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Augmented weighted K‑means 
grey wolf optimizer: An enhanced 
metaheuristic algorithm for data 
clustering problems
Manoharan Premkumar 1*, Garima Sinha 2, Manjula Devi Ramasamy 3, Santhoshini Sahu 4, 
Chithirala Bala Subramanyam 5, Ravichandran Sowmya 6, Laith Abualigah 7,8,9,10,11,12,13,14 & 
Bizuwork Derebew 15*

This study presents the K‑means clustering‑based grey wolf optimizer, a new algorithm intended 
to improve the optimization capabilities of the conventional grey wolf optimizer in order to address 
the problem of data clustering. The process that groups similar items within a dataset into non‑
overlapping groups. Grey wolf hunting behaviour served as the model for grey wolf optimizer, 
however, it frequently lacks the exploration and exploitation capabilities that are essential for 
efficient data clustering. This work mainly focuses on enhancing the grey wolf optimizer using a new 
weight factor and the K‑means algorithm concepts in order to increase variety and avoid premature 
convergence. Using a partitional clustering‑inspired fitness function, the K‑means clustering‑based 
grey wolf optimizer was extensively evaluated on ten numerical functions and multiple real‑world 
datasets with varying levels of complexity and dimensionality. The methodology is based on 
incorporating the K‑means algorithm concept for the purpose of refining initial solutions and adding 
a weight factor to increase the diversity of solutions during the optimization phase. The results show 
that the K‑means clustering‑based grey wolf optimizer performs much better than the standard grey 
wolf optimizer in discovering optimal clustering solutions, indicating a higher capacity for effective 
exploration and exploitation of the solution space. The study found that the K‑means clustering‑
based grey wolf optimizer was able to produce high‑quality cluster centres in fewer iterations, 
demonstrating its efficacy and efficiency on various datasets. Finally, the study demonstrates the 
robustness and dependability of the K‑means clustering‑based grey wolf optimizer in resolving data 
clustering issues, which represents a significant advancement over conventional techniques. In 
addition to addressing the shortcomings of the initial algorithm, the incorporation of K‑means and 
the innovative weight factor into the grey wolf optimizer establishes a new standard for further study 
in metaheuristic clustering algorithms. The performance of the K‑means clustering‑based grey wolf 

OPEN

1Department of Electrical & Electronics Engineering, Dayananda Sagar College of Engineering, Kumaraswamy 
Layout, Bengaluru, Karnataka 560078, India. 2Department of Computer Science and Engineering, Jain University, 
Ramanagaram, Bengaluru, Karnataka, India. 3Department of Computer Science and Engineering, KPR Institute of 
Engineering and Technology, Coimbatore, Tamil Nadu, India. 4Department of Computer Science & Engineering, 
GMR Institute of Technology, Rajam, Srikakulam, Andhra Pradesh, India. 5Department of Computer Science and 
Engineering, Vardhaman College of Engineering, Hyderabad, India. 6Department of Electrical and Electronics 
Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 
India. 7Computer Science Department, Al al-Bayt University, Mafraq 25113, Jordan. 8Artificial Intelligence and 
Sensing Technologies (AIST) Research Center, University of Tabuk, 71491 Tabuk, Saudi Arabia. 9Hourani Center for 
Applied Scientific Research, Al-Ahliyya Amman University, Amman 19328, Jordan. 10MEU Research Unit, Middle 
East University, Amman 11831, Jordan. 11Department of Electrical and Computer Engineering, Lebanese American 
University, Byblos 13-5053, Lebanon. 12School of Engineering and Technology, Sunway University Malaysia, 
27500 Petaling Jaya, Malaysia. 13College of Engineering, Yuan Ze University, Taoyuan, Taiwan. 14Applied science 
research center, Applied science private university, Amman, 11931, Jordan. 15Department of Statistics, College 
of Natural and Computational Science, Mizan-Tepi University, Tepi Bushira, Ethiopia. *email: mprem.me@
gmail.com; bizuworkd@mtu.edu.et

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-55619-z&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2024) 14:5434  | https://doi.org/10.1038/s41598-024-55619-z

www.nature.com/scientificreports/

optimizer is around 34% better than the original grey wolf optimizer algorithm for both numerical test 
problems and data clustering problems.

Keywords Computational intelligence, Data mining, Grey wolf optimizer, K-means clustering, Optimization 
algorithm

Basic concepts of data clustering
An unsupervised learning technique called clustering separates a database into clusters of identical matters by 
reducing the resemblance among objects in diverse groups and exploiting the similarities between entities in the 
identical  cluster1–3. Clustering has been a crucial tool for data analysis in many disciplines, including intrusion 
detection, data mining, bioinformatics, and machine learning systems. Clustering is also used in various fields, 
including social network analysis, robotics, and networks. Hierarchical clustering, mixed clustering, learning 
network clustering, and partition clustering can all be used to group data into  clusters4–6. The main objective of 
clustering techniques is to make clusters more homogeneous and heterogeneous. Partitional clustering techniques 
previously ran into issues such as responsiveness to the starting center points, local optima trap, and lengthy run 
times. Clustering separates a set of datasets with d-dimensions into k different groups. Every division is known 
as a cluster Ci . Each cluster’s members share several traits in common, although there is little overlap between 
 them7–9. In this situation, clustering’s objective is to identify the separate groups and allocate objects depending 
on how closely they resemble the appropriate groups. The absence of initial tags for observations is the primary 
distinction between the clustering and classification methods. However, classification techniques use predeter-
mined classifications to which objects are given, clustering groups of objects without previous  knowledge10–13.

Numerous research efforts on data clustering have been offered throughout the past decades. To cluster a 
dataset, there are various solutions to the clustering problem. These methods primarily use complicated network 
approaches, K-means, and its improved variants, metaheuristic algorithms, and other  methods14–18. One of the 
most well-known of these methods is the K-means algorithm, which attempts to partition a complete dataset 
into k clusters by randomly selecting k data points as starting cluster centers. The K-means method, however, is 
delicate to the choice of beginning points and might be unable to group huge databases. Many experts have con-
centrated on swarm intelligence algorithms to address the drawbacks of the K-means technique, which can do a 
simultaneous search in a complicated search space to avoid a premature convergence  trap3,15,19–24. Researchers also 
focused on merging metaheuristic techniques with conventional clustering techniques to lessen such limitations.

Literature review
Metaheuristics algorithms are population-based and imitate the shrewd behaviour of socially organized creatures. 
Glowworm and crow search-based clustering have been proposed for data clustering. These techniques depicted 
the clustering solutions as swarms of creatures. Then, to quickly cover the search space, these strategies use 
clever intensification and diversification techniques. Although metaheuristic algorithms reduced classic cluster-
ing techniques’ execution times, they still had  drawbacks25. The shortcomings of Particle Swarm Optimization 
(PSO) and its competitors can be summarized as follows: lack of developed memory elements and the diversity 
of  populations26. The PSO and its variants use a single optimal solution stored in the solution space to reposition 
the members of the swarm, which can cause them to become stuck in local minima. These shortcomings caused 
PSO and its variants to obtain solutions with low quality and convergence speed, which accounts for the birth 
of numerous other algorithms reported in the  literature13,27,28.

The authors of Ref.29 suggested a genetic algorithm (GA) for clustering that exploits a region-based crosso-
ver mechanism. It finds the best preliminary center for the k-means algorithm. The chromosomes translate the 
clusters of centroids, and during the crossover, chromosome pairs exchange several centroids located in the same 
area of space. According to experimental research, the region-based crossover outperforms a random exchange 
of centroids. The authors of Ref.2 suggested a differential evolution (DE) algorithm integrating the k-means 
technique. The local search and initial population are conducted using the k-means algorithm. The popula-
tion vectors set the cluster centroids. In an additional effort to eliminate the redundant nature of the centroid 
encoding, The authors of Ref.30 reported a technique that hybridized the k-means algorithm and gravitational 
search algorithm. The k-means was used to improve the generation of the initial population; one individual was 
generated using k-means, and the remaining individuals were generated randomly. A data clustering approach 
based on the Gauss chaotic map-using PSO was presented in Ref.31. Sequences produced by the Gauss chaotic 
drift were used to replace the random elements affecting the velocity update’s cognitive and social components. 
A cooperative artificial bee colony (CABC) approach for data clustering was proposed in Ref.32, in which every 
bee contributes to creating the optimal solution. The appropriate solution for each bee is thought to replace 
every solution of the optimal solution. The authors of Ref.33,34 used representative points, typically not centroids, 
to indicate potential solutions, and, as with centroids, a dataset partition was created by allocating data to the 
cluster closest to the representative point.

