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Social perception of robots 
is shaped by beliefs about their 
minds
Ali Momen 1,2*, Kurt Hugenberg 3 & Eva Wiese 2,4*

Roboticists often imbue robots with human-like physical features to increase the likelihood that 
they are afforded benefits known to be associated with anthropomorphism. Similarly, deepfakes 
often employ computer-generated human faces to attempt to create convincing simulacra of actual 
humans. In the present work, we investigate whether perceivers’ higher-order beliefs about faces (i.e., 
whether they represent actual people or android robots) modulate the extent to which perceivers 
deploy face-typical processing for social stimuli. Past work has shown that perceivers’ recognition 
performance is more impacted by the inversion of faces than objects, thus highlighting that faces are 
processed holistically (i.e., as Gestalt), whereas objects engage feature-based processing. Here, we 
use an inversion task to examine whether face-typical processing is attenuated when actual human 
faces are labeled as non-human (i.e., android robot). This allows us to employ a task shown to be 
differentially sensitive to social (i.e., faces) and non-social (i.e., objects) stimuli while also randomly 
assigning face stimuli to seem real or fake. The results show smaller inversion effects when face 
stimuli were believed to represent android robots compared to when they were believed to represent 
humans. This suggests that robots strongly resembling humans may still fail to be perceived as 
“social” due pre-existing beliefs about their mechanistic nature. Theoretical and practical implications 
of this research are discussed.

In recent years, deepfakes—artificial intelligence (AI) generated images often involving celebrities or politicians—
have gone viral on the internet, enabled by their hyper-photorealistic appearance. Such AI-produced content is 
powerful and ranges from synthesizing individual’s speech and  voice1, to creating images of fictional  people2, to 
swapping a person’s identity with another or altering what they are saying in a  video3. Besides offering exciting 
opportunities, such technologies are widely recognized as a pressing threat to the believability of perceptual 
 information4 and many cases of misuse have been reported to date (e.g., deepfakes of Donald Trump being 
arrested; fake images of the pope in a puffer jacket,5). Artificially recreating human appearance to an extent that 
it is not easily distinguishable from actual humans is also a major topic of interest in robotics, where androids 
very convincingly emulate their human counterparts (e.g., the android robot Sophia;6).

Faces are most often the targets of such manipulation because they are a rich source of social information, 
including cues to identity and internal  states7–10, and critically determine the effectiveness and believability of 
supposedly "human"  content11,12. Significantly, it has been consistently shown people are particularly attuned 
to a face’s orientation, with upright faces being recognized more readily than inverted faces. Since the seminal 
work by Yin in 1969, studies have shown that turning a face upside down interferes with our ability to process 
and recognize them far more than when the same is done to objects.13–15. Multiple theoretical accounts have 
been made for the face inversion effect, with some arguing that faces are special and processed in a qualitatively 
different manner than non-social  objects16; others argue that faces are not special but are rather processed in 
quantitatively different manners than non-face  stimuli17,18. However, although there is some debate regarding 
the “special status” of faces, there is consensus that inversion does disrupt face-like processing more strongly 
than the processing of non-face  objects13. This effect on face recognition occurs immediately after a face stimu-
lus is presented and can be measured by activity in the N170 event-related potential—a neural indicator of face 
perception. It also triggers heightened fMRI activity in brain regions that are typically involved in recognizing 
 objects19,20. Indeed, face processing is subserved by a core network that concerns the bottom-up processing of 
facial features (i.e., eyes, nose, mouth), as well as the spatial relations between these features: the inferior occipital 
gyrus or occipital face area (OFA) encodes isolated facial features (e.g., eye color), whereas the lateral fusiform 
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gyrus (or fusiform face area; FFA) supports the configural processing of human faces and represents unchange-
able facial information related to an individual’s  identity21. Changeable face features, on the other hand, such 
as changes in gaze direction to signal an action intention or facial expression to signal an emotional state, are 
processed by the posterior superior temporal sulcus (pSTS;  see22 for a review).

