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Genetic factors influencing milk and fat yields in tropically  
adapted dairy cattle: insights from quantitative trait loci analysis 
and gene associations
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Thanathip Suwanasopee2,3, Danai Jattawa2,3, and Mattaneeya Sarakul2,5

Objective: The objective of this study was to identify genes associated with 305-day milk 
yield (MY) and fat yield (FY) that also influence the adaptability of the Thai multibreed 
dairy cattle population to tropical conditions. 
Methods: A total of 75,776 imputed and actual single nucleotide polymorphisms (SNPs) 
from 2,661 animals were used to identify genomic regions associated with MY and FY using 
the single-step genomic best linear unbiased predictions. Fixed effects included herd-year-
season, breed regression, heterosis regression and calving age regression effects. Random 
effects were animal additive genetic and residual. Individual SNPs with a p-value smaller 
than 0.05 were selected for gene mapping, function analysis, and quantitative trait loci 
(QTL) annotation analysis. 
Results: A substantial number of QTLs associated with MY (9,334) and FY (8,977) were 
identified by integrating SNP genotypes and QTL annotations. Notably, we discovered 
17 annotated QTLs within the health and exterior QTL classes, corresponding to nine 
unique genes. Among these genes, Rho GTPase activating protein 15 (ARHGAP15) and 
catenin alpha 2 (CTNNA2) have previously been linked to physiological traits associated 
with tropical adaptation in various cattle breeds. Interestingly, these two genes also showed 
signs of positive selection, indicating their potential role in conferring tolerance to trypano
somiasis, a prevalent tropical disease.
Conclusion: Our findings provide valuable insights into the genetic basis of MY and FY in 
the Thai multibreed dairy cattle population, shedding light on the underlying mechanisms of 
tropical adaptation. The identified genes represent promising targets for future breeding 
strategies aimed at improving milk and fat production while ensuring resilience to tropical 
challenges. This study significantly contributes to our understanding of the genetic factors 
influencing milk production and adaptability in dairy cattle, facilitating the development 
of sustainable genetic selection strategies and breeding programs in tropical environments.
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INTRODUCTION

Dairy farming in tropical and subtropical regions places importance not only on milk yield 
(MY) and quality but also on the environmental adaptation of dairy cattle. Environmental 
adaptation, including disease and parasite resistance, as well as heat tolerance, plays a crucial 
role in reducing animal stress and promoting environmentally friendly production practices 
[1]. While taurine breeds have shown high productive efficiency under temperate condi-
tions, indicine cattle, known for their adaptability, have demonstrated resilience under 
poor input conditions and resistance to tropical diseases [2]. Thus, a breeding strategy in-
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volving Bos indicus - Bos taurus crosses has been employed 
in tropical and subtropical regions to enhance thermal and 
parasite tolerance while retaining favorable traits of Bos taurus 
cattle [3].
  The Thai multibreed dairy cattle population is the result 
of an upgrading strategy involving crossbreeding of multiple 
Bos taurus and Bos indicus breeds with Holstein to obtain 
animals with high MY and adaptability to tropical condi-
tions [4]. The majority of dairy cows in this population are 
crossbred animals with over 75% Holstein (91%) and the re-
mainder comes from various Bos indicus (Red Sindhi, Sahiwal, 
Brahman, and Thai Native) and Bos taurus (Brown Swiss, 
Red Danish, and Jersey) breeds. Moreover, an animal could 
have as many as eight different cattle breeds represented in it 
[4,5]. Previous genome-wide association studies (GWAS) in 
the Thai population identified sets of putative single nucleotide 
polymorphisms (SNPs) associated with MY, fat yield (FY), 
and age at first calving that differ slightly from those found 
in Bos taurus breeds in temperate regions [6]. These SNP 
markers are believed to be associated with milk production 
in Thai multibreed dairy cattle either directly or indirectly 
by influencing their adaptability to high heat and humidity, 
thus allowing them to fully express their genetic potential 
under tropical conditions [7].
  Thus, the objective of this study was to identify a set of 
genes associated with 305-day MY and FY that is also in-
volved in the adaptability of the Thai multibreed dairy cattle 
population to tropical conditions. Understanding the genetic 
basis of these traits and their relationship to adaptability will 
provide valuable insights for improving dairy production in 
tropical and subtropical regions.

MATERIALS AND METHODS

Animals and phenotypes
The dataset used in this study was obtained from commer-
cial dairy farms adhering to Good Agricultural Practices 
and Good Farming Management Practices mandated by the 
relevant authorities. Ethical clearance (ACKU60-AGR-009) 
was granted by the Institutional Animal Care and Use Com-
mittee of Kasetsart University, ensuring animal welfare and 
ethical treatment. A total of 8,361 first-lactation cows with 
their first calving between 1989 and 2014 were included in 
the study. These cows had complete pedigree and phenotyp-
ic information. Characteristics and farm management of all 
the animals were previously described in Laodim et al [7]. 
All phenotypic records were collected at 810 farms located in 
the Northern, Northeastern, Central, Western, and Southern 
regions of Thailand. Milk yield and FY phenotypes were 
gathered monthly from individual cows. These monthly test-
day milk and fat records were used to calculate 305-d MY 
(kg) and 305-d FY (kg) using a test-interval procedure [8,9]. 

The average MY and FY in this population were 4,311.25± 
1,116.68 kg and 153.92±50.50 kg, respectively.