Many metaheuristic algorithms have recently been reported in addition to the above-discussed algorithms 
for numerical and real-world engineering design optimization problems, including data clustering. For instance, 
ant colony  optimization35, firefly  algorithm36,37, flower pollination  algorithm38, grey wolf optimizer (GWO)39–42, 
Jaya  algorithm43, Teaching–learning based optimization (TLBO)  algorithm44, Rao  algorithm45, political optimizer 
46, whale optimization algorithm (WOA)47, Moth flame algorithm (MFO)48, multi-verse optimizer (MVO)49, 
Salp swarm algorithm (SSA)50,51, spotted hyena  optimizer52, butterfly  optimization53, lion  optimization54, fire-
works  algorithm55, Cuckoo search  algorithm56, bat  algorithm57, Tabu  search58, harmony search  algorithm59, 



3

Vol.:(0123456789)

Scientific Reports |         (2024) 14:5434  | https://doi.org/10.1038/s41598-024-55619-z

www.nature.com/scientificreports/

Newton–Raphson  optimizer60, reptile search  algorithm61, slime mould  algorithm62,63, harris hawk  optimizer64, 
Chimp  optimizer65, artificial gorilla troop  optimizer66, atom search  algorithm67, marine predator  algorithm68,69, 
sand cat swarm  algorithm70, equilibrium  optimizer71,72, Henry gas solubility algorithm (HGSA)73, resist-
ance–capacitance  algorithm74, arithmetic optimization  algorithm75, quantum-based avian navigation  optimizer76, 
multi trail vector DE  algorithm10,77, arithmetic optimization  algorithm78, starling murmuration  optimizer79, 
atomic orbit search (AOS)80, subtraction-average-based  optimizer81, etc. are reported for solving optimization 
problems. In conclusion, these new algorithms and their improved variations based on different metaheuristic 
computing algorithms yield greater results than  before82–84. A comparative study to show the recent efforts in 
using metaheuristic algorithms for data clustering is listed in Table 1.

The authors of Ref.88 proposed an improved version of the firefly algorithm by hybridizing the exploration 
method and a chaotic local search approach. The improved firefly algorithm was practically validated for rou-
tinely choosing the optimal dropout rate for the regularization of the neural networks. In order to maximize the 
local and global characteristics collected from each of the handwritten phrase representations under considera-
tion, a hierarchical feature selection framework based on a genetic algorithm has been developed in Ref.89. The 
authors of Ref.90 have reviewed the PSO algorithm and its variants for medical disease detection. The overfitting 
problem was addressed in Ref.91 by using the sine-cosime algorithm to determine an appropriate value for the 
regularisation parameter dropout. According to the literature review, swarm strategies are currently being uti-
lized effectively in this domain, although their future application has not yet been fully explored. The effective 
extreme gradient boosting classification algorithm, which is used to classify the characteristics obtained by the 
convolutional layers, was used to substitute the fully connected layers of a standard convolution neural network 
in order to increase classification  accuracy92. Furthermore, to support the suggested research, a hybrid version of 
the arithmetic optimization method is constructed and used to optimize the extreme gradient boosting hyperpa-
rameters for COVID-19 chest X-ray pictures. To solve the problem of early convergence, this study introduces a 
novel variant known as the adaptive seagull optimization algorithm. The performance of the suggested algorithm 
is improved by increasing the seagulls’ inclination towards exploratory  behaviour93. Qusai-random sequences 
are employed for the population initialization in place of a random distribution in order to increase the variety 
and convergence factors. The authors of Ref.94 proposed an enhanced PSO algorithm that uses pseudo-random 
sequences and opposing rank inertia weights instead of random distributions for initialization to improve conver-
gence speed and population diversity. The authors also introduced a new initialization population approach that 
uses a quasi-random sequence to initialize the swarm and generates an opposing swarm using the opposition-
based method. For fifteen UCI data sets, the suggested technique optimized feed-forward neural network weight.

Research gaps
The GWO is one of the well-known metaheuristic  algorithms95. This algorithm draws inspiration from the hunt-
ing behaviour of grey wolves and the hierarchical leadership model. The GWO has been implemented, and the 
results have been encouraging enough to warrant additional research. Investigators can improve the issues of low 
precision and slow convergence  speed96. As a result, studies utilized various techniques to increase optimizers’ 
efficiency and address optimization issues. For instance, an improved GWO was suggested to adjust the recurrent 

Table 1.  Summary of a few metaheuristic algorithms applied to data clustering.

Algorithm Year Inspiration Remarks

GA with gene  rearrangement29 2009
GA with gene rearrangement is reported, i.e. a new 
crossover operator is introduced to improve the exploita-
tion

This algorithm has been tested only for image clustering

CABC32 2010 Inspired by the foraging behaviour of honey bees Six real-time datasets are used to test he algorithm. The 
comparison was made between GA and PSO

Gravitational search  algorithm30 2011 Inspired by the gravity law and mass interactions The comparison was made between PSO and GA only. 
Detailed analysis is not available

DE2 2013 Inspired by Darwin’s theory of evolution The comparison is carried out between different variants 
of DE

PSO hybridized with magnetic charge system  search27 2015 Hybrid PSO with magnetic charge system searches and 
is inspired by electromagnetic theory Validation is carried out for very few benchmark datasets

Glowworm optimization  algorithm25 2017
The swarm’s movement of glowworms is determined 
by their distance from one another and by a luminous 
quantity

Detailed analysis is not carried out for the clustering 
problems

Symbiotic organism search  algorithm85 2019 Inspired by the symbiotic interaction implemented to 
survive and propagate

Ten datasets are used to validate the algorithm and 
compared with PSO and GA

GWO39 2020 Inspired by the social hierarchy and hunting behaviour 
of the grey wolves Limited datasets are used for validation

MFO86 2021 Inspired by the moth’s intelligence, i.e., transverse orien-
tation to navigate in nature

Original MFO is applied, and it gets trapped by local 
optima

Aquila  optimizer87 2022
Hybridized with the arithmetic optimization algorithm. 
The Aquila optimizer has inspired the behaviours during 
the finding of the prey

It has been applied for text and data clustering problems. 
But computation complexity is high

Chaos-based  PSO31 2022 Inspired by PSO and Gaussian Chao map It has been applied for auto labelling in recognition of 
human activity
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neural network’s parameters. To allow faster GWO convergence, chaotic GWO was introduced. Researchers 
have also employed numerous techniques to enhance  GWO97–99. The literature review has been extensively aug-
mented to underscore the existing research gaps within the context of optimization algorithms applied to data 
clustering, with a specific focus on the limitations of current metaheuristic algorithms, including the traditional 
GWO. Despite GWO’s proven effectiveness in various optimization tasks, its application to data clustering reveals 
critical shortcomings, primarily its struggle with premature convergence and its inability to maintain a balance 
between exploration and exploitation phases. These limitations significantly affect the quality of clustering out-
comes, especially in complex datasets with high dimensionality or noise. Moreover, while existing studies have 
explored numerous enhancements to GWO and other metaheuristic algorithms, there remains a distinct gap in 
the literature regarding the integration of these algorithms with classical clustering techniques, such as K-means, 
to address these specific challenges. This gap highlights the need for innovative approaches that can leverage the 
strengths of both metaheuristic optimization and traditional clustering methods to achieve superior clustering 
performance. The proposed K-means Clustering-based Grey Wolf Optimizer (KCGWO) aims to fill this gap by 
introducing a hybrid algorithm that combines the adaptive capabilities of GWO with the efficiency of K-means 
clustering. This combination is designed to enhance diversity, prevent premature convergence, and ensure a 
more effective balance between the exploration of new solutions and the exploitation of known good solutions. 
However, the literature review reveals that while there are various attempts to improve the clustering process 
through algorithmic enhancements, the specific approach of blending GWO with K-means, complemented by 
a dynamic weight factor to adjust exploration and exploitation dynamically, is notably absent. This research gap 
signifies an opportunity for the KCGWO to contribute significantly to the field, offering a novel solution that 
addresses both the limitations of traditional GWO in clustering tasks and the need for more effective hybrid 
algorithms. By clarifying these gaps and positioning the KCGWO within this context, the revised related works 
section establishes a strong foundation for the significance and novelty of the proposed research.

