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Abstract
Introduction Longitudinal biomarkers in patients with community-acquired pneumonia (CAP) may help in monitoring of 
disease progression and treatment response. The metabolic host response could be a potential source of such biomarkers 
since it closely associates with the current health status of the patient.
Objectives In this study we performed longitudinal metabolite profiling in patients with CAP for a comprehensive range of 
metabolites to identify potential host response biomarkers.
Methods Previously collected serum samples from CAP patients with confirmed Streptococcus pneumoniae infection (n = 25) 
were used. Samples were collected at multiple time points, up to 30 days after admission. A wide range of metabolites was 
measured, including amines, acylcarnitines, organic acids, and lipids. The associations between metabolites and C-reactive 
protein (CRP), procalcitonin, CURB disease severity score at admission, and total length of stay were evaluated.
Results Distinct longitudinal profiles of metabolite profiles were identified, including cholesteryl esters, diacyl-phosphati-
dylethanolamine, diacylglycerols, lysophosphatidylcholines, sphingomyelin, and triglycerides. Positive correlations were 
found between CRP and phosphatidylcholine (34:1) (cor = 0.63) and negative correlations were found for CRP and nine 
lysophosphocholines (cor = − 0.57 to − 0.74). The CURB disease severity score was negatively associated with six metabo-
lites, including acylcarnitines (tau = − 0.64 to − 0.58). Negative correlations were found between the length of stay and six 
triglycerides (TGs), especially TGs (60:3) and (58:2) (cor = − 0.63 and − 0.61).
Conclusion The identified metabolites may provide insight into biological mechanisms underlying disease severity and may 
be of interest for exploration as potential treatment response monitoring biomarker.

Keywords Community-acquired pneumonia · Metabolomics · Personalized medicine · High-dimensional data · 
Longitudinal data
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LOS  Length of stay
LPC  Lysophosphatidylcholine
LPE  Lysophosphatidylethanolamine
PC  Phosphatidylcholine
PCA  Principal component analysis
PCT  Procalcitonin
PE  Phosphatidylethanolamine
RR  Respiratory rate
SCAC   Short-chain acylcarnitine
SDMA  Symmetric dimethylarginine
SM  Sphingomyelin
TG  Triglycerides

1 Introduction

Community-acquired pneumonia (CAP) is a lower 
respiratory tract infection with a high incidence and is 
associated with the hospitalization of approximately one 
million adults per year (Battleman et al., 2002). The most 
common cause of CAP is Streptococcus  pneumoniae 
(Wiersinga et  al., 2018). In hospitalized CAP patients, 
there is a need to monitor the antibiotic treatment response 
to optimize the treatment strategy (Pletz et al., 2022). In 
addition, there is a need for guidance on decisions about 
earlier termination of antibiotic treatment to minimize the 
risk of antimicrobial resistance. Monitoring of treatment 
response is currently achieved through observation of 
clinical symptoms and with inflammatory markers such as 
C-reactive protein (CPR) and procalcitonin (PCT) (Aulin 
et al., 2021; Karakioulaki & Stolz, 2019). In particular, 
PCT is relevant for informing early treatment termination 
decisions but lacks predictive performance for CAP 
prognosis (de Jong et al., 2016; Guo et al., 2018). Therefore, 
there is a need for biomarkers that give early insights into 
the clinical course of CAP.

Biomarkers that reflect the current physiological state 
of the patient have the potential to accurately monitor and 
predict the treatment response in CAP patients. Because 
the metabolome closely represents this physiological state, 
metabolomics-techniques may enable discovery of relevant 
novel biomarkers. Indeed, for CAP and sepsis, the potential 
for metabolomics-based biomarkers measured at a static 
time point has been demonstrated (Seymour et al., 2013). 
However, the longitudinal monitoring of metabolic changes 
within patients may allow for an improved characterization 
of treatment response (Kohler et al., 2017). For example, 
CAP patients show a change in lysophosphatidylcholines 
that mirrors the transition from acute illness to recovery after 
starting antibiotic treatment (Müller et al., 2019). Further 
systematic characterization of longitudinal metabolic 
changes in CAP patients may thus be of relevance for 

identification of metabolic biomarkers that can predict and 
monitor the treatment response in these patients.

To this end, in this study, we aimed to comprehensively 
characterize the change of longitudinal metabolite profiles in 
hospitalized CAP patients with a confirmed S. pneumoniae 
infection using metabolomic profiling and evaluate how 
metabolic changes relate to disease severity based on CURB 
scores, established inflammation markers, and clinical 
treatment response quantified using the length of stay in the 
hospital.