Genotype data 
Tissue sample collection included semen from 89 sires and 
blood from the jugular vein of 2,572 dams. Genomic DNA 
from semen was extracted with the GenElute Mammalian 
Genomic DNA Miniprep Kit (Sigma, Ronkonkoma, NY, 
USA), whereas the MasterPure DNA Purification kit for 
blood version II (EPICENTRE Biotechnologies, Madison, 
WI, USA) was used to obtain genomic DNA from blood 
samples. Animals were genotyped with GeneSeek Genomic 
Profiler (GGP) chips (9K, 20K, 26K, or 80K). Imputation to 
the GGP80K chip was performed with FImpute version 2.2 
[10], utilizing a reference population of 139 animals genotyped 
with GGP80K. The accuracy of imputation with program 
FImpute was 93.94% [11].
  Quality control procedures were implemented using 
PLINK software version 1.7 (http://pngu.mgh.harvard.edu/
purcell/plink/). SNPs were required to have a minimum mi-
nor allele frequency of 0.01 and a minimum call rate of 0.90 
to be included in the study. The edited genotype file con-
tained a total of 75,776 SNP markers distributed across the 
29 autosomes and the X chromosome. This quality control 
process yielded high-quality genotypic data, ensuring the re-
liability and accuracy of subsequent analyses in our study.

Genome-wide association analysis
A GWAS was conducted using the single-step genomic best 
linear unbiased prediction (ssGBLUP) approach [12]. The 
two-trait genomic-polygenic model implemented for ssGBLUP 
can be represented as follows:

  y = Xb + Za + e

where y is the vector of phenotypic records for MY and FY. 
Vector b is the vector of fixed effects, which includes con-
temporary group (herd-year-season subclasses), breed 
regression (linear function of the expected other fraction in 
each animal), heterosis regression (linear function of hetero-
zygosity), and calving age regression effects. Contemporary 
groups were defined as groups of cows calving in the same 
herd, year, and season. Calving seasons were defined as win-
ter (November to February), summer (March to June), and 
rainy (July to October). There were 3,848 contemporary 
groups with an average of 2.18 cows per contemporary 
group. Heterozygosity was calculated as the product of the 
expected Holstein fraction of the sire and the expected Other 
breed fraction of the dam plus the expected Other breed 
fraction of the sire times the expected Holstein fraction of 
the dam [5]. 
  Random vector a contains additive genetic effects. Vector 
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 is the square root of the 
predicted error variance for the ith SNP. Subsequently, Man-
hattan plots were generated to visualize the additive genetic 
variance explained by individual SNP and their correspond-
ing p-values for MY and FY. The Manhattan plot was utilized 
for plotting SNP additive genetic variances, whereas the 
"CMplot" R package [17] was employed for visualization of 
the p-values and the Q-Q plots. 
  Two thresholds were applied to the identification of sig-
nificant SNPs associated with MY and FY. Firstly, SNP with 
a false discovery rate greater than 0.1 (i.e., greater than –
log10(p-value) = –log10(0.1/75,776) = 5.87) were considered 
to exhibit suggestive associations. Secondly, all SNP markers 
with a –log(p-value) greater than or equal to 4 were regarded 
as putative regions associated with MY and FY. These two 
thresholds enabled the identification of a limited number of 
significant SNPs, facilitating the investigation of potential bio-
logical functions of genomic regions associated with MY 
and FY. Subsequently, SNPs with a p-value smaller than 0.05 
were selected for gene mapping, function analysis, and 
quantitative trait loci (QTL) annotation analysis.

Gene identification and function analysis
Positional genes for MY and FY were identified by consider-
ing a genomic region on each side of significant SNPs with 
normal p-value of <0.05 for each trait (4,056 SNPs for MY 
and 3,698 SNPs for FY). This genomic region went from 15 
kb upstream to 15kb downstream of the location of the 
significant SNPs in the reference bovine genome assembly 
(ARS-UCD 1.2) embedded in the Ensembl Genome Browser 
(https://www.ensembl.org/index.html). The variant annota-
tion category was based on Ensembl variant effect predictors 
(VEP) [18]. The VEP annotations for the variants are shown 
in Supplementary Figure S1 for MY and Supplementary Fig-
ure S2 for FY. Numbers of genes per chromosome for MY 
and FY identified by SNP genotypes inside or within 15 kb 
upstream and 15 kb downstream of genes in the Ensembl 
Bos taurus genome assembly are shown in Supplementary 
Table S1. The total number of genes associated with MY was 
1,951 and 1,684 for FY. 
  The gene ontology (GO) annotation and Kyoto encyclo-
pedia of genes and genomes (KEGG) pathway enrichment 
analyses were performed separately for each trait using the 
2021 version of the Database for Annotation, Visualization, 
and Integrated Discovery (DAVID) software (https://david.
ncifcrf.gov/). The Bos taurus gene list of DAVID was used as 
the reference genome. The DAVID software offers multiple 
biological descriptors (GO terms: biological process (BP), 
molecular function (MF) and cellular component [CC]) and 
KEGG pathways for genes based on the characteristics of 

https://www.ensembl.org/index.html
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
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encoded proteins. The Benjamini-Hochberg correction was 
applied to search for overrepresentation of significantly associ-
ated genes among all genes in a given GO term and KEGG 
pathway. Finally, only GO terms and KEGG pathways with a 
p-value <0.05 were considered statistically significant and 
used for further interpretation. 

Quantitative trait loci annotation analysis
A list of SNPs associated with MY and FY was used for QTL 
annotation with the R package Genomic Annotation in 
Livestock for Positional Candidate Loci (GALLO) (https://
github.com/pablobio/GALLO; [19]). The QTL were anno-
tated using a .gff file from the Animal QTL database containing 
bovine information from the ARS-UCD1.2 bovine genome 
assembly.