Need for the proposed algorithm
In addition to the metaheuristic algorithm, the primary goal of the data mining process is to gather data from a 
big data set. The data can then be translated into a clear format for further usage. Clustering is a popular experi-
mental data analysis tool. Objects are arranged using clustering so that each cluster contains more comparable 
objects. As discussed earlier, various cluster methods have been created to group the data. K-means is an example 
of a partitioning clustering algorithm because it operates based on the cluster  centroid15,19. Numerous uses of the 
K-means cluster have been documented. In addition to enhancing the reliability of wireless sensor networks, K
-means clustering was also used for image segmentation. Additionally, as an unsupervised learning technique, 
the K-means cluster has been frequently utilized to categorize data with no labels. The primary objective is to 
propose another variant of GWO called KCGWO to solve complex optimization problems, including data cluster-
ing problems. In this study, the KCGWO is proposed as an advanced solution to the inherent limitations of the 
GWO in addressing data clustering challenges. The GWO, while innovative in mimicking the social hierarchy 
and hunting tactics of grey wolves, exhibits deficiencies in exploration and exploitation—key factors for effec-
tive clustering. The proposed KCGWO method enhances GWO by incorporating the K-means algorithm and 
introducing a dynamic weight factor, aiming to improve the algorithm’s performance significantly. The meth-
odology of KCGWO unfolds in two pivotal enhancements over the traditional GWO. First, the integration of 
the K-means algorithm serves as an initial refinement step. Before the optimization process, K-means is applied 
to the dataset to establish a preliminary grouping of data points. This step ensures that the starting positions of 
the grey wolves (solutions) are closer to potential optimal solutions, thereby enhancing the exploration phase 
of GWO. The initial clustering helps in guiding the wolves towards promising areas of the search space from 
the onset. Second, a dynamic weight factor is introduced to adjust the influence of exploration and exploitation 
dynamically throughout the optimization process. This weight factor varies the wolves’ movements, allowing for 
a more flexible search strategy that can adapt based on the current state of the search. It enables the algorithm 
to maintain a balance between exploring new areas and exploiting known promising regions, thus preventing 
premature convergence to suboptimal solutions. The performance of KCGWO was evaluated through extensive 
testing on numerical benchmarks and real-world datasets, demonstrating its superior capability to efficiently 
navigate the solution space and locate optimal cluster centers swiftly. This effectiveness is attributed to the syner-
gistic combination of K-means for initial solution enhancement and the dynamic weight factor for maintaining an 
optimal balance between exploration and exploitation. Overall, KCGWO represents a significant advancement in 
solving data clustering problems, offering a robust and reliable method that overcomes the limitations of GWO. 
Its innovative approach to integrating K-means with a dynamic adjustment mechanism ensures high-quality 
solutions, making it a valuable tool for data analytics and clustering applications.

The primary contributions of this study are discussed as follows:

• A new variant of GWO called KCGWO based on K-means clustering algorithm and weight factors in the 
position update is proposed.

• Formulation fitness function for data clustering problem of a machine learning systems.
• The performance of the KCGWO is validated using 10 numerical test functions and data clustering problems 

using eight real-world data sets with different dimensions.
• The performance comparison is made with other well-known algorithms based on the statistical data analysis 

and statistical Friedman’s ranking test (FRT).
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The paper has been structured as follows. Section "Data clustering and problem statement" discusses the 
data clustering concepts and the formulation of the fitness function for the same problem. Section "Proposed 
K-means clustering grey wolf optimizer" comprehensively presents the formulation of the proposed KCGWO 
based on the K-means clustering algorithm; in addition, the basic concepts of GWO are also discussed. The 
results are comprehensively discussed in Section "Results and discussions", and Sect. "Conclusions" concludes 
the paper with a future study.

Data clustering and problem statement
The basic objective of data mining techniques is to obtain features from huge volumes of data. Such techniques 
use data processing techniques to find interesting patterns in huge amounts of data. Clustering, classifications, 
detecting anomalies, detecting deviations, synthesizing, and regression are a few examples of data analysis tech-
niques. Data clustering is dividing a set of information into smaller groups where the similarities between the 
individuals in each group are high while those between the data in other groups are low. Distance metrics like 
Euclidean distance, Chord distance, and Jaccard index are used to assess how similar individuals of a subset are 
to one another. In principle, clustering algorithms can be divided into two groups: partitional and hierarchical, 
depending on how clusters are created and  maintained86. A tree that depicts a sequence of clusters is produced in 
hierarchical clustering with no background knowledge of the number of groups or dependence on the initial state. 
Nevertheless, because they are static, an entity allocated to one cluster cannot be moved to another. Hierarchical 
algorithms’ main drawback is this. The incompetent clustering of overlapping clusters could also be due to a lack 
of planning regarding the number of clusters. On the other hand, partitional clustering divides items into clusters 
of a predetermined size. Various techniques for partitional clustering aim to increase the dissimilarity of members 
belonging to distinct clusters while attempting to reduce the difference between objects in each  cluster27,100–102.

Typically, the Euclidian distance is used to measure similarity. In this work, the distance between any two 
objects ( oi and oj ) inside the cluster is also determined using the Euclidean distance measure. Typically, it could 
be expressed as  follows103:

where oi and oj denote two distinct objects inside the cluster, d denotes the number of features for the entity, 
and partition clustering can be transformed into an optimization model based on the similarity metric, and this 
model can be explained as follows:

Subjected to:

where n denotes the sample size, K denotes the cluster size, and xi signifies the coordinates of the i th object in 
the current datasets. The term wik indicates whether the i th object is clustered into the k th cluster or not, and 
D(xi , zk) indicates the length between the i th object and the center of the k th cluster. Noteworthy is the fact that 
the following is used to observe the same.

A sample’s partition criteria determine the amount of wik in Eq. (3). Obtain an object partition that meets 
Eq. (3) for given a sample set X = {x1, x2, . . . , xn}.

where Ci(i = 1, 2, . . . ,K) is the i th cluster’s object set, and the following equation can be used to identify its 
members:

where zi is frequently employed in the k-means clustering method, symbolizes a new center of cluster i, and ‖ . ‖ 
indicates the Euclidean distance between any two items in the subset.

(1)D
(

oi , oj
)

=� oi − oj �=

√

√

√

√

d
∑

m=1

(

oim − ojm
)2
,

(2)Minimize
Z,W

: f (Z,W) =

K
∑

k=1

n
∑

i=1

wikD(xi , zk),

(3)
{

∑K
k=1 wik = 1, i = 1, 2, . . . , n;
wik ∈ {0, 1}, ∀i ∈ {1, 2, . . . , n}, k ∈ {1, 2, . . . ,K}

(4)W = {wik|i = 1, 2, . . . , n, k = 1, 2, . . . ,K

(5)







�K
i=1 Ci = X;

Ci ∩ Cj = φ, ∀i, j ∈ {1, 2, . . . ,K} ∧ i �= j;
Ci �= φ, ∀i ∈ {1, 2, . . . ,K}

(6)
{

Ci =
{

xk| � xk − zi �≤� xk − zp �, xk ∈ X
}

, p �= i, p = 1, 2, . . . ,K;

zi =
1

|Ci |

∑

xk∈Ci
xk , i = 1, 2, . . . ,K



6

Vol:.(1234567890)

Scientific Reports |         (2024) 14:5434  | https://doi.org/10.1038/s41598-024-55619-z

www.nature.com/scientificreports/

Proposed K‑means clustering‑based grey wolf optimizer
This section briefs the original concepts of the basic Grey Wolf Optimizer (GWO) with its mathematical model-
ling. The proposed K-means Clustering-based Grey Wolf Optimizer (KCGWO) is discussed comprehensively.

Grey wolf optimizer
The grey wolf optimization algorithm is the most contemporary breakthrough in the field of metaheuristic 
optimization and was initially devised in Ref.95. GWO mimics the hunting actions of grey wolves in the wild, a 
supporting approach they use to chase their prey. The framework of the GWO seems quite distinct compared 
to other meta-heuristic optimization in that it uses three optimal specimens as the basis for a complex search 
procedure. These three optimal specimens are an alpha wolf α that serves as the pack leader, a beta wolf β that 
provides support to the leader, and a delta wolf δ that follows the leader and the loyal wolves. The last kind of wolf 
is termed omega wolf ω . Such wolves have varying degrees of responsibility and can be arranged in a hierarchy, 
with α being the highest level and the first solution, β , δ , and ω representing the second, third, and final solutions, 
correspondingly. Thus, the three wolves mentioned above serve as inspiration for omegas. All species of wolves 
employ the three separate coefficients utilized to implement the encircling process to attempt to encompass the 
prey when they have located it. Three wolves evaluate the potential location of prey during the iterative search 
strategy. Based on Eqs. (7), (8), the positions of the wolf are updated during the optimization procedure.

where t  is the current iteration, −→C  and −→A  are coefficient vectors, −→XP signifies the prey’s position, and −→X  signifies 
the wolf position. The vectors −→C  and −→A   are as follows:

where −→r1  and −→r2  signify random vectors in the range [0, 1] , and factor a linearly falls from 2 to 0 with the number 
of iterations. The wolf at a location can change its position about the prey using the aforementioned updating 
algorithms. By changing the random parameters −→A  and −→C  , it may be made to move to any location in the con-
tinuous space close to prey. The GWO considers that the prey’s position is likely in the alpha, beta, and delta 
positions. During searching, the best, second-best, and third-best individuals found so far are recorded as alpha, 
beta, and delta. Omega wolves, on the other hand, change their sites in accordance with alpha, beta, and delta 
wolf populations.