But how strongly will hyper-photorealistic yet synthetically generated face stimuli, such as images of deep-
fakes or androids, trigger face-typical  processing23–25? Hyper-photorealistic depictions are easy to produce with 
deep-learning models, such as Generative Adversarial Networks (GANs), which pit a generator and a discrimi-
nator neural network against each other so that—over multiple iterations—the generator learns to synthesize 
increasingly realistic face stimuli until the discriminator is unable to distinguish them from real  faces11; similar 
results can be obtained using diffusion  models26. The generated images are often so visually  convincing27 that 
even sophisticated algorithms cannot reliably distinguish them from real human  faces28–31. Indeed, whereas early 
deepfakes were still detectable by  humans32–34,

the synthetic faces now being created are so lifelike that they are often indistinguishable from genuine human 
 faces11,23,24. Due to their photorealistic visual similarity to human faces, one would expect that deepfakes activate 
the core face perception network in a similar manner as human faces. However, both behavioral and electrophysi-
ological studies indicate that deepfake images are processed differently than human faces. ERPs like the  N17035 
or steady-state visually evoked potentials (SSVEPs;36), for instance, appear sensitive to actual versus artificially 
generated faces. Furthermore, computer-generated faces do not always elicit face-processing phenomena typical 
of real faces (e.g., “other race effect”;37). Thus, although highly realistic to the point of near indistinguishability 
from actual human faces, computer-generated face stimuli can differ in their manner of processing.

How might we understand why even hyper-realistic synthetic faces elicit a different manner of processing 
than actual human faces? We believe that this may be due to the core face network receiving top-down input 
from an extended network of other brain areas involved in social cognition  (see22,38). This suggests that face 
perception may be the product of both perceptual characteristics of the face stimuli themselves and higher-
order social cognitive influences reflecting perceivers’ motives and  beliefs39,40. Thus, even when synthetic face 
stimuli are perceptually indistinguishable from real human faces, they might still not be processed in the same 
way as human faces when perceivers know they are artificial. Perhaps simply believing a face to be artificial can 
influence the extent to which it is processed in a face-like manner. The most conservative test of this hypothesis 
would be to take actual human faces and make participants believe—through a cover story—that they are not 
human. Would such a top-down manipulation of beliefs be sufficient to attenuate face-typical processing, and 
as a consequence lead to a reduced face inversion effect?

This question is highly relevant not just to understanding the processing involved with deepfakes and 
androids, but also applies to the perception of human faces themselves. In most traditional face perception stud-
ies, the perception of a stimulus (like a face) cannot easily be separated from people’s beliefs about that stimulus 
(for instance, believing it represents a human). Consider, for instance, Yin’s classical  work14,15 on the face inversion 
effect, where perceivers saw human faces and non-face objects, such as houses: they almost certainly thought 
that the faces represented actual people, and the houses real objects. However, with hyper-realistic face stimuli 
like  deepfakes11 or highly human-like robots like  androids41, we live in an era where percepts and beliefs are not 
necessarily conflated. This creates the possibility of dissociating bottom-up effects associated with the percepts 
of human faces from top-down effects associated with beliefs about human faces, and allows us (i) to examine to 
what extent face processing is cognitively  penetrable42,43, and (ii) whether beliefs about a face’s essential human-
ness influence the manner in which it is processed.

Indeed, there is evidence in the literature suggesting that manipulating perceivers’ beliefs about faces can 
modulate face  processing44. For instance, when the same face is believed to belong to an ingroup (i.e., fellow 
university students), it is afforded stronger configural processing than when the face is believed to belong to 
a social outgroup (i.e., a competing  university45). Similarly, a stronger N170 component was found when face 
stimuli were categorized as belonging to the participants’ own social group versus an  outgroup46. Beliefs about a 
target’s moral behavior can also modulate face processing. Fincher and  Tetlock47, for instance, found that faces 
of targets believed to be engaged in immoral or inhumane behavior elicit less face-like processing across multiple 
measures  (see48). Taken together, this suggests that beliefs regarding the human nature of faces can modulate the 
extent to which they are processed in a face-typical manner. What these experiments cannot answer, however, is 
to what extent the mere belief that a human face may represent an object—namely an artificially generated face 
or an android robot—may disrupt face-typical processing.

Current research
We investigate the extent to which the face inversion effect—one of the longest standing and best replicated 
effects in face processing—depends on participants’ beliefs that apparent human faces represent actual human or 
non-human agents (i.e., androids with hyper-realistic human-like appearance). To do so, we manipulate beliefs 
about images of actual human faces via instruction while holding the percept of faces constant: participants were 
led to believe they would see the faces of actual humans (labeled as human) or the faces of highly human-like 
robots (labeled as android); in actuality, all images depicted real humans. If merely believing that a face repre-
sents a human versus a non-human agent modulates face-typical processing, the face inversion effects should 
be stronger in the human than the android condition. If true, this would suggest that the face inversion effect is 
driven, at least in part, by beliefs about the humanness of the face stimulus itself.