RESULTS AND DISCUSSION

Genome-wide association analysis
The additive genetic variance explained by each of the 
75,776 SNP across the entire genome was visualized using a 
Manhattan plot (Supplementary Figure S3). The proportion 
of the additive genetic variance explained by individual SNPs 
ranged from 0.0247×10–10 to 0.0419 for MY, and from 0.0011 
×10–10 to 0.0373 for FY. The small magnitude of the percent-
ages of the additive genetic variance contributed by all SNPs 
indicated that MY and FY were influenced by a multitude of 
SNPs across the genome, each contributing with a small frac-
tion of the total additive genetic variance.
  Significant SNPs associated with MY and FY are shown 
in Table 1. The Manhattan and Q-Q plots highlighting these 
associations are presented in Figure 1. The Q-Q plots showed 
that there was no apparent systematic deviation with most 
of the points distributed around the diagonal. The GWAS 
revealed only one significantly associated SNP at –log (p-
value)≥5.87 for MY, while no significant SNPs associated 
with FY existed for this criterion. This significant SNP (ARS-
BFGL-NGS-66945) was intergenic but more than 15 kb 

from the nearest gene (Table 1). The additive genetic vari-
ance explained by ARS-BFGL-NGS-66945 was 0.0419%. 
However, there were five significant SNPs associated with 
MY showing a –log(p-value) ≥4. These SNPs were in chro-
mosomes 2 (Hapmap48544-BTA-98418), 6 (BovineHD 
0600014293), 13 (BovineHD1300022510), 15 (BovineHD 
1500006727), and 26 (BovineHD2600015217). The additive 
genetic variances explained by these SNPs ranged from 
0.0259 to 0.0338. Most of the significant SNPs resided within 
genes, including F-box protein 36 (FBXO36), protein prenyl-
transferase alpha subunit repeat containing 1 (PTAR1), beta-1,4-
galactosyltransferase 5 (B4GALT5), and protein tyrosine 
phosphatase receptor type E (PTPRE) (Table 1).
  There were four significant SNPs (–log(p-value) ≥4) asso-
ciated with FY, namely BovineHD0600014293 in chromosome 
6, BovineHD0800000801 and ARS-BFGL-NGS-66945 in 
chromosome 8, and BovineHD1500006717 in chromosome 
15 (Table 1; Figure 1). The additive genetic variance explained 
by each of these SNPs ranged from 0.0043% to 0.0373%. 
Only one of these SNP (ARS-BFGL-NGS-66945) was found 
within a known gene, namely PTAR1. Notably, the PTAR1 
gene was associated with both MY and FY in this popula-
tion. However, the set of significant SNPs for MY and FY 
here differed from those found in the Thai multibreed dairy 
population with 8,096 SNPs [6] and 50,908 SNPs [20]. This 
finding agreed with previous reports indicating that differ-
ent GWAS models and different number of SNPs or number 
of genotyped animals would yield different sets of significant 
SNPs for the traits of interest [21-23]. 
  These findings highlight the potential significance of the 
PTAR1 gene in affecting MY and FY under tropical condi-
tions. The identification of this gene as a common factor 
influencing these two traits suggests its potential role in reg-
ulating milk and fat synthesis. Further research into the 
biological functions and mechanisms of action of PTAR1 
could provide valuable insights into the genetic control of 
MY and FY, and potentially contribute to the development 
of targeted breeding strategies for enhanced MY and FY in 

Table 1. Significant single nucleotide polymorphisms for milk and fat yield

Trait SNP Chromosome Location (bp) Closed gene Consequence p-value Additive genetic 
variance (%)

MY Hapmap48544-BTA-98418 2 118,054,344 FBXO36 Intron variant 6.3068E-05 0.0277
BovineHD0600014293 6 51,856,565 - Intergenic variant 5.41113E-05 0.0295
ARS-BFGL-NGS-66945 8 45,862,659 PTAR1 Intron variant 4.42661E-07 0.0419
BovineHD1300022510 13 77,747,905 B4GALT5 Intron variant 6.95948E-06 0.0259
BovineHD1500006727 15 25,465,697 - Intergenic variant 1.75061E-05 0.0338
BovineHD2600015217 26 47,463,279 PTPRE Intron variant 2.27407E-05 0.0284

FY BovineHD0600014293 6 51,856,565 - Intergenic variant 1.43838E-05 0.0349
BovineHD0800000801 8 2,302,545 - Intergenic variant 9.88316E-05 0.0043
ARS-BFGL-NGS-66945 8 45,862,659 PTAR1 Intron variant 5.24747E-05 0.0285
BovineHD1500006717 15 25,398,861 - Intergenic variant 3.33383E-05 0.0373

SNP, single nucleotide polymorphisms; MY, milk yield; FY, fat yield.

https://github.com/pablobio/GALLO
https://github.com/pablobio/GALLO
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the Thai multibreed dairy cattle population.
  The FBXO36, B4GALT5, and PTPRE genes were found to 
be associated with MY and FY in this population. Interest-
ingly, these genes have also been implicated in various traits 
in other cattle populations, indicating their potential multi-
functional roles. While some of these associations involved 
biological functions related to adaptation traits, others were 
linked to specific diseases and infections [24-32].
  FBXO36, a member of the F-box protein family, is known 
to be involved in protein ubiquitination and plays a critical 
role in various cellular functions, including the cell cycle, 
circadian clocks, nutrient sensing, and signal transduction. 
It has also been associated with bovine mastitis resistance in 
Holstein [24]. Bovine mastitis is a prevalent inflammation of 
the mammary gland caused by physical trauma or microbial 
infections. This disease significantly impacts the dairy indus-
try due to reduced MY and compromised milk quality. 
Furthermore, FBXO36 has shown associations with differ-
ences in clinical scores between bovine respiratory syncytial 
virus (BRSV)-challenged and control groups in Holstein-
Friesian [25]. BRSV is a major pathogen causing bovine 
respiratory disease, which poses significant economic chal-
lenges to dairy cattle production.
  These findings underscore the potential relevance of 
FBXO36 for disease resistance and adaptation to tropical 