The location vectors for α , β , and δ are, respectively, −→Xα , −→Xβ , and −→Xδ . The vectors −→C1 , 
−→
C2 , and −→C3 were produced 

randomly, and −→X  indicates the current position vector. The distances between the position of the current person 
and those of alpha, beta, and delta are calculated, respectively, by Eq. (11). To determine the present person’s 
final position matrices, the following are described.

where −→A1 , 
−→
A2 , and −→A3 denote vectors that are randomly created, and t  signifies the current iteration. The regulating 

factor that modifies the coefficient −→A  is variable a . This tactic aids the population in deciding whether to pursue 
or flee its prey. As a result, if |A| has a value greater than 1, the wolf is trying to find new search spaces. However, 
the wolf could pursue and attack the prey if the value of |A| is smaller than 1. The grey wolf starts to prevent any 
motion of the prey from attacking it once the hunting is accomplished adequately. This technique is accomplished 
by lowering the value of a , which is in the range of 2 and 0. The value of an also decreases the value of −→A  , which 
now falls between [− 1, 1]. The pseudocode of the GWO is provided in Algorithm 1.

(7)
−→
D =

∣

∣

∣

−→
C ·

−→
XP(t)−

−→
X (t)

∣

∣

∣
,

(8)−→
X (t + 1) =

−→
XP(t)−

−→
A ·

−→
D ,

(9)−→
A = 2a · −→r1 −

−→a ,

(10)−→
C = 2 · −→r2 ,

(11)

−→
D α =

�

�

�

−→
C1 ·

−→
Xα −

−→
X
�

�

�

−→
D β =

�

�

�

−→
C2 ·

−→
Xβ −

−→
X
�

�

�

−→
D δ =

�

�

�

−→
C3 ·

−→
Xδ −

−→
X
�

�

�



















.

(12)

−→
X1 =

−→
Xα −

−→
A1 ·

�

−→
Dα

�

−→
X2 =

−→
Xβ −

−→
A2 ·

�

−→
Dβ

�

−→
X3 =

−→
Xδ −

−→
A3 ·

�

−→
Dδ

�



















,

(13)−→
X (t + 1) =

−→
X1 +

−→
X2 +

−→
X3

3
,



7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:5434  | https://doi.org/10.1038/s41598-024-55619-z

www.nature.com/scientificreports/

Algorithm 1.  Pseudocode of grey wolf optimizer.

K‑means clustering‑based grey wolf optimizer
In addition to the significance of optimization techniques, data analysis is a key research area. Clustering has thus 
been utilized as one of the data exploration approaches to gain a general understanding of the data’s architecture. 
K-means is the most used unsupervised algorithm. Data points in each group resemble each other much more 
than those in other clusters. The method does a sequence of operations to identify unique subsets, which are 
discussed below.

• The number of subsets is the primary criterion for the K-means, which in data mining starts with the initial 
set of random centroids chosen for each cluster.

• The following step involves determining the Euclidean distance from the center to every data point in specific 
information set to connect each data with the closest point.

• Continue performing until there is no modification in the centroids if K centres shift during the iteration.

The algorithm attempts to minimize the squared error function or objective function presented in Eq. (14).

where xji signifies the data points of i th cluster, Cj denotes the size of the cluster center, and �xji − Cj� represents 
the Euclidean distance between Cj and xji . The initialization of the proposed KCGWO is similar to the original ver-
sion of GWO. K-means is utilized to separate the grey wolf population into three groups. The objective function 
value is then determined for each cluster/population  individually104. The population has been divided into three 
clusters based on a random integer. If the random number is greater than 0.5, KCGWO uses population clusters 
based on the fitness values of each cluster. All the clusters’ fitness values are compared within the condition. The 
population position is equal to cluster position 1, position 2, or position 3 based on the conditions provided in 
the pseudocode. However, KCGWO operates on the actual population without clustering if the random value is 
less than or equal to 0.5. Therefore, this feature can be utilized with different methods, but it needs to be evaluated 
to ensure it functions well. However, K-means are utilized in this study to enhance the effectiveness of GWO. 
The proposed KCGWO tries to compute the fitness for each population after selecting a particular population 
with/without clustering until it discovers the best fitness. Equations (7)–(12) determine the optimum search 
agents. Equation (13) is then used to update each position. However, the weightage is not provided for the wolf 
hierarchy. Therefore, in Eq. (13), weight factors are introduced to improve the solution  quality105. The modified 
position update equation is provided in Eq. (15).

The variables a , −→A  and −→C  are updated for the subsequent iteration. As a result, the iteration’s best fit is chosen. 
Finally, the best fitness and position are returned. Figure 1 illustrates the flowchart of the proposed KCGWO 
algorithm. Algorithm 2 depicts the pseudocode of the KMGWO algorithm.
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Application of the proposed KCGWO to data clustering
A crucial stage in every metaheuristic approach is solution encoding. Each solution (grey wolf) represents all 
the cluster centers. These solutions are first produced randomly. However, the best position at each iteration of 
the KCGWO serves as a guide for the remaining grey wolves.

Each answer is an array of size d × k , with d being the total number of characteristics for each data and k 
being the total clusters. Figure 2 displays a pack of grey wolves representing the solutions. The fitness function is 
the total intra-cluster distance. The fitness function must be minimized to discover the best cluster centers using 
KCGWO. It is preferred to reduce the sum of intra-cluster  distances96. In Eq. (16), the cluster center is defined, 
and Eq. (17) defines the distances between cluster members.

where yj denotes cluster center, xp denotes the position of the p th cluster member, a denotes the number of 
features of the dataset, nj denotes the members in the cluster j , and Cj denotes the cluster member j.

(16)Yj =
1
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xp,
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Figure 1.  Flowchart of the proposed algorithm.

Figure 2.  Illustration of solution  encoding96.
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Algorithm 2.  Pseudocode of the proposed KCGWO.

Computational complexity
The computational complexity of the KCGWO is discussed as follows: (i) The proposed algorithm necessi-
tates O(N × dim) , where N  denotes the number of search agents, i.e. population size and dim denotes the 
problem dimension, (ii) the control parameters of KCGWO necessitates O(N × dim) , (iii) the position update 
of the KCGWO necessitates O(N × dim) , and (iv) fitness values of each population and cluster necessitate 
O(N × dim× n) , where n denotes the number of clustered population. Based on discussions, the complexity 
of KCGWO for each iteration is O(N × dim× n) , and finally, the total complexity of the proposed KCGWO 
algorithm is O(N × dim× n×Max_it) , where Max_it denotes the maximum of iterations.

Results and discussions
The original GWO is improved by employing the K-means clustering concept along with the weight factor, and it 
has been tested using 10 benchmark numerical functions, which have both unimodal and multimodal features. 
In addition, the performance is also validate for data clustering problems. The performance of the proposed 
KCGWO is compared with four other algorithms, such as MFO, SSA, MVO, ASO, PSO, JAYA, and the original 
GWO algorithm. The population size is 30, and the maximum number of iterations is 500 for all selected algo-
rithms. All the algorithms are implemented using MATLAB software installed on a laptop with an i5 processor, 
a 4.44 GHz clock frequency, and 16 GB of memory. The algorithms are executed 30 times individually for a fair 
comparison.

Results for numerical optimization functions
The details of the selected benchmark functions are recorded in Table 2. The functions F1-F4 have unimodal 
features with 30 dimensions, F5-F7 have multimodal features with 30 problem dimensions, & F8-F10 have mul-
timodal features with very low dimensions. The purpose of selecting the listed benchmark function is to analyze 
the exploration and exploitation behaviour of the developed KCGWO algorithm. The statistical measures, such 
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as minimum (Min), Mean, maximum (Max), and Standard Deviation (STD) of all designated algorithms, are 
recorded in Table 3.