The current research adds to the previous literature on face perception in multiple ways. First, past work has 
focused on how the perceptual characteristics of faces influence face-like processing of non-human faces—such 
as those of robots—in a bottom-up manner. For example, Momen, Hugenberg, and Wiese (2022) had participants 
complete a face inversion task with human and humanoid robot faces, finding that robot stimuli elicited smaller 



3

Vol.:(0123456789)

Scientific Reports |         (2024) 14:5459  | https://doi.org/10.1038/s41598-024-53187-w

www.nature.com/scientificreports/

inversion effects than human stimuli; it was also found that robot faces that physically resembled human faces 
(i.e., they contained more human-like facial features) were processed in a more face-like manner than were robots 
that appeared less human-like49. The present study builds upon this work in multiple ways. First, by keeping the 
bottom-up features of a stimulus constant but manipulating only participants’ beliefs about the human nature 
of the stimulus. Second, although past work has already demonstrated that beliefs regarding one’s social group 
status or morality can exert a top-down influence on face  processing45,46, they cannot answer the question of 
whether beliefs regarding an agent’s humanness also modulate face processing.

Methods and materials
Participants
A power analysis conducted with the effect size  (n2 = 0.07) of a previous experiment utilizing the inversion task 
in a within-subjects design (50; Experiment 2) indicated a sample size of 86 would yield more than 95% power. 
Given that we anticipated removing participants due to poor performance and/or failing the manipulation check 
at the end of the experiment (i.e., Did you believe the android faces were creations of a robot designer we are col-
laborating with?), we conservatively oversampled.

233 participants completed the study via Amazon’s Mechanical Turk for pay. Of these, 44 participants were 
removed due to poor performance in the face recognition task (d’ ≤ 0), and 99 were removed due to failing 
the manipulation check at the end of the experiment. This resulted in a final sample size of 90 participants 
 (Mage = 32.90 years; Range = 18–68 years; 47 females). Filtered participants accounted for 57.10% of our data. 
Informed consent was obtained from all participants, and all procedures were approved by the Office of Research 
Integrity and Assurance (ORIA) at George Mason University (GMU). The experiment was performed in accord-
ance with relevant guidelines and regulations.

Apparatus
The experiment was run using the Inquisit  551 platform online, which allows collection of behavioral data 
remotely over the web via participant keystroke. Participants completed the experiment locally on their computer 
after downloading the software. Attributes like screen size, keyboard or refresh rate depended on participant’s 
individual computers and were not controlled.

Stimuli
The sample of faces consisted of 80 White human male faces obtained from the Chicago Face  Database52. All faces 
were converted to greyscale and presented on a white background that measured 768 × 768 pixels. The longest 
point, from the top of the head to the bottom of the chin, nearly touched both the top and bottom edges of the 
768 × 768-pixel frame. Faces were also presented with labels and colored frames depending on their condition. 
Faces in the human condition were presented with an “human” label in a green frame. Faces in the android 
condition were presented with an “android” label in a blue frame; see Fig. 1. Consent to publish these stimuli 
images was obtained from the Chicago Face Database.

For each participant, the 80 face images were randomly categorized into distinct groups based on their desig-
nated condition (human vs. android), phase (learning vs. recognition) and orientation (upright vs. inverted). For 

Figure 1.  Example face stimuli. For each participant, faces were presented in the human or android condition 
in a randomized fashion. Each face was presented together with a label and a colored frame indicating the 
experimental condition: faces in the human condition were presented with the label “human” in a green frame; 
faces in the android condition were presented with the label “android” in a blue frame.