conditions in dairy cattle. The association of this gene with 
MY and FY in the Thai multibreed population suggests its 
involvement in regulating milk and fat synthesis. Addition-
ally, the presence of FBXO36 in other cattle populations and 
its role in disease resistance highlights its significance in a 
broader context.
  Genes B4GALT5 and PTPRE were associated with MY 
and FY in the Thai multibreed population. The B4GALT5 
gene belongs to the β-1,4-galactosyltransferase (B4GALT) 
family. It is known to play a role in embryonic development 
as well as in immune and inflammatory responses. Gene 
B4GALT5 was reported to be a candidate gene associated 
with mastitis resistance caused by Escherichia coli and Strep-
tococcus uberis in dairy cows [26]. In addition, B4GALT5 
was associated with innate immune response to Mycoplasma 
bovis infection in Holstein cows [27]. Mycoplasma bovis is a 
known cause of mastitis leading to decreased milk produc-
tion and significant economic losses. Further, B4GALT5 was 
found to be expressed in bovine mammary epithelial cells and 
involved in upregulating the immune system during bovine 
leukemia virus infection, resulting in a decrease in the inci-
dence of mastitis [28].
  The PTPRE gene belongs to the protein tyrosine phosphatase 
(PTP) family and plays a crucial role in regulating various 
cellular processes, including cell growth, differentiation, the 

Figure 1. Manhattan and Q-Q plots based on GWAS results for milk yield and fat yield. Suggestive SNP associations are those with –log10(p) values 
above 5.87, and suggestive putative regions associations require –log10(p) values equal to or greater than 4. GWAS, genome-wide association 
studies; SNP, single nucleotide polymorphisms.



www.animbiosci.org  581

Laodim et al (2024) Anim Biosci 37:576-590

mitotic cycle, and oncogenic transformation (https://www.
genecards.org/cgi-bin/carddisp.pl?gene=PTPRE). Zhang et 
al [29] indicated that the PTPRE gene inhibited the activa-
tion of the KIT gene. The KIT gene is known to be involved 
in hematopoiesis, gametogenesis, and melanogenesis and 
has been reported to be a candidate gene for spotting loci in 
various cattle breeds including Italian Holstein-Friesian, Ital-
ian Brown, Italian Simmental, Jersey, Rendena, Reggiana, 
Modenese, Angus, and Hereford [30,31]. Furthermore, PTPRE 
has been identified as a candidate gene for residual feed in-
take in dairy cattle [32].
  These findings highlight the potential roles of B4GALT5 
and PTPRE in various BPs and their associations with eco-
nomically important traits in cattle. The involvement of 
B4GALT5 in immune response and mastitis resistance un-
derscores its significance in maintaining mammary health 
and milk production. It is important to note that adaptation 
to tropical climates encompass a wide range of morphologi-
cal, behavioral, and physiological traits including light hair 
color, reduced feed intake, and disease resistance [1]. The as-
sociations observed in this study provide additional evidence 
of the complex genetic architecture underlying dairy produc-
tion traits while contributing to the development of improved 
selection strategies for increasing MY and FY under tropical 
conditions.

Functional enrichment analysis
The GO enrichment and KEGG pathway analyses of genes 

associated with MY revealed 26 significant BP, CC, and MF 
GO terms (Figure 2) and 1 significant KEEG pathway (Table 
2). Conversely, there were 13 significant BP, CC, and MF GO 
terms (Figure 3) and 16 KEGG pathways (Table 2) associat-
ed with genes influencing FY. 
  The most significantly enriched BP for MY candidate 
genes (p = 0.005) was potassium ion transmembrane trans-
port (GO:0071805). However, nervous system development 
(GO:0007399) had the highest number of genes (30) in the 
input data set. Cytosol (GO:0005829) was the most signifi-
cantly enriched CC for MY candidate genes (p = 1.9×10–9) 
and had the highest number of genes (339) from the input 
data set. ATP binding (GO:0005524) was the most signifi-
cantly enriched MF for MY candidate genes (p = 3.1×10–4). 
Metal ion binding (GO:0046872) had the highest number of 
genes (172) from the input data set for MY. The only signifi-
cant pathway associated with MY was glutamatergic synapse 
(bta04724).
  Modulation of synaptic transmission (GO:0071805) was 
the only significantly enriched BP for FY. Cytosol was the 
most significantly enriched CC for FY candidate genes (p = 
7.1×10–7). Cytoplasm (GO:0005737) had the highest number 
of genes (342) for CC from the input data set. ATP binding 
(GO:0005524) was the most significantly enriched MF for 
FY candidate genes (p = 0.02) and had the highest number 
of genes (142) from the input data set. Focal adhesion was 
the most significantly enriched pathway for FY candidate 
genes (p = 0.004) and had the highest number of genes (34) 

Figure 2. Functional terms significantly enriched corresponding to genes associated with milk yield.

https://www.genecards.org/cgi-bin/carddisp.pl?gene=PTPRE
https://www.genecards.org/cgi-bin/carddisp.pl?gene=PTPRE
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from the input data set. In addition, seven significant GO 
terms, namely cytosol (GO:0005829), glutamatergic synapse 
(GO:0098978), adherens junction (GO:0005912), postsyn-

aptic density (GO:0014069), ATP binding (GO:0005524), 
guanyl-nucleotide exchange factor activity (GO:0005085) 
and cadherin binding (GO:0045296) and glutamatergic syn-

Table 2. Significant Kyoto encyclopedia of genes and genomes pathways for milk and fat yield 

Trait Terms Description Number of 
genes (n) p-value Genes

MY bta04724 Glutamatergic synapse 26 0.00219 GLS2, ITPR1, SLC1A2, GRIK4, CACNA1A, CACNA1D, ADCY1, CACNA1C, 
GRIK2, ADCY5, PPP3CA, GNG10, GRM5, GRM7, GNG7, GRM8, MAPK1, 
HOMER3, GRIA4, HOMER1, PRKCA, GRIN2B, GRIN1, PLCB4, SHANK3, 
SHANK2