2  Materials and methods

2.1  Patient cohort

We utilized serum samples collected at multiple time points 
during hospitalization from 25 hospitalized CAP patients 
with an S.  pneumoniae infection. These samples were 
previously collected as part of a larger clinical study that 
was performed between November 2007 and September 
2010 (Meijvis et al., 2011). The causative pathogen was 
identified using blood or sputum cultures, or a urinary 
antigen test. We selected samples from patients with a 
confirmed S. pneumoniae infection. We excluded patients 
with a mixed infection involving additional pathogen(s) and 
one patient that died during the study period. Samples were 
collected at five time points: at the day of admission (day 
0), and at days 1, 2, 4, and 30 after admission. CRP and 
creatinine were measured in the hospital at the same time 
points as the blood samples used for metabolite profiling 
obtained. Samples were stored at − 80 °C, and went through 
a maximum of 2 freeze–thaw cycles, so stable metabolites 
were preserved in the samples (Breier et al., 2014; Goodman 
et al., 2021). Not all time points were available for each 
patient, resulting in 115 samples over the 25 patients. On the 
day of admission, disease severity was determined using the 
CURB score, which is a scoring system based on confusion, 
blood urea > 7  mmol/l, respiratory rate (RR) ≥ 30/min; 
systolic BP < 90 mmHg or diastolic BP ≤ 60 mmHg (Neill 
et al., 1996). A score of two or higher is classified as severe 
CAP.

2.2  Bio‑analytical procedures

Serum samples were analyzed using five targeted LCMS 
methods and one targeted GCMS method by the Biomedical 
Metabolomics Facility of Leiden University, Leiden, The 
Netherlands, as described previously (Hartog et al., 2021). 
The metabolite profiling covered 596 metabolite targets 
from 25 metabolite classes, including amino acids, biogenic 
amines, acylcarnitines, organic acids, and multiple classes 
of lipids. Details of the metabolomic analysis methods 



Longitudinal metabolite profiling of Streptococcus pneumoniae‑associated… Page 3 of 10 35

used are provided in the Supplementary Information. A 
total of 369 unique metabolites was measured as relative 
levels, of which 6 metabolites were removed due to high 
missingness (≥ 20%), resulting in 363 metabolites being 
evaluated in data analysis. Biochemically-selected sums and 
ratios of metabolites were calculated and added to the data 
(Supplementary Table 1).

PCT was measured in the same serum samples used 
for the metabolite profiling analysis. PCT analysis was 
performed using the human procalcitonin CLIA kit from 
Abbexa (abx190129). Samples were measured in duplicate 
if sample volumes were sufficient (95% of samples).

2.3  Data analysis

The metabolite levels were scaled through log-
transformation and standardization. To explore the 
variability of the high-dimensional metabolite profiling 
dataset, principal component analysis (PCA) was used. The 
PCA was used on the scaled metabolite profiling data over 
the different time points, with the metabolites as variables 
and each observation being a sample from a patient for a 
specific time point (Van Der Ham et al., 1997). As part of 
the PCA, missing values were imputed through multiple 
imputation using expectation maximization (EM-PCA), 
which iteratively calculates the principal components and 
imputes the missing values (Josse et al., 2011).

To evaluate how much of the variation in the metabolites 
could be explained by the change over time, the first 
two principal components were related to time using a 
polynomial regression model. The importance of the 
metabolites to explain the variation between the patients 
over time was evaluated by evaluating the squared variable 
loadings. Specifically, the squared variable loadings 
within and between biochemical metabolite classes were 
evaluated to study similarities within classes and see which 
biochemical classes vary more between the patients.

To characterize the metabolic time profiles and profiles 
of current inflammation markers for different patients, we 
estimated the correlations between the scaled metabolite 
levels and CRP, PCT and creatinine levels over time. Next, 
we evaluated which metabolites could be of interest for the 
prediction of the clinical course, by estimating the Kendall’s 
Tau correlation between the scaled metabolite levels and 
a clinical disease severity marker, the CURB score (Neill 
et al., 1996) at hospital admission, and estimating Pearson 
correlation between the scaled metabolite levels the outcome 
length of stay (LOS) in the hospital. Since the CURB and 
LOS are static values, while the metabolites changed over 
time, the correlations between these outcomes and the 
change in metabolite levels from baseline  (mt=k −  mt=0) at 
each time point (k) were calculated. Due to the large number 
of correlations calculated and the small sample size, the 

correlations were not tested for significance, to prevent 
multiple testing problems, instead we choose an exploratory 
analysis where the metabolites with the largest (positive or 
negative) correlation were further evaluated in literature 
research to assess their biological function.