Classifying functions F01-F04 as unimodal test scenarios with a single global best is appropriate. Such test 
sets can be used to look into the general exploitation potential of the proposed KCGWO approach. Findings of 
the proposed KCGWO and other approaches, as well as their Min, Max, Mean, and STD, are shown in Table 2. 
The associated tables’ higher outcomes are noted. The optimization techniques are then ordered based on their 
average values. The average rank is also calculated to determine the approaches’ overall ranking. All Tables 
include a summary of the findings of the statistical analysis. The best results are emphasized in bold face in all 
tables. For each unimodal function, individual ranking is provided to examine the performance of the proposed 
algorithm. The proposed algorithm stands first out of all selected algorithms for all four unimodal functions.

The F1–F04 shows that the KCGWO can arrive at capable making with a suitable exploitation capability. 
This seems to be due to the effectiveness with which the suggested K-means clustering concept and weight fac-
tors can boost the GWO’s tendencies for exploration and exploitation. As a result, the mechanisms make the 
algorithm more likely to produce smaller fitness and higher stability index values. This tool helps explore new 
locations close to the recently discovered results. Because of this, it was found that the new algorithmic changes 
have improved how GWO handles unimodal test cases. Assessing the exploration potential using multimodal 
functions (F5–F10) is reasonable. Table 2 shows that KCGWO can investigate highly competitive solutions for 
the F5–F10 test scenarios. The KCGWO can produce optimal results for all test functions compared to other 
approaches. According to the results, KCGWO can outperform all selected algorithms in multimodal instances. 
Additionally, statistical analyses show that, in 95% of evaluations, KCGWO outcomes are superior to those of 
other approaches. Compared to GWO, the accuracy is increased based on the STD index.

In particular, when the objective problems (F5-F8) involve several local optima, KCGWO’s outperformance 
demonstrates a sufficient explorative nature. This is due to the effectiveness with which the K-means clustering 
structure can boost the GWO’s performance for exploration and exploitation. Lower stability index values can 
encourage wolves to make more exploratory jumps. This feature might be seen when KCGWO requires inves-
tigating previously unexplored regions of the issue landscape. The weight factors have helped GWO achieve a 
delicate balance between its local and global search inclinations. According to the findings, the recommended 
K-means searching steps increase the GWO’s exploration capability. Additionally, the KCGWO’s update mecha-
nism can lessen the likelihood of the KCGWO entering local optima. The exploratory propensity of KCGWO 
is hence advantageous. The computational complexity of the proposed algorithm is assessed by recording the 
RunTime (RT). The RT values for each function by all selected algorithms are recorded in Table 4. The average 
values of RT are also provided, and based on the mean RT value, the original GWO has less RT value, and the 
RT value of KCGWO is slightly greater than the GWO, which is due to the fact that the introduction of the 
K-means clustering mechanism. At the same time, the weight factor does not impact the proposed algorithm’s 
computational complexity.

Figure 3 shows all selected algorithms’ convergence characteristics for handling F1-F10 functions. All selected 
algorithms consistently outperform for a benchmark and have excellent convergence outfits in the original 
publication. Figure 3 also offers a convergence timeframe. It pinpoints the times when KCGWO performs bet-
ter than GWO. According to Fig. 3, KCGWO eventually converges to superior outcomes. A large number of 
iterations allows KCGWO to approximate more precise solutions close to the optimum solutions. Additionally, 
rapid convergence patterns may be seen when comparing the curves of KCGWO and its original version. This 
pattern demonstrates that KCGWO can emphasize more exploitation and local search in the latter stages. These 
plots suggest that the KCGWO can successfully increase all wolves’ fitness and promise to exploit improved 
results. In order to visualize the stability analysis, the boxplots are also plotted and shown in Fig. 4. From Fig. 4, 
it is detected that the stability of the KCGWO is better than all selected algorithms.

To further asses the performance of the proposed algorithm, the statistical non-parametric test, Friedman’s 
Ranking Test (FRT), has been conducted, and the average FRT values of all algorithms are logged in Table 5. 

Table 2.  10 benchmark test functions for validation.

Function Dim Range fmin

f1(x) =
∑n

i=1x
2
i 30 [− 100, 100] 0

f2(x) =
∑n

i=1|xi | +
∏n

i=1|xi | 30 [− 10, 10] 0

f3(x) =
∑n

i=1

(

∑i
j−1xj

)2 30 [− 100, 100] 0

f4(x) = maxi{|xi |,1 ≤ i ≤ n} 30 [− 100, 100] 0

f5(x) =
∑n

i=1[x
2
i − 10cos(2πxi)+ 10] 30 [− 5.12, 5.12] 0

f6(x) = −20exp

(

−0.2

√

1
n

∑n
i=1x

2
i

)

− exp
(

1
n

∑n
i=1cos(2πxi)

)

+ 20+ e 30 [− 32, 32] 0

f7(x) =
1

4000

∑n
i=1x

2
i −

∏n
i=1cos

(

xi√
i

)

+ 1 30 [− 600, 600] 0

f8(x) = 4x21 − 2.1x41 +
1
3 x

6
1 + x1x2 − 4x22 + 4x42 2 [− 5, 5]  − 1.0316

f9(x) =
(

x2 −
5.1
4π2 x

2
1 +

5
π
x1 − 6

)2
+ 10

(

1− 1
8π

)

cosx1 + 10 2 [− 5, 5] 0.398

f10(x) = −
∑10

i=1[(X − ai)(X − ai)
T + ci]

−1 4 [0, 10]  − 10.5363
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Table 3.  Results obtained for 10 benchmark functions by all selected algorithms. Significant values are in bold 
and italic.

Functions Metrics KCGWO GWO MFO MVO SSA JAYA AOS PSO

f1

Min 0.00E + 00 2.65E-29 3.00E + 02 8.70E-01 3.41E-08 0.887679 2.84E-80 899.5347

Max 1.74E-158 8.74E-28 5.42E + 02 1.73E + 00 6.13E-07 72.8437 3.79E-76 11,137.22

Mean 0.00E + 00 1.82E-28 3.24E + 02 1.70E + 00 1.90E-07 1.454592 3.81E-80 1032.142

STD 1.01E-158 4.51E-28 1.33E + 02 4.88E-01 3.00E-07 0.234375 3.859375 0.052083

Rank 1 3 7 5 4 6 2 8

f2

Min 0.00E + 00 9.51E-18 1.48E + 01 5.95E-01 1.35E + 00 1.17E-02 7.67E-55 1.67E + 01

Max 0.00E + 00 2.98E-16 2.63E + 01 8.89E-01 4.58E + 00 1.75E-01 3.73E-53 4.30E + 01

Mean 0.00E + 00 6.38E-17 2.42E + 01 6.93E-01 3.00E + 00 1.02E-01 1.72E-53 2.40E + 01

STD 0.00E + 00 1.54E-16 6.11E + 00 1.50E-01 1.61E + 00 9.90E-02 3.17E + 00 4.17E-02

Rank 1 3 8 5 6 4 2 7

f3

Min 2.65E-99 3.85E-07 1.38E + 04 1.66E + 02 6.98E + 02 9.35E + 03 2.85E + 04 7.62E + 03

Max 9.44E-78 8.42E-04 4.61E + 04 2.19E + 02 2.26E + 03 1.34E + 04 5.31E + 04 3.98E + 04

Mean 4.84E-96 5.16E-05 2.17E + 04 1.76E + 02 1.02E + 03 1.06E + 04 3.20E + 04 3.51E + 04

STD 5.45E-78 4.72E-04 1.68E + 04 2.83E + 01 8.22E + 02 1.51E-01 3.34E + 00 1.20E-01

Rank 1 2 6 3 4 5 7 8

f4

Min 0.00E + 00 2.02E-07 5.19E + 01 1.09E + 00 8.02E + 00 1.65E + 01 1.07E + 01 6.90E + 01

Max 2.96E-84 6.98E-07 7.18E + 01 2.13E + 00 1.36E + 01 3.80E + 01 7.70E + 01 7.50E + 01

Mean 3.50E-87 2.22E-07 6.58E + 01 1.74E + 00 9.02E + 00 1.70E + 01 3.58E + 01 7.16E + 01

STD 1.71E-84 2.81E-07 1.02E + 01 5.27E-01 2.97E + 00 5.73E-02 3.16E + 00 5.21E-02

Rank 1 2 7 3 4 5 6 8

f5

Min 0.00E + 00 9.66E-13 1.16E + 02 8.15E + 01 4.48E + 01 1.25E + 00 0.00E + 00 1.32E + 02

Max 0.00E + 00 5.40E + 00 1.41E + 02 1.30E + 02 5.77E + 01 1.26E + 01 0.00E + 00 1.75E + 02

Mean 0.00E + 00 1.59E-12 1.36E + 02 1.26E + 02 4.58E + 01 7.20E + 00 0.00E + 00 1.63E + 02