FY bta04510 Focal adhesion 34 0.00457 SHC3, ROCK2, PDGFB, LAMC1, PIK3CB, MYLK, MAPK8, RAP1A, 
CCND2, CCND1, ERBB2, MAPK1, FYN, PIP5K1B, PIP5K1C, PAK3, PAK2, 
PAK5, VASP, PPP1R12A, ITGA4, BAD, ACTN1, ITGA1, MAPK10, COL4A2, 
COL4A1, BCL2, COL6A3, GRB2, ITGA6, DOCK1, ITGA9

bta04520 Adherens junction 17 0.00688 TCF7L1, CREBBP, ACTN1, PTPRM, SORBS1, TGFBR1, FER, PARD3, 
ERBB2, CTNNA1, SNAI1, SNAI2, MAPK1, CTNNA3, FYN, CTNNA2, 
SSX2IP

bta04071 Sphingolipid signaling  
 pathway

23 0.00688 CERS3, CERS4, CERS6, SGMS1, SPHK2, ROCK2, PRKCE, PPP2R3A, 
PIK3CB, PLD1, KNG1, GNAI1, MAPK10, PPP2CB, MAPK8, PPP2R2B, 
PPP2R5E, BDKRB2, BCL2, MAPK1, FYN, PLCB1, TP53

bta04724 Glutamatergic synapse 22 0.00688 HOMER1, GLS2, GRIK3, SLC1A2, GRIK4, PLA2G4A, GRIK1, ADCY1, 
GRIK2, PLD1, GRIN2C, GRIN2B, GNAI1, PPP3CA, GNG10, GRM5, GRM8, 
MAPK1, PLCB1, PRKACB, SHANK2, GRIA4

bta04390 Hippo signaling pathway 26 0.01469 YAP1, BMPR2, AFP, AREG, AMOT, STK3, PPP2CB, CCND2, CCND1, CTN-
NA1, TP53BP2, DVL3, CTNNA3, CTNNA2, AMH, TCF7L1, FZD4, WNT7A, 
TGFBR1, GDF7, BMP5, DLG2, FRMD6, PPP2R2B, PARD3, SNAI2

bta04072 Phospholipase D signaling  
 pathway

25 0.01931 ARF2, SHC3, DGKB, PDGFB, ADCY1, PIK3CB, PLD1, PIK3R6, PIK3R5, 
CYTH3, GRM5, GRM8, MAPK1, FYN, PIP5K1B, PIP5K1C, AVPR1B, 
SPHK2, PLA2G4A, DNM3, DGKQ, AGTR1, GRB2, PLCB1, DGKI

bta04530 Tight junction 27 0.02750 ROCK2, PRKAG2, NEDD4L, ACTR3B, AMOT, PPP2CB, EPB41L4B, 
MAPK8, TUBA1A, RAP1A, CCND1, ERBB2, PRKACB, VASP, PRKCE, 
ACTN1, RDX, ARPC5, MAPK10, DLG2, CLDN14, PPP2R2B, PARD3, 
CLDN34, CLDN16, AMOTL1, TJP2

bta04070 Phosphatidylinositol  
 signaling system

18 0.02750 DGKB, IPMK, ITPK1, CALML4, PIK3CB, INPP4A, INPP4B, INPP5A, 
SYNJ1, IMPA1, DGKQ, PI4KA, PLCE1, PIP5K1B, PIP5K1C, PLCB1, 
PLCD4, DGKI

bta04810 Regulation of actin  
 cytoskeleton

32 0.02750 ROCK2, PDGFB, PIK3CB, C8B, IQGAP2, ACTR3B, KNG1, MYLK, C6, 
BDKRB2, MAPK1, PIP5K1B, PIP5K1C, PAK3, PAK2, FGF23, PAK5, ARH-
GEF12, PPP1R12A, ITGA4, ACTN1, ITGA1, RDX, ARPC5, DIAPH2, RGCC, 
DIAPH3, FGF19, ARHGEF4, ITGA6, DOCK1, ITGA9

bta04012 ErbB signaling pathway 16 0.03543 SHC3, BAD, PIK3CB, AREG, MAPK10, MAPK8, NRG3, ERBB2, ABL1, 
ABL2, MAPK1, GRB2, PAK3, PAK2, CAMK2G, PAK5

bta01522 Endocrine resistance 17 0.03709 JAG2, JAG1, SHC3, BAD, ADCY1, PIK3CB, ABCB11, ESR2, MAPK10, 
MAPK8, CCND1, ERBB2, BCL2, MAPK1, GRB2, TP53, PRKACB

bta04611 Platelet activation 20 0.03709 VASP, FGB, FGA, PPP1R12A, ARHGEF12, ROCK2, PLA2G4A, ADCY1, 
PIK3CB, PIK3R6, GNAI1, MYLK, PIK3R5, RAP1A, TBXA2R, MAPK1, FYN, 
PLCB1, PRKACB, PRKG1

bta04360 Axon guidance 26 0.03709 SEMA7A, BMPR2, ROCK2, SEMA3E, PIK3CB, GNAI1, ROBO1, PPP3CA, 
EFNB3, ABL1, MAPK1, FYN, PAK3, PAK2, CAMK2G, PAK5, EPHA5, ARH-
GEF12, EPHA6, UNC5D, GDF7, NFATC4, CDK5, PARD3, PLXNB1, EPHA3

bta04371 Apelin signaling pathway 22 0.03709 HDAC4, RYR2, HDAC5, JAG1, SPHK2, PRKCE, PRKAG2, CALML4, 
ADCY1, PIK3R6, TGFBR1, GNAI1, MYLK, PIK3R5, MYL4, ADCY10, 
GNG10, CCND1, AGTR1, MAPK1, PLCB1, PRKACB