All analyses were performed in R. The scripts used for the 
analyses were deposited on GitHub (http:// github. com/ vanha 
sselt lab/ Longi tudin alMet abolo micsC AP/ tree/ manus cript).

3  Results

3.1  Metabolite time profiles

Metabolite profiling was performed for 25 patients and 
resulted in 363 metabolite levels on five time points 
(Supplementary Table 2). The patient characteristics are 
displayed in Table 1. Comorbidities present in patients 
included kidney disease (n = 1), cardiovascular disease 
(n = 4), malignancy (n = 2), COPD (n = 1,  nmissing = 15), 
diabetes (n = 3,  nmissing = 15). No patients were using 
corticosteroids before admission  (nmissing = 15).

Metabolite profiles within all CAP patients shifted over 
time, as shown in the PCA over all time points (Fig. 1). 
The close relationship between metabolite levels and time 
is reflected in the results from the polynomial regression 
model which indicated that 45% of the metabolite variation 
captured in these first two principal components could be 
explained by time. Due to the large age range, we tested 
whether age was a large explanatory factor for the metabolite 
differences between individuals, but did not find a significant 
contribution of age (Supplementary Information).

Table 1  Patient characteristics

CAP patients (N = 25)

Age (years)
 Median [min, max] 67.0 [18.0, 98.0]

Sex
 Male 12 (48.0%)
 Female 13 (52.0%)

CURB score
 Median [min, max] 1.00 [0, 3.00]

Duration of symptoms before admission (days)
 Median [min, max] 3.00 [1.00, 14.0]
 Missing 15 (60.0%)

Antibiotic treatment before admission
 No 8 (32.0%)
 Yes 2 (8.0%)
 Missing 15 (60.0%)

Length of stay (days)
 Median [min, max] 7.50 [2.50, 24.5]

http://github.com/vanhasseltlab/LongitudinalMetabolomicsCAP/tree/manuscript
http://github.com/vanhasseltlab/LongitudinalMetabolomicsCAP/tree/manuscript
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The metabolites that were targeted in this study were 
categorized into different biochemical classes. Metabolites 
from different biochemical classes showed distinct contri-
butions to the total variation between the patients over time 
as was expressed in the variable loadings and directional-
ity of the principal components (Fig. 2). The squared PCA 
loadings represent the weight that the different metabolites 
in the biochemical class have in explaining the variation 
between patients over time. Of the variation in principal 
component one and two, 48% was explained by metabolites 
of the classes of cholesteryl esters, LPC’s, sphingomyelins, 
diacylglycerols, and triglycerides (Fig. 2A). The metabolites 
were categorized in classes based on their biochemistry and 
not based on their biological functions. The PCA indicate 
that metabolites that are categorized in the same class do not 
necessarily behave similarly (Fig. 2B). For example, amino 
acids behave very differently from each other. Metabolites 
that do behave similarly in their biochemical class are for 
example triglycerides and sphingomyelins.

For each patient, the metabolic time profiles were shown 
as the two first components from the PCA (Fig. 3; Supple-
mentary Fig. 1). Generally, a shift from low to high princi-
pal component values was seen over time, corresponding to 
the shift in metabolite levels for the different metabolites 
(Fig. 2B). The large variability in the time profiles indi-
cates a large interpatient variability in metabolic levels and 
changes over time.

3.2  Inflammation marker associations

To explore associations between metabolite profiles and 
inflammation, the metabolite values were compared to cur-
rently used inflammation biomarkers. Correlations were 
found between CRP and PCT and several metabolites. For 
example, phosphocholine (PC) (34:1) showed a positive cor-
relation with CRP (cor = 0.63). Several individual lysophos-
phocholines (LPCs) and the sum of all LPCs showed a nega-
tive correlation with CRP (cor = − 0.57 to − 0.74, Fig. 4A). 
PC (34:1) was found to decrease over time and several LPCs 

showed an increase over time, thereby mirroring the clini-
cal disease progression (Fig. 4B). Positive correlations with 
CRP and PCT were reported for the short-chain acylcar-
nitines (SCACs) tiglylcarnitine, 2-methylbutyroylcarnitine, 
and isovalerylcarnitine (cor with PCT = 0.61, 0.58, and 0.57; 
cor with CRP = 0.54, 0.64, and 0.51, respectively). Negative 
correlations were seen between the long-chain acylcarnitine 
(LCAC) stearoylcarnitine and CRP (cor = 0.62). This trend 
for decreasing SCACs over time is also represented by the 
positive correlation of CRP and PCT with the sum of all 
SCACs (cor = 0.55 and 0.53, respectively).