4

Vol:.(1234567890)

Scientific Reports |         (2024) 14:5459  | https://doi.org/10.1038/s41598-024-53187-w

www.nature.com/scientificreports/

the “human” condition, 40 randomly chosen images from the data base were allocated as follows: (1) Presented 
in Learning Phase—Repeated Upright in Recognition Phase: 10 images were randomly allocated to this category. 
These images were introduced upright during the learning phase and reappeared in upright orientation during 
the recognition phase. (2) Presented in Learning Phase—Repeated Inverted in Recognition Phase: Another 10 
images were randomly assigned to this category. These images were presented upright in the learning phase and 
displayed invertedly during the recognition phase. (3) Not Presented in Learning Phase—Distractor in Recognition 
Phase Upright: Another 10 images were randomly assigned to this category. The images were exclusively used 
as distractors in the upright orientation during the recognition phase and were not part of the learning task. (4) 
Not Presented in Learning Phase—Distractor in Recognition Phase Inverted: Consisting of another 10 randomly 
assigned images, this category mirrored the previous one but with the images appearing invertedly during the 
recognition phase. The remaining 40 images followed the same distribution pattern as the human sets but were 
specifically used for the “android” condition. These images were similarly divided into repeated and distractor 
categories, with orientations corresponding to those in the human tasks. This random categorization into distinct 
groups was done before the beginning of the experiment separately for each participant to minimize the chances 
that any observed effects could be ascribed to the unique features of the faces.

Procedure and task
Participants first gave informed consent and were then presented with the cover story: “We are working with an 
android robot designer who designs robots nearly indistinguishable from humans. Here are some examples of his 
work”. This was followed by images of android robots difficult to distinguish from humans (e.g.,53).

Subsequently, participants completed the face inversion task. They were asked to memorize and recognize 
both human- and android-labeled faces. Agent type was blocked such that participants completed the learning 
and recognition task for one agent type (e.g., human) first before completing the learning and recognition task 
for the other agent type (e.g., android). Block order (android first vs. human first) was counter-balanced across 
participants with roughly half completing the android-labeled faces first (N = 44), and the other half completing 
the human-labeled faces first (N = 46).

During the learning phase, participants viewed 20 target faces for 3500 ms each, with an inter-trial interval 
(ITI) of 500 ms; see Fig. 2. The order of presentation was random. Faces in the human condition were presented 
with a “human” label in a green frame; faces in the android condition were presented with an “android” label 
in a blue frame.

During the recognition phase that followed, participants were presented again with the 20 faces they had 
seen during the learning phase, interspersed with 20 new faces. All face stimuli were presented in a random 
order, without original labels or colored frames. Half of the faces—previously seen and new ones—were inverted. 
Participants indicated if they recognized a face from the learning phase by pressing the ‘D’ key; if they did not 
recognize it, they were asked to press the ‘K’ key. Each trial in the recognition phase lasted until a response was 
given by the participant; see Fig. 3.

After completing both the android and human blocks, participants were thanked, for their participation, 
debriefed about the experiment, and compensated.

Figure 2.  Learning phase of the inversion task. Participants were instructed that they would see twenty 
upright-presented human or android faces and were asked to attend to the faces for subsequent recognition. 
Participants passively viewed the 20 randomly selected faces in a randomized order for 3500 ms each, with an 
inter-trial interval (ITI) of 500 ms. Each participant saw both human-labeled and android-labeled faces. Agent 
type (human vs. android) was blocked, and block order was counterbalanced, such that half of the participants 
started the experiment with the android-labeled faces and ended the experiment with the human-labeled 
faces; the other half of the participants started the experiment with the human-labeled faces and ended the 
experiment with the android-labeled faces. Faces were randomly assigned to the “android” or “human” labels 
across participants (i.e., whether a given face was labeled as “android” or “human” randomly varied across 
participants).
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Results
Of primary interest was whether there was a differential face inversion effect for faces labeled as “human” versus 
“android.” To assess this, we first calculated hits (i.e., familiar face correctly identified), misses (i.e., familiar face 
not correctly identified), correct rejections (i.e., unfamiliar face correctly rejected) and false alarms (i.e., unfa-
miliar face falsely identified) during the recognition phase. We then used these measures to calculate the signal 
detection parameter sensitivity (d’)—a measure of recognition that accounts for both hit rates and false  alarms54. 
To account for 100% hit-rates and/or 0% false alarm rates, d’ scores were adjusted via a log-linear  approach54,55.

Participants’ d’ scores were entered into a 2 (Agent Label: Human vs. Android) × 2 (Orientation: Upright vs. 
Inverted) repeated-measures ANOVA. If face-typical processing was attenuated by labeling a human face as 
android, a significant interaction effect between agent label and orientation would be expected, such that the 
difference in d’ between upright and inverted faces would be reduced for android-relative to human-labeled 
face stimuli.