bta04144 Endocytosis 33 0.03709 ARF2, VPS4A, AGAP1, NEDD4L, ASAP1, PLD1, ACTR3B, CYTH3, CAPZB, 
PSD4, GRK7, PSD3, PIP5K1B, PIP5K1C, LDLRAP1, CCR5, RAB11FIP3, 
WASHC1, EPS15, AP2M1, SNX5, ARFGEF2, SMURF1, ARPC5, AP2B1, 
TGFBR1, DNM3, ACAP2, PARD3, CAPZA2, AMPH, VPS45, SMAP1

bta00562 Inositol phosphate  
 metabolism

14 0.04396 IPMK, ITPK1, PIK3CB, INPP4A, INPP4B, INPP5A, SYNJ1, IMPA1, PI4KA, 
PLCE1, PIP5K1B, PIP5K1C, PLCB1, PLCD4

KEGG, Kyoto encyclopedia of genes and genomes; MY, milk yield; FY, fat yield.
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apse pathway (bta04724) were associated with both MY and 
FY in this population. Five of these significant GO terms 
(cytosol, adherens junction, postsynaptic density, ATP bind-
ing, and guanyl-nucleotide exchange factor activity) were 
previously reported to be associated with economically im-
portant traits in dairy cattle. 
  The CC cytosol (GO:0005829) is the part of the cytoplasm 
that contains particulate matter such as protein complexes 
that play an essential role in various cellular processes (https:// 
www.ebi.ac.uk/QuickGO/term/GO:0005829). Several studies 
have indicated that genes involved in cytosol were associated 
with mastitis in dairy cows [33-35]. The adherens junction 
CC are essential for tissue morphogenesis, embryonic de-
velopment, and maintenance of tissue architecture in adult 
organisms (https://www.ebi.ac.uk/QuickGO/term/GO: 
0034332). The adherens junction was previously reported 
to be associated with pregnancy loss in US Holstein cattle 
[36]. The ATP binding GO term plays a central role in en-
ergy transfer, enzyme catalysis, signal transduction, cellular 
movement, and DNA processes (https://www.ebi.ac.uk/
QuickGO/term/GO:0005524). ATP binding was also re-
ported to be associated with mastitis in Polish Holstein-Friesian 
cattle [37] and physical response to heat stress in Australian 
Holstein-Friesian [38] and Chinese Holstein cattle [39]. 
  Guanyl-nucleotide exchange factor activity (GEF) refers 
to the ability of a protein to catalyze the exchange of guano-
sine diphosphate (GDP) for guanosine triphosphate (GTP) 
on small GTPases. GTPases are a class of enzymes involved 

in intracellular signaling and regulation of various cellular 
processes, including cell growth, differentiation, and vesicu-
lar transport (https://www.ebi.ac.uk/QuickGO/term/
GO:0005085). The GEF was reported to be associated with 
male fertility in Italian Brown Swiss cattle [40].
  The significantly enriched KEGG pathway glutamatergic 
synapse (bta04724) for MY and FY was also found to be sig-
nificantly enriched in a previous study in this multibreed 
dairy population [7]. Cheruiyot et al [41] found eight en-
riched genes in the glutamatergic synapse pathway associated 
with heat tolerance in Australian Holstein cattle. In a similar 
study, Zamorano-Algandar et al [42] indicated that the glu-
tamatergic synapse pathway was associated with MY in US 
Holstein affected by heat stress. 
  Potassium ion transmembrane transport, involved in the 
movement of potassium ions (K+) across the cell membrane, 
was the most significant enriched BP for MY candidate genes 
(https://www.ebi.ac.uk/QuickGO/term/GO:0071805). This 
process is crucial for maintaining the proper balance of po-
tassium ions inside and outside the cell, which is essential 
for various cellular functions, including nerve transmission, 
muscle contraction, and maintenance of the resting mem-
brane potential. Furthermore, potassium is an essential 
micromineral component for milk production in lactating 
cows during heat stress because it can mitigate the negative 
impact of heat stress on overall cow health [43]. Potassium 
ion transmembrane transport was also found to be associated 
with pregnancy loss in Holsteins cows [36] and fertility traits 

Figure 3. Functional terms significantly enriched corresponding to genes associated with fat yield.

https://www.ebi.ac.uk/QuickGO/term/GO:0005829
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https://www.ebi.ac.uk/QuickGO/term/GO:0005085
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in Holstein Friesian, Jersey, and Holstein Friesian×Jersey cows 
[44].
  The nervous system development GO term had the high-
est number of genes from the input data set for MY. This GO 
term plays an important role in the process by which the 
nervous system, including the brain and spinal cord, forms 
and matures during embryonic and postnatal development 
(https://www.ebi.ac.uk/QuickGO/term/GO:0007399). The 
nervous system development GO term was associated with 
FY in Chinese Holstein cattle [45].
  The metal ion binding GO term had the highest number 
of genes from the input data set for MY. It plays an essential 
role in various cellular processes and is involved in the struc-
ture, function, and regulation of numerous proteins and 
enzymes (https://www.ebi.ac.uk/QuickGO/term/GO:0046 
872). Chropra et al [46] investigated the milk proteome in 
Sahiwal cattle and found that the majority of proteins had a 
functional role in metal ion binding. In addition, metal ion 
binding was reported to be associated with mastitis in German 
Holstein Frisian cattle [33].
  Modulation of synaptic transmission, a significantly en-
riched BP for FY candidate genes, plays a crucial role in 
neuronal signaling and information processing in the nervous 
system (https://www.ebi.ac.uk/QuickGO/term/GO:0050 
804). Modulation of synaptic transmission was associated 
with maternal calving ease in Holstein cows [47].
  Cytoplasm had the highest number of genes from the in-
put data set among significantly enriched CC. Cytoplasm is 
a dynamic and essential component of cells because it pro-
vides a medium for cellular activities, supports metabolism, 
facilitates protein synthesis, enables cellular movement, and 
acts as a hub for signaling and communication within the 
cell (https://www.ebi.ac.uk/QuickGO/term/GO:0005737). 
Cytoplasm was found to be associated with mastitis in dairy 
cows [34]. Lastly, focal adhesion was the most significantly 
enriched pathway for FY and had the highest number of 
genes from the input data set. This finding was consistent 
with a previous study in the Thai multibreed dairy cattle 
population [7]. 