Correlations between metabolite levels and creatinine, 
a marker of renal failure, were also identified. The same 
trends were seen for creatinine as for CRP and PCT 
(Supplementary Fig.  2). Strong positive correlations 
were observed between creatine and 1-Methylhistidine, 
SDMA, inositol, homoserine, methionine sulfone, and 
octanoylcarnitine (cor > 0.7).

3.3  Disease severity score associations

To identify possible metabolic biomarkers for indication of 
disease severity, associations between the CURB disease 
severity score at admission and the change in metabolite 
levels on from day 0 to days 1, 2, 4, and 30 were evaluated 
(Supplementary Fig. 2). Negative associations were found 
between the CURB score and the change of metabolite levels 
(m) between day 0 and day 30  (mt=30 −  mt=0) of tiglylcar-
nitine, isovalerylcarnitine, 3-hydroxyisovaleric acid, carni-
tine, N6,N6,N6-trimethyl-lysine, and isobutyryl carnitine 
(tau = − 0.64 to − 0.58, Fig. 5). Patients with higher CURB 
scores showed decreasing levels of these metabolites.

3.4  Hospital length of stay associations

We evaluated the association between metabolites and clini-
cal outcomes using the length of stay (LOS) as a potential 
surrogate endpoint. The strongest negative correlations to 

Fig. 1  PCA scores for patient 
metabolite profiles over time. 
Every point represents the 
scores of an individual patient 
at a certain time point, in 
two dimensions based on the 
metabolite values. The panels 
show a trend over time of the 
metabolite profiles
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LOS were reported for the metabolite change over the first 
two days of admission  (mt=2 −  mt=0, Fig. 6), especially for 
the triglycerides (TGs) (60:3) and (58:2) (cor = − 0.63 and 
− 0.61 respectively). The correlations of these metabolites to 
LOS were much stronger than to CRP and PCT (cor = − 0.08 
and − 0.25 respectively). Positive correlations were most 
pronounced when analyzing the metabolite change from 
the day of admission to day 30  (mt=30 −  mt=0). In the case of 
fatty acid (FA) (22:1) the day after admission  (mt=1 −  mt=0) 
was the most strongly positively correlated to the LOS 
(cor = 0.58).

4  Discussion

In this study, we characterized the dynamics of the serum 
metabolites in pneumococcal CAP patients. We found that 
a large part of the variation in the metabolite values was 
associated with time-varying changes in metabolites within 
the patients. We furthermore found that several groups 
of metabolites were found to correlate with inflammation 
markers, CURB score, and length of hospital stay. These 
findings both support the potential relevance of metabolite-
based biomarkers to monitor the treatment response or 
disease progression in CAP.

We found that length of stay in the hospital was 
negatively correlated with the triglycerides TG (60:3) and 
TG (58:2). Interestingly, these TGs are not highly correlated 
to CRP, PCT, or the CURB score, which suggests that they 
can explain a part of the variability of disease progression 
in patients not explained by established biomarkers for 
inflammation. We previously found that TGs do not 
contribute to the etiological prediction of pathogenic in 
CAP (Hartog et al., 2021); as such TGs may be of interest 
as potential biomarker beyond pneumococcal CAP studied 
in this analysis. Further studies should however consider the 
potential impact of diet on TGs, as a potential confounding 
factor (Parks, 2001).

P h o s p h a t i d y l c h o l i n e  ( P C )  ( 3 4 : 1 )  a n d 
lysophosphatidylcholines (LPCs)  (14:0), (16:0), (16:1), 
(18:0), (18:1), (18:2), (18:3) and (20:4) correlated to 
inflammatory markers, which also corresponds to previous 
findings (Banoei et al., 2020; Müller et al., 2019). PC (34:1), 
a ligand of nuclear receptor PPARα30, showed a positive 
correlation with CRP, which was previously associated 
with an anti-inflammatory response (Colombo et al., 2018). 
LPC 14:0 has been recently identified as a biomarker for 
disease severity in CAP patients (Nan et al., 2022). Due 
the correlation with CRP, these metabolites could be of 

interest as treatment response biomarkers, also beyond 
pneumococcal CAP patients (Saleh et al., 2019).

The CURB score was negatively associated with six 
metabolites, including several acylcarnitines. One of 
these acylcarnitines, tiglylcarnitine, has previously been 
found to be increased in non-survivors of CAP and could 
be considered a marker for disease severity (Banoei et al., 
2020). Isovalerylcarnitine and isobutyrylcarnitine have, 
to our knowledge, not been studied as disease severity 
marker before, but may show a comparable performance 
to tiglylcarnitine as their direction on the first principal 
component is similar.