The ANOVA revealed a main effect of Orientation (F(1,89) = 52.94, p < 0.001), such that participants had better 
recognition performance for upright (M = 1.06 SD = 0.52) compared to inverted (M = 0.52, SD = 0.68) faces; this 
represents the classic face inversion effect. There was no significant main effect for Agent Label (F(1,89) = 0.29, 
p = 0.593), indicating that the belief manipulation did not have an effect on participants’ overall recognition 
performance. Most importantly, and in line with our hypothesis, the interaction effect between Agent Label 
and Orientation was significant (F(1,89) = 8.58, p = 0.004), such that there was a larger difference in recognition 
performance for faces believed to be human when presented upright (M = 1.12, SD = 0.83) vs. inverted (M = 0.42, 
SD = 0.61) than for faces believed to be android (upright: M = 0.99, SD = 0.77; inverted: M = 0.63, SD = 0.73); see 
Fig. 4. Although the inversion effect was significant for both android (t(89) = 3.74, p < 0.001, d = 0.48) and human 
conditions (t(89) = 7.93, p < 0.001, d = 0.97), the effect was more than twice as strong in the "human" than the 
"android" belief condition.

Ancillary analyses
We also conducted two ancillary analyses. First, we explored whether explicit beliefs about the android nature of 
the images (i.e., participants who believed the manipulation) was required for the observed pattern of effects, or if 
the effects held even when including participants in the data analysis that did not explicitly believe the manipula-
tion. For this purpose, we re-ran the original analysis where participants had been excluded from the dataset who 
did not believe the instruction manipulation, this time with the data of the 99 participants who had originally 
failed the manipulation check (total N = 189). The analysis showed that although there was a significant inversion 
effect across conditions (Orientation: F(1,188) = 192.33, p < 0.001), the Orientation × Agent Label interaction was 
no longer significant (F(1,188) = 1.91, p = 0.169). The main effect of Agent Label was not statistically significant; 
F(1,188) = 1.25, p = 0.265. This indicates that explicit beliefs about the human versus non-human nature of face 
stimuli are required for the observed modulation of face-typical processing.

Second, we investigated the criterion (c), which is the point at which individuals decide if a stimulus is famil-
iar (’old’) or unfamiliar (’new’). A positive criterion indicates a tendency to not recognize stimuli, suggesting 
a cautious approach, whereas a negative criterion suggests a tendency to recognize stimuli, indicating a more 
lenient approach. We submitted the criterion scores to a two-way ANOVA to evaluate the impact of orientation 
and agent label on participants’ decision thresholds. Neither the main effect of Orientation (F(1, 89) = 0.449, 
p = 0.504), nor the main effect of Agent Label (F(1, 89) = 3.015, p = 0.086) were significant. The interaction effect 
of Orientation and Agent Label was also not significant, F(1, 89) = 0.487, p = 0.487. In the context of our original 
d-prime results, which indicated a larger difference in recognition performance for upright versus inverted faces 
with the ’human’ label compared to the ’android’ label, this criterion analysis suggests that although participants’ 
ability to discriminate was affected by these factors, their overall threshold for deciding whether to recognize 
a face was not swayed by the orientation or the label. This implies that the observed differences in d-prime are 
likely due to true perceptual discriminability rather than changes in decision bias.

Figure 3.  Recognition phase of the inversion task. At the beginning of the recognition phase, participants saw 
another series of faces, which included the 20 faces they had previously seen, interspersed with 20 new faces. 
These images were presented in random order without colored frames. Half of the new and half of the previously 
seen faces were presented upside down and participants were instructed that their task would be to report 
whether they had seen the face during the learning task.



6

Vol:.(1234567890)

Scientific Reports |         (2024) 14:5459  | https://doi.org/10.1038/s41598-024-53187-w

www.nature.com/scientificreports/

Discussion
Synthetic faces are increasingly realistic, to the point of near indistinguishability from actual human faces. 
However, such stimuli are not always processed in a fully face-like manner. In the present work, we sought to 
understand how believing that a face was human versus synthetic (i.e., non-human) would influence typical 
face perception processes. Specifically, we compared the extent to which human versus android labels affected 
face-typical processing in the face inversion task.