Quantitative trait loci annotation analysis
The QTL annotation analysis identified a total of 9,334 QTL 
associated with MY and 8,977 QTL associated with FY based 
on SNP genotypes. These annotated QTL were distributed 
across all chromosomes, with chromosome 6 exhibiting the 
highest number of annotated QTL for both MY (885) and 
FY (1,487). Conversely, chromosome 28 had the lowest 
number of annotated QTL for MY (82), and chromosome 
24 had the lowest number of annotated QTL for FY (87). 
The distribution of annotated QTL associated with MY and 
FY across different QTL classes is illustrated in Figure 4a 
and Figure 5a, respectively.

  The analysis of annotated QTL revealed that approxi-
mately 27% of the QTL associated with MY and FY in the 
Thai multibreed dairy population belonged to the milk class. 
Other classes with sizeable QTL percentages were meat and 
carcass (20.41% for MY and 20.39% for FY), production 
(18.09% for MY and 18.77% for FY), health (13.18% for MY 
and 12.71% for FY), reproduction (11.94% for MY and 
11.8% for FY), and exterior (9.66% for MY and 9.76% for 
FY). Further examination of the QTL associated with MY 
and FY within the milk class (Figure 4b and Figure 5b) re-
vealed that a substantial portion of these QTL were related 
to specific milk traits. These included QTL associated with 
milk fat yield (4.80% for MY and 4.63% for FY), milk pro-
tein yield (4.74% for MY and 4.79% for FY), milk protein 
percentage (4.18% for MY and 4.31% for FY), and milk yield 
(4.13% for MY and 4.28% for FY). These percentages high-
light the importance of milk-related QTL in determining the 
genetic variation for MY and FY in this population.
  Interestingly, a relatively lower proportion of QTL within 
the health class (Figure 4c for MY and Figure 5c for FY) and 
exterior class (Figure 4d for MY and Figure 5d for FY) were 
associated with adaptation traits relevant to the tropical en-
vironment in Thailand. These traits included heat tolerance, 
respiratory rate, tick resistance, resistance to trypanosomia-
sis, and coat color. This suggests that the genetic basis for 
adaptation traits in the Thai multibreed dairy population 
may be governed by a different set of genes or genomic re-
gions.
   There were 17 QTL in the health and exterior QTL class-
es for MY. These QTL were associated with 9 distinct genes: 
short chain dehydrogenase/reductase family 16C member 5 
(SDR16C5), regulatory factor X4 (RFX4), myosin IA (MYO1A), 
phosphodiesterase 3A (PDE3A), RNU1-1 (U1), PTPRF in-
teracting protein alpha 2 (PPFIA2), CD83 molecule (CD83), 
rho GTPase activating protein 15 (ARHGAP15), and catenin 
alpha 2 (CTNNA2). These genes have been consistently associ-
ated with physiological traits related to tropical adaptation 
across various dairy and beef cattle breeds [48-61]. Two of 
the identified genes, ARHGAP15 and CTNNA2, have been 
identified as candidate genes under positive selection for tol-
erance to trypanosomiasis in Boran and N'Dama cattle [48, 
49]. The ARHGAP15 gene, encoding a protein that acts as a 
negative regulator of RAC1, a key mediator in the mitogen-
activated protein kinase (MAPK) pathway, plays a critical 
role in regulating the immune response against intracellular 
parasites [49]. Conversely, the CTNNA2 gene, a protein-
coding gene, is involved in the development of the nervous 
system and has shown associations with climate adaptation 
in Mediterranean cattle [50] and signals of positive selection 
in Gir cattle populations [51].
  Other genes of interest are RFX4, MYO1A, PDE3A, U1, 
and PPFIA2. The RFX4 gene, a member of the RFX family of 

https://www.ebi.ac.uk/QuickGO/term/GO:0007399
https://www.ebi.ac.uk/QuickGO/term/GO:0046872
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transcriptional regulators, influences the expression of major 
histocompatibility complex (MHC) class II genes and plays a 
significant role in brain development [52]. It may also be 
implicated in the environmental adaptation of Chinese in-
digenous cattle. The MYO1A gene, a candidate gene from 
the myosin superfamily associated with skin pigmentation 
in cattle [53] was reported to be associated with thermotol-
erance in Chinese indigenous cattle [54,55]. The PDE3A, 
U1, and PPFIA2 genes were found to be associated with 
physiological indicators of heat stress in Holstein, including 
rectal temperature, respiration rate score, and drooling score 
[56,57]. These associations highlight the importance of these 
genes for cattle adaptability to heat stress conditions.
  Gene SDR16C5 is a member of the short-chain alcohol 
dehydrogenase/reductase superfamily of proteins. It plays a 
crucial role in the oxidation of retinol to retinaldehyde, an 
essential step in the conversion of retinol into retinoic acid. 
This process is related to ectopic melanocyte stem cell differ-
entiation in the hair follicle niche [58]. SDR16C5 was reported 
to be associated with coat color in various cattle breeds, in-

cluding Angus, Charolais, Limousin, and Holstein [59]. 
These findings emphasize the role of SDR16C5 in both pig-
ment-related and adaptation traits. The CD83 gene, a member 
of the immunoglobulin superfamily of receptors, plays a 
regulatory role in lymphocyte maturation, activation, homeo-
stasis, and antibody response to immunization and infection 
[60]. Gene CD83 plays an essential role in the initiation and 
regulation of innate and adaptive immune responses. It has 
also been proposed as a candidate gene for tick resistance in 
Bos taurus × Bos indicus crossbred cattle [61]. These outcomes 
underscore the significance of CD83 in immune response 
mechanisms and its potential role in tick resistance.
  This study revealed a significant number of QTL associat-
ed with MY and FY based on SNP genotypes. The annotated 
QTL were distributed across all chromosomes, with chro-
mosome 6 exhibiting the highest number of QTL for both 
MY and FY. This study also found that a substantial propor-
tion of the annotated QTL were associated with the milk 
class, indicating its importance in the Thai multibreed dairy 
cattle population. This finding agreed with previous research 