STD 0.00E + 00 3.12E + 00 1.32E + 01 2.70E + 01 7.20E + 00 8.85E-02 3.01E + 00 4.17E-02

Rank 1 3 6 5 8 4 2 7

f6

Min 8.88E-16 1.00E-13 2.00E + 01 1.10E + 00 1.78E + 00 2.02E + 01 4.44E-15 2.00E + 01

Max 8.88E-16 1.11E-13 2.00E + 01 2.16E + 00 3.35E + 00 2.02E + 01 4.44E-15 2.00E + 01

Mean 8.88E-16 1.04E-13 2.00E + 01 1.21E + 00 2.89E + 00 2.02E + 01 4.44E-15 2.00E + 01

STD 0.00E + 00 5.43E-15 5.34E-05 5.86E-01 8.06E-01 9.90E-02 2.91E + 00 5.73E-02

Rank 1 3 6 4 5 8 2 7

f7

Min 0.00E + 00 0.00E + 00 6.98E + 00 8.38E-01 4.94E-03 1.03E + 00 0.00E + 00 5.85E + 00

Max 0.00E + 00 1.23E-02 1.01E + 02 9.33E-01 1.96E-02 1.09E + 00 0.00E + 00 6.77E + 01

Mean 0.00E + 00 0.00E + 00 4.36E + 01 8.42E-01 1.23E-02 1.08E + 00 0.00E + 00 6.28E + 00

STD 0.00E + 00 7.12E-03 4.73E + 01 5.37E-02 7.32E-03 7.81E-02 2.86E + 00 6.25E-02

Rank 1 2 8 5 4 6 3 7

f8

Min  − 1.03163  − 1.03163  − 1.03163  − 1.03163  − 1.03162  − 1.0316  − 1.0316  − 1.0316

Max  − 1.03163  − 1.03163  − 1.03163  − 1.03163  − 1.03152  − 1.0316  − 1.0316  − 1.0316

Mean  − 1.03163  − 1.03163  − 1.03163  − 1.03163  − 1.03162  − 1.0316  − 1.0316  − 1.0316

STD 0 6.62E-08 0 6.21E-07 5.64E-05 1.93E-05 2.35E-10 1.57E-16

Rank 1 5 1 6 8 7 4 3

f9

Min 0.397887 0.397888 0.397887 0.397887 0.39793 0.39823 0.39789 0.39789

Max 0.397887 0.397898 0.397887 0.397888 0.399332 0.39918 0.39790 0.39789

Mean 0.397887 0.397889 0.397887 0.397887 0.398836 0.39872 0.39789 0.39789

STD 0 5.64E-06 0 9.32E-08 0.000711 4.75E-04 4.99E-06 0.00E + 00

Rank 1 6 1 4 8 7 5 1

f10

Min  − 10.5364  − 10.5351  − 10.5364  − 10.5361  − 4.96056  − 4.7879  − 10.5248  − 3.8354

Max  − 10.5364  − 10.532  − 2.80663  − 10.5355  − 2.91529  − 2.3747  − 3.8349  − 2.4217

Mean  − 10.5364  − 10.5341  − 10.5364  − 10.536  − 3.09438  − 2.7739  − 5.1264  − 3.8354

STD 2.81E-15 0.001572 4.46279 0.00034 1.132679 1.29E + 00 3.55E + 00 8.16E-01

Rank 1 4 3 2 7 8 5 6

Average rank 1 3.3 5.3 4.2 5.8 6 3.8 6.2
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Based on the observation, the proposed algorithm attains the top of the table with an average FRT of 1.383, fol-
lowed by GWO, AOS, MVO, SSA, MFO, JAYA, and PSO.

These statistics indicate that the K-mean clustering approach and modified position update equation based on 
the weight factors can enhance the search functionality of GWO. Comparing the suggested KCGWO to existing 
approaches with superior convergence characteristics can be more effective.

Results for data clustering problems
The suggested clustering approach was thoroughly assessed using eight datasets. Few datasets used are syn-
thetic, and others are drawn from real-time benchmark data. Table 6 provides a summary of the traits of these 
 datasets106. The features (dimensions), the total number of samples, and the number of clusters in each dataset 
are recorded in Table 6. The type of the problems is also mentioned. The dataset is selected based on the type 
and number of samples.

The performance of the proposed KCGWO for clustering is initially compared with standalone K-means 
clustering algorithms and the Gaussian Mixture Model (GMM). The non-linear, unsupervised t-distributed 
Stochastic Neighbor Embedding (t-SNE) is typically employed for data analysis and high-dimensional data 
visualization. For all the selected datasets, t-SNE plots obtained by KCGWO, GMM, and K-means are plotted 
in Figs. 5, 6, 7, 8, 9, 10, 11 and 12. Figure 5a displays the emission data distribution obtained by the KCGWO 
between various dimensions. It also shows how well the high-dimensional data are distributed in 2-dimensions. 
Figure 5b and c show the t-SNE plots obtained by the GMM and K-means algorithms. The cluster centre of each 
cluster found by the K-means algorithm is also demonstrated in Fig. 5c.

Figure 6a displays the HTRU2 data distribution obtained by the KCGWO between various dimensions. It 
also shows how well the high-dimensional data are distributed in 2-dimensions. Figure 6b and c show the t-SNE 
plots obtained by the GMM and K-means algorithms. The cluster center of each cluster found by the K-means 
algorithm is also demonstrated in Fig. 6c. Figure 7a displays the Wine data distribution obtained by the KCGWO 
between various dimensions. It also shows how well the high-dimensional data are distributed in 2-dimensions. 
Figures 7b and c show the t-SNE plots obtained by the GMM and K-means algorithms. The cluster center of 
each cluster found by the K-means algorithm is also demonstrated in Fig. 7c.

Figure 8a displays the Breast cancer data distribution obtained by the KCGWO between various dimen-
sions. It also shows how well the high-dimensional data are distributed in 2-dimensions. Figure 8b and c show 
the t-SNE plots obtained by the GMM and K-means algorithms. The cluster center of each cluster found by the 
K-means algorithm is also demonstrated in Fig. 8c. Figure 9a displays the Sonar data distribution obtained by 
the KCGWO between various dimensions. It also shows how well the high-dimensional data are distributed in 
2-dimensions. Figures 9b and c show the t-SNE plots obtained by the GMM and K-means algorithms. The cluster 
center of each cluster found by the K-means algorithm is also demonstrated in Fig. 9c.

Figure 10a displays the WDBC data distribution obtained by the KCGWO between various dimensions. It 
also shows how well the high-dimensional data are distributed in 2-dimensions. Figure 10b and c show the t-SNE 
plots obtained by the GMM and K-means algorithms. The cluster center of each cluster found by the K-means 
algorithm is also demonstrated in Fig. 10c. Figure 11a displays the Iris data distribution obtained by the KCGWO 
between various dimensions. It also shows how well the high-dimensional data are distributed in 2-dimensions. 
Figure 11b and c show the t-SNE plots obtained by the GMM and K-means algorithms. The cluster center of 
each cluster found by the K-means algorithm is also demonstrated in Fig. 11c.

Figure 12a displays the 2022 Ukraine-Russia war data distribution obtained by the KCGWO between various 
dimensions. It also shows how well the high-dimensional data are distributed in 2-dimensions. According to 
Figs. 5, 6, 7, 8, 9, 10, 11 and 12, in data with convex-shaped clusters, KCGWO has been capable of recognizing 
clusters and discriminating overlap among clusters quite effectively. This demonstrates how clearly defined the 
differences between the clusters are. According to Figs. 5, 6, 7, 8, 9, 10, 11 and 12, KCGWO could cluster most 
of the data points accurately despite the high density and large scatter of sample points in the dataset. This 
shows that KCGWO is resistant to high data volume and dispersion. Additionally, it has been demonstrated 

Table 4.  RT values of each test functions.