We found that when participants believed a face was that of an android, it elicited significantly smaller inver-
sion effects than when they believed it was a human face. This was true even though all stimuli (i) were pictures 
of actual human faces and (ii) were randomly assigned to the human-versus-android labels, thus ruling out the 
possibility that the effects were driven by perceptual differences in the stimuli themselves. Indeed, while previ-
ous studies have demonstrated that visual differences between robot and human faces can affect performance in 
inversion  tasks56 these findings cannot be fully explained by visual factors. Instead, it appears that the differences 
in how human and android faces are processed stem from the observer’s beliefs rather than visual differences 
inherent to the stimuli.

Human-versus-android labeling muted but did not eliminate the effect of face inversion on recognition: 
even amongst ostensibly android stimuli there was still a robust effect of inversion on recognition performance. 
This makes sense given that all stimuli were actually human faces, and perceivers had significant prior expertise 
with this group of  stimuli57,58. Even believing a human face to be non-human does not eliminate this prior per-
ceptual experience, highlighting that person perception is best understood as a confluence of both top-down 
characteristics of perceivers (e.g., beliefs about targets; motives of perceivers) and bottom-up cues of the targets 
themselves (e.g., facial features;  see44 for a review). Although we were able to influence face processing by alter-
ing participants’ beliefs (top-down effects), the impact of face inversion on recognition, even when faces were 
labeled as androids, mean that actual human facial characteristics (bottom-up cues) still influence performance 
on face recognition tasks. This occurs despite believing that these faces are not human. This indicates that both 
the perceivers’ top-down beliefs and the bottom-up visual features of the faces contribute to how we perceive 
and recognize individuals (see  also56).

Beyond the implications for face perception, our results also have implications for research on human–robot 
interaction (HRI), mind perception (i.e., ascribing human-like traits to human and non-human  agents59) and 
animacy (i.e., ascribing aliveness to human and non-human  agents60), and social cognition research more broadly. 
Speaking first to HRI, the present work indicates that even highly human-like robots may not be fully perceived 
as social stimuli with emotions, identities and intentions, which has been suggested to influence various aspects 
of HRI, ranging from action understanding to  acceptance13,61–63. Thus, robot designers should not focus solely on 

Figure 4.  Main results: The 2 (agent label: human vs android) × 2 (orientation: upright vs inverted) ANOVA 
revealed a significant main effect of orientation, indicating a significant inversion effect across conditions. 
Importantly, the agent label × orientation interaction was also significant, indicating a stronger inversion effect 
when (perceptually identical) face stimuli were believed to represent human vs. android agents. Error bars 
represent 1 standard error above and below the mean.
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physical robot features, but also on factors outside of appearance to make robots appear “social”, such as behaviors 
or beliefs about non-human agents themselves  (see64, for a review). Believing that an agent belongs to a social 
ingroup, or is similar to oneself in general, is an effective method of modulating perceptions of humanness. In 
HRI, it may be effective to emphasize similarities between a robot and an interacting human to boost face-like 
 processing59,65. This could be accomplished via matching physical facial characteristics (e.g., eye color), behaviors 
(e.g., mirroring gestures) or personality characteristics (e.g., ways of speaking). Furthermore, previous research 
suggests that the mere belief a non-human entity has human-like capacities can cause perceivers to treat them 
as social entities, which could further influence face-like processing with non-human  agents66. Thus, research in 
HRI would benefit from considering how such motives can influence the perception of robots.

The present research contributes to our understanding of how we perceive animacy and mental states in non-
human entities. Research suggests that the extent to which stimuli are processed as mindless machines versus 
as mindful agents is modulated by perceivers’ motives for social connection. Past research demonstrates that 
humans’ innate desire to connect socially can motivate them to perceive intentionality in a robot in order satisfy 
this  motivation67,68. Furthermore, when loneliness is induced in perceivers (i.e., via experimental manipula-
tion), they are more likely to ascribe inner states and animacy to ambiguously animate agents (e.g., human-doll 
 morphs60). This raises the possibility that such motives might modulate face perception processes in non-human 
agents as well. Perhaps when robots are designed for social interaction with human partners, this may moti-
vate participants to attribute human-like traits to them, influencing how they perceive robot faces. Alternately, 
perhaps lonely perceivers might engage face-typical processing even for android robot faces  (see20; for similar 
results with animals).