Figure 4. Percentages of total annotated QTL for MY by QTL class. a) Percentage of annotated QTL associated with different QTL classes; b) Percentage 
of annotated QTL associated with Milk trait category; c) Percentage of annotated QTL associated with Health trait category; and d) Percentage of 
annotated QTL associated with Exterior trait category. QTL, quantitative trait loci; MY, milk yield.
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conducted with Holstein and Holstein crossbred cattle. 
  This study also identified specific genes associated with 
MY within the health and exterior QTL classes. Nine differ-
ent genes, namely SDR16C5, RFX4, MYO1A, PDE3A, U1, 
PPFIA2, CD83, ARHGAP15, and CTNNA2, were found to 
be associated with physiological characteristics related to 
tropical adaptation in various dairy and beef cattle breeds. 
Among these genes, ARHGAP15 and CTNNA2 were reported 
to be candidate genes under positive selection for tolerance 
to trypanosomiasis in specific cattle populations. The ARH-
GAP15 gene was found to play a role in the negative regulation 
of RAC1, a key mediator in the MAPK pathway involved in 
immune response regulation against intracellular parasites. 
The CTNNA2 gene was linked to the development of the 
nervous system, neurological diseases, and climate adapta-
tion in cattle populations. 
  The RFX4 gene was implicated in the environmental ad-
aptation of Chinese indigenous cattle, whereas the MYO1A 
gene was associated with skin pigmentation and thermotol-

erance in Chinese indigenous cattle. Three other genes, 
PDE3A, U1, and PPFIA2, were reported to be associated 
with physiological indicators of heat stress response in Holstein 
cattle, particularly rectal temperature. The SDR16C5 gene, 
apart from its involvement in the oxidation of retinol, was 
linked to coat color variations in multiple cattle breeds. 
Lastly, the CD83 gene, belonging to the immunoglobulin 
superfamily of receptors, was found to regulate lymphocyte 
maturation, activation, homeostasis, and immune response. 
Its potential role as a candidate gene for tick resistance was 
also highlighted. Overall, this study successfully combined 
multi-omics approaches to identify sets of genes associated 
with MY and FY in a Thai multibreed dairy cattle popula-
tion, shedding light on the genetic factors underlying adaptation 
and milk production traits in cattle, and providing valuable 
insights for the improvement of genetic selection strategies 
and breeding programs in the Thai multibreed dairy cattle 
population.

Figure 5. Percentages of total annotated QTL for FY by QTL class. a) Percentage of annotated QTL associated with different QTL classes; b) Percentage 
of annotated QTL associated with milk trait category; c) Percentage of annotated QTL associated with Health trait category; and d) Percentage of 
annotated QTL associated with Exterior trait category.  QTL, quantitative trait loci; FY, fat yield.
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CONCLUSION

This study identified a set of genes associated with 305-day 
MY and FY that also contribute to the adaptability of Thai 
multibreed dairy cattle to tropical environmental condi-
tions using comprehensive GWAS and QTL analyses. 
Genes ARHGAP15, CTNNA2, RFX4, MYO1A, and CD83 
are associated with disease resistance, environmental adap-
tation, skin pigmentation, and immune response. These 
genes may play crucial roles in enhancing the ability of 
dairy cattle to withstand tropical environmental challenges. 
Additionally, genes PDE3A, U1, PPFIA2, and SDR16C5, 
linked to heat stress response and coat color variation, are 
essential for thermotolerance and environmental adaptation. 
Our findings shed light on the genetic factors influencing 
milk production and adaptability of dairy cattle under 
tropical conditions. An increased understanding of the 
physiological functions of these genes and their relation-
ship to milk production and adaptability traits can facilitate 
the development of sustainable genetic selection strategies 
and breeding programs in tropical environments.
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Supplemental Figure S1. Variant effect predictors (VEP) annotations for the variants 739 


associated with milk yield. a) Overall distribution of VEP annotations for all variants 740 


within 15 kb upstream to 15kb downstream of the reference bovine genome assembly. 741 


b) Annotation distribution for the variants present in coding sequences of all variants. 742 
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 744 


Supplemental Figure S2. Variant effect predictors (VEP) annotations for the variants 745 


associated with milk yield. a) Overall distribution of VEP annotations for all variants 746 


within 15 kb upstream to 15kb downstream of the reference bovine genome assembly. 747 


b) Annotation distribution for the variants present in coding sequences of all variants. 748 
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 750 


Supplemental Figure S3. Manhattan plot of percentages of the additive genetic variance for 751 


milk yield and fat yield contributed by each SNP.   752 
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Supplementary Table S1. Number of genes per chromosome for milk yield (MY) and fat 759 


yield (FY) identified by SNPs genotypes inside or within 15 kb upstream and 15kb 760 


downstream of genes in the Ensembl Bos taurus genome assembly  761 


Chromosome Number of genes (n) 


MY FY 


1 95 80 


2 112 88 


3 125 85 


4 84 80 


5 116 86 


6 63 56 


7 91 80 


8 57 49 


9 54 41 


10 85 86 


11 92 75 


12 30 38 


13 51 62 


14 47 29 


15 93 81 


16 61 46 


17 59 51 


18 79 63 


19 87 79 


20 42 38 
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21 60 48 


22 50 48 


23 86 44 


24 34 33 


25 54 48 


26 31 31 


27 19 19 


28 39 47 


29 31 41 


X 24 32 
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