54

We trained 4 Lasso-regularised regression models on the four different building block classes in the functional localiser

data, using only sensors that were not rejected in all individual scanning sessions. This provided a decoding model based on a

binomial classifier per building block, where we defined all trials in which a corresponding building block was present as positive

examples and all other trials as negative examples. To decorrelate the classifiers we also included null data, defined as the sensor

data from 500ms before stimulus onset. In line with previous work49,50 we found maximum decodability (defined as the

highest probability output among all classifiers being assigned to the correct class) of individual building blocks 200ms after their

onset and consequently trained the binomial classifiers on that time for the subsequent sequenceness analysis. In line with pre-

vious work,49 we used and L1 penalty of 0.006, encouraging sparsity in the sensor representations for the individual building

blocks.

Sequenceness Measure

We defined sequenceness measures analogous to Liu et al.50,51,54. We used the trained classifiers to obtain class reactivation pre-

dictions for the independent inference data. The sequenceness measure is then obtained by applying a GLM approach at two

levels. At the first level, we obtain empirical pairwise transitions or sequences between class reactivations by using a linear model

to test whether certain stimulus reactivation patterns are predictive of other reactivation patterns at different time-lags (with a

maximum lag of 500ms). This results in a 4x4 matrix of empirical building block transitions for every time-lag. Here, we did not

include additional nuisance regressors to control for confounding effects, such as an alpha oscillation,50 since we applied this anal-

ysis to an active task-engagement period rather than a rest phase. At the second level, we then ask whether this pattern of empirical

transitions at different time-lags is predicted by theoretical transition matrices whilst controlling for the mean and self-transitions.

Note that a negative effect for sequences between building blocks (such as between present and absent building blocks) implies

the inhibition of one after the other (i.e. a lower re-activation probability for absent after a present block and vice versa), not the

inverse directionality.

We defined three different types of sequences of interest corresponding to three theoretical transition matrices: sequences from

the ‘stable’ to the ‘present’ building blocks, sequences from the ‘present’ to the ‘stable’ building blocks and sequences between the

‘present’ building blocks (if applicable – in trials where the ‘stable’ building block was in the middle of the silhouette the two ‘present’

building blocks did not connect). We averaged the latter two to obtain the global effect of sequences starting from the ‘present’ build-

ing block as shown in Figure 6C.

Figure 6C shows the effects of the sequenceness analysis when applied to the full inference period except for the first 500ms to

allow for basic visual processing. The obtained sequenceness effects were tested against control sequences, where one building

block in the true theoretical transition matrix was replaced by the absent building block. This results in two alternative sequences

for each of the three sequence types (‘present’ to ‘present’ if applicable) per trial (288 trials in total). We then treated the minimum

andmaximum of these control sequences across time-points (averaged over trials) as statistical bound, against which we compared

the sequenceness for the true sequences.

Length-3 sequences were probed as described in Liu et al.50,51,54. This analysis relies on the sameGLM approach, but now probes

whether observed sequences of length 2 are predictive of the reactivation of a third building block, whilst controlling for shorter length

transitions. We designed a GLM where we defined all possible pairwise sequences and individual building block re-activations as

predictors for subsequent building block re-activations at different time-lags. We then probed the evidence for certain types of

length-3 sequences, particularly for [‘present’ to ‘stable’] to ‘present’ and [‘present’ to ‘present’] to ‘stable’ across all trials, and

[‘distant present’ to ‘present’] to ‘stable’ as well as [‘present’ to ‘distant present’] to ‘stable’ in trials where there was a ‘distant pre-

sent’ building block (i.e., a present building block that was not directly connected to the stable block, in trials where the stable building

block was not in the middle of the silhouette).

We also conducted a sliding-window approach to assess the prevalence of individual sequences over time. To do so, we defined

sliding-windows of 1000ms with a step-size of 10ms (starting 500ms before stimulus onset and moving up to 3500ms after stimulus

onset, resulting in 301 timewindows in total, i.e. [-500,500],[-490,510],...,[2500,3500]). Within eachwindow, we performed temporally

delayed linear modelling for the different candidate sequences, and averaged the sequenceness effects for time-lags of 10-200ms.

We have also included the same analysis using non-overlapping time-windows of length 500mswith a step-size of 500ms in the sup-

plement, providing conceptually identical results.