In this analysis we demonstrated which biochemical 
metabolite classes explain most of the variation in metabolite 
patterns between individuals and over time. Triglycerides 
and LPCs were important for explaining the variation 
over time in the principal component analysis (PCA) and 
correlated with LOS and inflammatory markers. Within 
the biochemical classes, not all metabolites showed similar 
patterns, indicating that metabolites in some biochemical 
classes behave similarly during the infection, while 
metabolites in other classes behave differently (Fig. 2B). 
The amino acids behave very differently, which could 
be expected since they are involved in a wide variety of 
biological functions (Wu, 2009).

The longitudinal analysis of the metabolite profiling data 
enabled us to gain insight into acute and longer-term changes 
in the metabolome during the clinical course of CAP. Since 
patients are admitted to the hospital in different stages of 
the disease, interpretation of the metabolite profile at one 
time point can be challenging. The longitudinal metabolite 
profiles that were measured in this study give more 
information about the state of the patient and elucidate the 
effect of comorbidities and co-medications. The principle 
component analysis (Fig.  3) showed large variability 
between different patients, indicating the importance of 
considering changes within patients, instead of evaluating 
the metabolite profile at one timepoint. We found that the 
differences in metabolite levels were largely explained 
by changes over time and were, therefore, related to the 
treatment response.

The clinical samples used in this study were stored 
approximately 10  years before metabolomics measure-
ments were performed, with a maximum of 2 freeze/thaw 
cycles. The prolonged storage duration of these samples may 
have affected the metabolite levels present in these samples. 
Our study design does not allow to assess the extent of this 
impact. Prior studies suggest on the effect of storage age on 
plasma metabolite levels within 7 years of storage was found 
negligible (Wagner-Golbs et al., 2019). Moreover, despite 
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any potential storage effects, we expect that relative ratios of 
unique metabolites within and between samples will remain 
constant.

This study was conducted in a well-characterized set of 
CAP patients with S. pneumoniae infections. S. pneumo-
niae is a common cause of CAP, but other bacterial or viral 
pathogens can also be the cause of CAP. A previous study 
did not show significant differences in metabolic profiles 
between common causes of CAP (den Hartog et al., 2021). 

The results of the current study may apply to CAP patients 
with these other causative pathogens, but this is still unsure 
because the previous study does not cover changes over time. 
Especially metabolites associated with length of stay should 
be validated in CAP cohorts with various causative patho-
gens, since they are not related to the general inflammatory 
response.

In further research, the addition of patients with other 
causes of CAP is of interest to compare metabolic time 
profiles for different treatment strategies based on the 
causative pathogen. Early recognition of a pathogen-drug 
mismatch using metabolite profiling could make antibiotic 
therapies more targeted and shorter. This study shows that 
mainly TGs, LPCs, PCs, and acylcarnitines are of interest 
for the disease severity and the length of stay for patients 
with CAP. By focusing on these metabolite classes, the 
number of metabolites that has to be measured for every 
patient can be reduced.

In conclusion, we find that that metabolomics-
based biomarkers have potential for treatment response 
monitoring in CAP patients. The triglycerides found in 

Fig. 2  Metabolite contributions to the two dimensions of the PCA as 
variable loadings. A The importance of each biochemical class for 
the different principal components (PCs), expressed by their squared 
metabolite loadings. Each box represents the squared loadings of the 
metabolites within a metabolic class. High squared loadings indicate 
a larger contribution to explaining the variation between patients. B 
The loading plots for each biochemical metabolite class. The arrows 
indicate the importance (length) and direction of the metabolites in 
the principal component space. For example, high PC1 values cor-
respond to high metabolite levels for metabolites with right pointing 
arrows, and low metabolite levels for metabolites with left pointing 
arrows. Arrows with a similar direction have similar metabolite pat-
terns. PC principal component

◂

Fig. 3  Individual time profiles 
over PC1 and PC2. The lines 
PC1 (solid) and PC2 (dashed), 
indicate the change in the cor-
responding principal compo-
nent over time. Changes in PC 
values correspond to changes 
in metabolite levels according 
to their respective loadings. PC 
principal component
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this study could potentially complement the currently 
available biomarkers such as CRP and PCT as they yield 
additional information about the clinical course in these 
patients. This study furthermore supports the relevance for 
collecting longitudinal data to follow the highly dynamic 
metabolite profiles in patients, which can further enable 
the development of personalized treatment strategies.
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