Our findings add to research examining the impact of top-down influences on early perceptual processes, such 
as face perception. However, the present work is distinct from other recent demonstrations in important ways. 
First, much recent research has focused more on social categories such as race and gender, and less on direct 
manipulations of the perceived humanness of agents. Second, whereas previous studies showed that inhumane 
behavior can lead to a decline in face-typical  processing47), our research highlights that already beliefs about 
the non-human nature of a stimulus is sufficient to attenuate face perception. This is an important distinction 
as the capacity for inhumane acts is intrinsically linked to humanity; for instance, a lion hunting its prey is not 
considered inhumane, but a human harming another reflects a violation of human ethics. In our experiments, 
androids are treated as distinctly non-human rather than unethical or inhumane, highlighting that our findings 
are fundamentally different from previous findings due to the nature of the manipulation we employed. To our 
knowledge, our study is the first to find that believing a face lacks a human essence affects face-typical processing 
even when controlling for perceptual features of the stimuli. Although past work has hinted at this  possibility69,70, 
the present work is the first that has manipulated the essential humanness of targets in a categorical manner.

The limitations of the current study provide avenues for future studies. First, we elected to manipulate the 
apparent humanness of faces via a human-versus-android label manipulation. This was intentional because 
we believed that the distinction between humans and androids would be plausible to some participants, while 
holding both the percept of the agents and some apparent mental capacities of the agents constant. For example, 
although androids are seen as lacking experiential capacities (i.e., emotional depth), both androids and humans 
are typically seen as sharing the capacity for mental agency (i.e., the ability to act on the world). However, highly 
realistic non-human faces generated via artificial intelligence could instead vary more widely in terms of their 
perceived capacities. For example, deepfakes may be seen as lacking minds altogether (i.e., experiential and 
agential capacities; e.g.,71) whereas androids have the ability to remember stimuli and to act on the world. Future 
research would benefit from understanding how inducing perceptions of different capacities in non-human 
stimuli may influence face perception.

Second, while it is clear that participants engaged in face-typical processing less strongly when believing 
stimuli to be androids, it is unclear where in the cognitive stream this took effect. Indeed, top-down effects on 
perceptual processing can take place at several levels, such as (i) the user’s focus of attention, (ii) which percepts 
are selected for further perceptual processing, (iii) perceptual organization of selected percepts (i.e., configural 
processing), and (iv) the representation of stimuli at a higher cognitive  level72. Effects on all these levels could 
have manifested in smaller inversion decrements for android- versus human-believed stimuli. Since it is unclear 
from the current study what level of perception caused these differences in processing, future research would 
benefit from unpacking the temporal dynamics of these effects.

Third, while we interpret our findings within the context of embodied robotic agents, our study only exam-
ined static images. This limitation raises the question of whether the reported findings apply exclusively to static 
images and might not hold for physical robots. Indeed, past work has shown that static face images can have 
different effects than dynamic facial images, especially in situations where beliefs about the minds of targets (i.e., 
human versus robot) are being manipulated (e.g.73). Future research should explore whether embodied agents 
are also subject to disengagements in face-typical processing that occurs due to beliefs about targets.

Finally, we employed the face inversion paradigm to index face-typical processing. Although it is well estab-
lished that faces are more sensitive to inversion than are most other objects, the inversion paradigm does not 
bear directly on the question of whether faces are processed in a qualitatively different manner than non-face 
 stimuli18. Further, inversion could affect both perceptual processing broadly and face-like processing specifi-
cally. However, given that past work has shown that faces are more strongly affected by inversion than are most 
non-face objects, and given that we observe human-labeled faces were more strongly affected by inversion 
than were android-labeled faces, it seems reasonable to conclude that the android-label did reduce face-typical 
processing. However, it will be important in future research to compare inversion to other manipulations that 
affect image processing but not face orientation to differentiate where in the perceptual-cognitive stream that 
these effects emerge.
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Conclusion
In the present study, we find that manipulating beliefs about whether a face represents a real human versus a 
synthetic android influences face-typical processing, even when holding constant the faces themselves. To our 
knowledge, this is the first demonstration that believing a face represents a human or a robot, holding the stimu-
lus itself constant, influences face perception. This research has implications not just for our understanding of 
face perception, but also for research in HRI, mind perception, and social cognition.
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