Cluster-based statistics on these timewindowswas obtained similarly to Eldar et al.78 In the time-series, we assessed the length of

consecutive time-points exceeding the critical t-value of +/-2.09 (two-sided P value of 0.05 for df=19). The data were then shuffled

10000 times by randomly multiplying half of the subjects’ time-series by -1 and obtaining the maximum length of consecutive time-

points exceeding the critical t-value for that shuffle. We then defined the 95th percentile of cluster lengths from the shuffled data as

cluster-based significance threshold, against which we tested the original data.
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We analysed the relationship between replay strength and performance. Both mean replay strength of the first peak in Figure 6E

and mean replay strength of the second (present to stable) peak did not correlate significantly with mean reaction times (first peak:

r = � 0:23, p = 0:32; second peak: r = � 0:23, p = 0:33) or proportion of correct responses (first peak: r = 0:16, p = 0:49;

second peak: r = 0:19, p = 0:43) on the subject level. We also did not find a significant relationship between trial-by-trial replay

strength of the first and second peak in Figure 6E and trial-by-trial reaction times (first peak: bmean = 7:33, tð19Þ = 0:16; second

peak: bmean = 35:92, tð19Þ = 0:70) or the probability tomake a correct choice (first peak: bmean = � 0:12, tð19Þ = � 0:16; second

peak: bmean = � 0:17, tð19Þ = � 0:27).
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Supplemental figures

Figure S1. Behavioral effects, related to Figure 1

(A) We included an implicit hierarchical structure in the task, such that large silhouettes could often be decomposed into hierarchical building blocks. These

hierarchical building blocks were never introduced explicitly but allowed for a more efficient construction of larger objects once learned.

(B) Subjects displayed a preference for such ‘‘hierarchical chunking,’’ such that on the second training day they used a hierarchical building block configuration to

construct larger silhouettes more often than predicted by chance.

(C) Preferences for hierarchical chunking for the individual hierarchical building blocks.

(D) At the end of the experiment, subjects completed a behavioral questionnaire to indicate similarity judgments between silhouettes. We found these similarity

judgments were influenced by visual similarity, namely shape (pixel) and size overlap, and also by ‘‘construction similarity,’’ namely by the overlap of (basic/

hierarchical) building blocks (BBs) across (small/large) silhouettes.
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Figure S2. Stimulus properties, related to STAR Methods

Average size for non-hierarchical (top row) and hierarchical (bottom row) compounds built by placing one (basic or hierarchical) building block on top of (left

column) or beside (right column) another (basic or hierarchical) building block.
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Figure S3. Stimulus properties silhouette algebra, related to STAR Methods

All non-hierarchical (left) and hierarchical (right) silhouette algebra trials.
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Figure S4. Types of building blocks in MEG task, related to Figures 6 and 7 and STAR Methods

(A) Different stimulus sets used in the MEG task. Subjects were randomly assigned to one of these stimulus sets.

(B) In half of the trials, the stable building block was not in the middle of the silhouette.

(C) In the other half of trials, the stable building block was in the middle, such that there was no present to present building block connection.
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Figure S5. Sensor distribution, related to STAR Methods

Sensor distribution of classifier weights for all (left) and individual (right) building blocks, trained on functional localizer data.
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Figure S6. Discrete effects generative replay, related to Figure 7

We investigated the difference between sequences starting either from the stable or the present building blocks for different time intervals of the inference period,

and we found an early predominance of replay starting from the stable building block (0–1,000ms) followed by a predominance of replay starting from the present

building blocks (500–1,500ms) during inference (left). Assessing the individual contributions of the different types of neural replay to these differences, we found a

marked decrease of sequences toward the stable building block early during inference (0–1,000 ms) followed by a predominance of sequences starting from the

present building blocks (500–1,500ms). We also found a specific predominance of sequences from present to the stable building block during intervals at the end

of the inference period (2,000–3,000 and 2,500–3,500 ms) before subjects entered the decision phase of the task.
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Figure S7. Classifier reactivation and replay effects during the probe phase, related to Figure 7

(A) We investigated the time course of the classifier reactivations for the stable, present, and absent building blocks averaged across trials. All reactivations peak

shortly after stimulus (silhouette) onset, with the fully predictable stable building block representation peaking earlier. Overlaid are the time windows of the

significant replay effects from Figures 6E and 6F (orange, significant effects for sequences from candidate building blocks to stable building block; dark green,

significant difference between sequences between present and between absent and present building blocks; light green, significant effects for sequences from

present to stable).

(B) Left: while displaying a similar tendency as during the inference phase, we did not find significant replay effects for individual sequences analogous to

Figure 7B during the probe phase. Right: we also did not detect replay for more task relevant information during the probe phase, such as the connection from the

probe block in the upper left corner of the screen to the probe block in the middle or vice versa (right).
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