Functions KCGWO GWO MFO MVO SSA JAYA AOS PSO

f1 0.276 0.1875 0.3073 0.4948 0.1927 0.2844 3.8594 0.3521

f2 0.0833 0.0521 0.1198 0.1146 0.0885 0.1198 2.8490 0.1469

f3 0.1823 0.1771 0.1563 0.2188 0.1563 0.2292 0.2240 0.2552

f4 0.0833 0.0469 0.0625 0.099 0.0625 0.1667 0.1302 0.1042

f5 0.1094 0.0885 0.1094 0.1563 0.1927 0.1254 0.1356 0.1563

f6 0.0625 0.0469 0.0729 0.1198 0.1198 0.1667 0.1302 0.1042

f7 0.0781 0.0625 0.0833 0.1042 0.1458 0.1719 0.1927 0.2292

f8 0.0677 0.0781 0.1094 0.1615 0.0729 0.1347 0.1451 0.1289

f9 0.0365 0.0781 0.0677 0.125 0.0677 0.0598 0.0747 0.0909

f10 0.0521 0.026 0.0469 0.0677 0.0521 0.0789 0.1151 0.0994

Average RT 0.10312 0.08437 0.11355 0.16617 0.1151 0.15375 0.7856 0.16673
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that KCGWO performs effectively when dealing with circular clusters in difficult datasets. KCGWO successfully 
identifies the majority of the curved regions in these datasets. Due to the utilization of the Euclidean distance 
measure for clustering, the proposed KCGWO has not completely distinguished all of the clusters in the data.

In order to prove the performance of the proposed KCGWO, two additional metrics, such as Mean Abso-
lute Error (MAE) and Mean Squared Error (MSE), are recorded in Table 7. The average MAE and MSE values 
obtained by KCGWO with respect to GMM and K-means are listed in Table 7. Based on the average values, 
it is observed that the performance of the KCGWO with respect to K-means is better than GMM. Based on 

Figure 3.  Convergence curve obtained by all algorithms.
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the comparison of the GMM with respect to K-means, it is observed that GMM is performing better than the 
K-means clustering algorithm. The results show that KCGWO produced results with more accuracy than GMM 
and K-means. One way to look at this enhancement is due to the population distribution by K-means and the 
weight factors, which avoids early convergence and strikes a compromise between global and local searches. 
Conversely, the proposed KCGWO has significantly enhanced effectiveness in data with significant overlapping 
and difficulty. As a result, KCGWO outperformed GMM and K-means and improved the ability to identify 
non-linear clusters.

Further, to have a fair comparison, the performance of the proposed algorithm is also compared with other 
metaheuristic algorithms, such as GWO, MFO, MVO, and SSA, in terms of the statistical measures, such as Min, 
Mean, Max, and STD. For all algorithms, the population size is carefully chosen as the number of clusters mul-
tiplied by 2, and the iteration count is 500. Table 8 recorded all the statistical measures of all selected algorithms 
and datasets. It is noticed from Table 8 that the KCGWO can able to attain the best Min values for all datasets. 

Figure 4.  Boxplot analysis of all selected algorithms.
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The proposed algorithm can converge to the global optima and find the best solution. Except for the WDBC 
dataset, the proposed algorithm’s maximum values are better. The mean and STD values obtained by the proposed 
algorithm are better than any other algorithms for all selected datasets. It means that the reliability of KCGWO 
is better than any other selected algorithms for all selected datasets. For each dataset, the ranking is provided 
based on the Min values, and the average rank values are also logged in Table 8. Based on the mean rank values, 
KCGWO stands first, followed by SSA, GWO, MFO, and MVO.

The following ratios of sequential errors describe the convergence rate given an undetermined optimal value, 
which is typically the case in data clustering applications:

where fi denotes the fitness value during the current iteration, fi+1 denotes the fitness value during the next 
iteration, and fi−1 denotes the fitness value during the previous iteration. The logarithmic CR plot measures the 
dynamic fitness change all over the iteration. The curves of logarithmic convergence curves are illustrated in 
Fig. 13 to visualize the effect on the various datasets. Comparatively to the other configurations, such as GWO, 
MFO, MVO, and SSA, using K-means clusters with weight factors in GWO has produced a good convergence 
that avoids the local optimum trap, with the lowest MAE and MSE values occurring at iteration 500. The adopted 
mechanism in the GWO algorithm maintained a reasonable balance between them and produced suitable popula-
tion patterns for exploration and exploitation. In addition to the convergence curve, the boxplot analysis is also 
made to prove the reliability of the algorithms selected. All the algorithms are executed 30 times. The boxplots 
are plotted and illustrated based on the recorded values in Fig. 14.

From Fig. 14, it is clearly evident that the reliability of the KCGWO is superior to all the selected algorithms. 
The computational time necessary by the algorithm to find the overall optimal solution is known as the time to 
best solution. The RT of an algorithm is the sum of all computations performed until its stopping criterion stops 
it. Therefore, the RT is recorded for the selected algorithms and recorded in Table 9.

Similar to numerical optimization problems, the average RT values are provided in Table 9, and based on the 
mean RT value, the original GWO has less RT value, and the RT value of KCGWO is slightly greater than the 
GWO, which is due to the fact that the introduction of the K-means clustering mechanism. At the same time, 
the weight factor does not impact the proposed algorithm’s computational complexity. It is clear from the prior 
comparisons and discussions that the improvisation of GWO performance with K-Means clustering and weight 
factors has accomplished its objectives and improved the original GWO algorithm. The new adjustments enabled 

(18)Convergence Rate(CR) =

∣

∣fi+1 − fi
∣

∣

∣

∣fi − fi−1

∣

∣

,

Table 5.  FRT values of all algorithms for each test functions. Significant values are in bold.

Functions KCGWO GWO MFO MVO SSA JAYA AOS PSO

f1 1.000 3.000 7.000 5.667 4.000 5.333 2.000 8.000

f2 1.000 3.000 7.667 5.000 6.000 4.000 2.000 7.333

f3 1.000 2.000 7.000 3.000 4.000 5.333 7.333 6.333

f4 1.000 2.000 7.000 3.000 4.000 5.333 6.333 7.333

f5 1.000 2.333 7.333 4.667 4.333 6.000 2.667 7.667

f6 1.667 4.333 7.333 4.667 1.333 6.000 3.000 7.667

f7 2.000 2.000 7.667 4.667 6.000 4.333 2.000 7.333

f8 1.833 5.000 1.833 6.000 7.333 7.667 4.000 2.333

f9 2.000 5.333 2.000 4.333 7.667 7.333 5.333 2.000

f10 1.333 3.667 3.000 2.667 6.000 7.333 5.333 6.667

Average FRT 1.383 3.267 5.783 4.367 5.067 5.867 4.000 6.267

Table 6.  Details of the selected  dataset106.

Datasets Dimensions Samples Cluster Type

Emission 4 7384 6 Real-world

HTRU2 4 17,898 6 Artificial

Wine 14 178 2 Artificial

Breast cancer 30 569 2 Real-world

Sonar 60 208 2 Artificial

WDBC 30 568 2 Real-world

Iris 4 150 3 Real-world

2022 Ukraine Russia war 11 194 4 Real-world
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Figure 5.  T-SNE plots of emission data; (a) KCGWO, (b) GMM, (c) K-means.
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Figure 6.  T-SNE plots of HTRU2 data; (a) KCGWO, (b) GMM, (c) K-means.
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Figure 7.  T-SNE plots of Wine data; (a) KCGWO, (b) GMM, (c) K-means.
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Figure 8.  T-SNE plots of Breast cancer data; (a) KCGWO, (b) GMM, (c) K-means.
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Figure 9.  T-SNE plots of Sonar data; (a) KCGWO, (b) GMM, (c) K-means.
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Figure 10.  T-SNE plots of WDBC data; (a) KCGWO, (b) GMM, (c) K-means.
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Figure 11.  T-SNE plots of iris data; (a) KCGWO, (b) GMM, (c) K-means.
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Figure 12.  T-SNE plots of 2022 Ukraine-Russia war data; (a) KCGWO, (b) GMM, (c) K-means.
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KCGWO to defeat numerous original and other selected algorithms, presenting KCGWO as a global optimizer 
and an efficient data clustering technique that can be applied in industrial applications.

Discussions
While the KCGWO introduces significant improvements to the conventional GWO, enhancing its applicabil-
ity to data clustering tasks, it is not without its limitations. These constraints, inherent to the methodology and 
application context, warrant consideration for future research and practical implementation. KCGWO’s per-
formance is partly contingent on the initial clustering obtained from the K-means algorithm. This dependence 
means that the quality of KCGWO’s outcomes can be affected by the initial positioning of centroids in K-means, 
which is sensitive to the chosen initial points. If the K-means algorithm converges to a local optimum during 
its initialization phase, KCGWO may start from a less advantageous position, potentially impacting the overall 
optimization process. The introduction of a dynamic weight factor in KCGWO, while beneficial for balancing 
exploration and exploitation, adds complexity in terms of parameter tuning. The performance of KCGWO can 
be sensitive to the settings of this weight factor alongside other algorithm parameters. Finding the optimal con-
figuration requires extensive experimentation and can be computationally demanding, especially for large-scale 
problems or datasets with high dimensionality. Although KCGWO is designed to explore and exploit the solution 
space efficiently, the computational overhead introduced by the integration of K-means and the dynamic weight 
adjustment mechanism can increase the algorithm’s computational complexity. This may limit the scalability of 
KCGWO to very large datasets or real-time clustering applications where computational resources or time are 
constrained. While empirical tests have demonstrated KCGWO’s effectiveness on various datasets, its ability to 
generalize across all types of data distributions remains a concern. The algorithm’s performance on datasets with 
complex structures, high dimensionality, or noise could vary, and its robustness in these scenarios has not been 
fully explored. The K-means component of KCGWO may not be inherently robust against noise and outliers, as 
K-means tends to be influenced by these factors. Consequently, KCGWO’s performance could be degraded in 
datasets where noise and outliers are prevalent, affecting the quality of the clustering outcomes.

Addressing these limitations presents paths for future work, including the development of strategies to reduce 
dependence on initial clustering quality, adaptive parameter tuning mechanisms to mitigate sensitivity issues, 
and enhancements to computational efficiency. Additionally, further research could explore the incorporation 
of noise and outlier handling techniques to improve the robustness of KCGWO across diverse and challenging 
data environments.

Conclusions
This study advances data clustering and optimization through the development of an innovative approach, 
integrating the GWO with K-Means clustering, further augmented by a dynamic weight factor mechanism. This 
integration not only contributes to the theoretical framework of swarm intelligence methods but also demon-
strates practical applicability in enhancing data clustering outcomes. The theoretical implications of this research 
are underscored by the systematic incorporation of a traditional clustering algorithm with a contemporary 

Table 7.  MAE and MSE values obtained by KCGWO, GMM, and K-means.

Dataset

MAE MSE

KCGWO vs 
GMM

KCGWO vs 
K-means

GMM vs 
K-means

KCGWO 
vs K-means 
(centers)

KCGWO vs 
GMM

KCGWO vs 
K-means

GMM vs 
K-means

KCGWO vs 
K-means (centers)

Emission 0.6889 1.1532 0.9347 333.5077 0.9378 1.7564 1.4076 12.6256

HTRU2 1.9047 1.1920 1.3160 39,612.27 5.5686 2.5295 3.1712 96.1929

Wine 0.3876 0.1292 0.3483 0.3215 0.3876 0.1292 0.3483 0.2505

Breast cancer 0.0845 0.0194 0.1039 12.2918 0.0845 0.0194 0.1039 760.4808

Sonar 0.4615 0.5769 0.2115 0.0358 0.4615 0.5769 0.2115 0.0027

WDBC 0.8576 0.0334 0.8313 17.8233 0.8576 0.0334 0.8313 3384.228

Iris 0.7600 0.8000 1.0667 0.6654 1.4933 1.5733 2.1333 1.2273

2022 Ukraine Rus-
sia war 0.9536 0.8299 0.8351 275.3480 1.3557 0.9948 1.5567 254,083.1

Average values 0.7623 0.5917 0.7059 5031.533 1.3933 0.9516 1.2204 32,292.26
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optimization technique, enriching the metaheuristic algorithm landscape. This methodology offers a new per-
spective on achieving a balance between exploration and exploitation in swarm-based algorithms, a pivotal factor 
in their efficiency and effectiveness for complex problem-solving. From a practical perspective, the introduc-
tion of the KCGWO represents a significant advancement towards more accurate and efficient data clustering 

Table 8.  Statistical results obtained for clustering problem by all selected algorithms. Significant values are in 
bold.

Functions Metrics KCGWO GWO MFO MVO SSA

Emission

Min 4.671E + 04 9.651E + 04 1.314E + 05 1.681E + 05 1.268E + 05

Max 4.731E + 04 1.038E + 05 1.365E + 05 2.280E + 05 1.465E + 05

Mean 4.731E + 04 1.038E + 05 1.365E + 05 2.280E + 05 1.465E + 05

STD 7.841E + 02 1.006E + 04 7.692E + 03 5.345E + 04 1.442E + 04

Rank 1 2 4 5 3

HTRU2

Min 4.215E + 05 1.377E + 06 1.390E + 06 1.600E + 06 1.369E + 06

Max 4.461E + 05 1.806E + 06 1.400E + 06 1.684E + 06 1.395E + 06

Mean 4.461E + 05 1.806E + 06 1.400E + 06 1.684E + 06 1.395E + 06

STD 2.174E + 04 3.448E + 05 1.335E + 04 7.098E + 04 1.742E + 04

Rank 1 3 4 5 2

Wine

Min 383.0677 564.2516 574.3487 582.2759 551.9577

Max 385.4381 588.2155 597.7833 691.7798 587.9902

Mean 385.4381 588.2155 597.7833 691.7798 587.9902

STD 3.817709 24.16611 23.8235 124.3448 32.72063

Rank 1 3 4 5 2

Breast cancer

Min 7.984E + 04 8.823E + 04 1.411E + 05 1.507E + 05 1.403E + 05

Max 8.124E + 04 1.040E + 05 1.412E + 05 1.605E + 05 1.405E + 05

Mean 8.124E + 04 1.040E + 05 1.412E + 05 1.605E + 05 1.405E + 05

STD 1.753E + 03 1.637E + 04 1.440E + 02 1.392E + 04 2.119E + 02

Rank 1 2 4 5 3

Sonar

Min 15.77131 21.42128 20.34382 19.43976 19.00758

Max 17.16814 24.3906 20.88503 22.09095 19.71072

Mean 17.16814 24.3906 20.88503 22.09095 19.71072

STD 1.60654 2.033542 0.431548 3.517527 0.417388

Rank 1 5 4 3 2

WDBC

Min 1.563E + 05 2.133E + 05 2.684E + 05 2.805E + 05 2.647E + 05

Max 2.348E + 05 2.741E + 05 2.726E + 05 3.037E + 05 2.681E + 05

Mean 2.348E + 05 2.741E + 05 2.726E + 05 3.037E + 05 2.681E + 05

STD 1.129E + 05 5.706E + 04 3.622E + 03 2.202E + 04 3.404E + 03

Rank 1 2 4 5 3

Iris

Min 96.68885 192.0871 292.3649 294.3163 284.2368

Max 99.58939 248.1072 325.407 335.4001 285.4755

Mean 99.58939 248.1072 325.407 335.4001 285.4755

STD 4.793102 39.83272 32.09701 38.01879 0.960675

Rank 1 2 4 5 3

Ukraine Russia war

Min 5.565E + 04 2.284E + 05 2.188E + 05 2.317E + 05 2.146E + 05

Max 5.776E + 04 2.915E + 05 2.582E + 05 2.812E + 05 2.152E + 05

Mean 5.776E + 04 2.915E + 05 2.582E + 05 2.812E + 05 2.152E + 05

STD 1.810E + 03 5.386E + 04 2.336E + 04 5.189E + 04 8.246E + 02

Rank 1 4 3 5 2

Average rank 1.000 2.875 3.875 4.750 2.500
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Figure 13.  Convergence curves obtained by all algorithms: (a) Emission, (b) HTRU2, (c) Wine, (d) Breast 
cancer, (e) Sonar, (f) WDBC, (g) Iris, (h) 2022 Ukraine-Russia war.
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solutions. By ingeniously adjusting swarm movements based on initial positions and integrating weight factors, 
the method exhibits enhanced diversity and an improved ability to escape local optima. These features are essen-
tial for applications demanding precise data segmentation, such as image recognition, market segmentation, and 
biological data analysis.

The contributions of this research extend beyond theoretical enhancement, offering tangible benefits to 
sectors reliant on data analytics. The improved exploration and exploitation dynamics of KCGWO result in 
faster convergence rates and superior clustering outcomes, rendering it an invaluable asset for processing large 
datasets with intricate structures. This is particularly pertinent in the Big Data context, where rapid and accurate 
clustering of large data sets can significantly influence decision-making processes and resource management.

In summary, the KCGWO algorithm marks a notable academic contribution to the discourse on optimization 
algorithms and facilitates its application across various practical scenarios. Its adaptability and efficiency herald 
new possibilities for addressing data-clustering challenges in diverse fields, signalling a new era of optimization 
solutions that are robust and responsive to the dynamic requirements of data analysis.

Figure 13.  (continued)
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Figure 14.  Boxplots obtained by all algorithms; (a) Emission, (b) HTRU2, (c) Wine, (d) Breast cancer, (e) 
Sonar, (f) WDBC, (g) Iris, (h) 2022 Ukraine-Russia war.
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Data availability
The dataset used in this paper is available in open source at https:// archi ve. ics. uci. edu/ datas ets? Task= Clust ering. 
All other data is included in the paper, and no additional data has been used in this study.
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